

Complete Genome Sequence of Equine Herpesvirus Type 9

Hideto Fukushi, Tsuyoshi Yamaguchi,* and Souichi Yamada*

Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan

Equine herpesvirus type 9 (EHV-9), which we isolated from a case of epizootic encephalitis in a herd of Thomson's gazelles (*Gazella thomsoni*) in 1993, has been known to cause fatal encephalitis in Thomson's gazelle, giraffe, and polar bear in natural infections. Our previous report indicated that EHV-9 was similar to the equine pathogen equine herpesvirus type 1 (EHV-1), which mainly causes abortion, respiratory infection, and equine herpesvirus myeloencephalopathy. We determined the genome sequence of EHV-9. The genome has a length of 148,371 bp and all 80 of the open reading frames (ORFs) found in the genome of EHV-1. The nucleotide sequences of the ORFs in EHV-9 were 86 to 95% identical to those in EHV-1. The whole genome sequence should help to reveal the neuropathogenicity of EHV-9.

E quine herpesvirus type 9 (EHV-9) is the newest member of the equine herpesviruses. We isolated EHV-9 from a Thomson's gazelle (*Gazella thomsoni*) that died in an outbreak of epizootic acute encephalitis at a zoological garden in 1993 (3). EHV-9 was originally designated gazelle herpesvirus type 1 (GHV-1). GHV-1 showed serological cross-reactivity with EHV-1 in neutralization tests, although the DNA fingerprinting and Southern hybridization patterns of GHV-1 differ from those of EHV-1. These data indicated that GHV-1 is an equine herpesvirus. Therefore, GHV-1 has been redesignated EHV-9.

Experimental infection in various animals, including hamster, mouse, horse, and goat, showed that EHV-9 possesses a wide host range and strong neurotropism (4, 8, 9, 10, 11, 12, 13). Natural EHV-9 infection has been reported to cause lethal encephalitis in a giraffe (6) and polar bear (2, 10). Thus, EHV-9 has the potential to spread other hosts.

To sequence the genome, DNA of the EHV-9 strain P19 was purified from the culture supernatant of the fifth passage in embryonic equine kidney cells. The genome was sequenced by shotgun Sanger sequencing with an average coverage of $18.4 \times$. The reads were *de novo* assembled with the Consed assembler (5).

The complete sequence of EHV-9 is 148,371 bp. The genome has all 80 of the open reading frames (ORFs) in EHV-1 strain Ab4p (GenBank accession number AY665713). ORFs 42, 52, and 53 showed the highest degrees of identity to those in EHV-1 (95%), while ORF71 showed the lowest degree of identity (86%). All but one of the insertions and deletions (indels) of the ORFs with respect to those in EHV-1 strain Ab4p were in-frame additions and deletions of codons only. Only one frameshift was found, and that was in ORF68.

EHV-9 is strongly neuropathogenic in various animals. However, EHV-1 usually infects only horses, causing abortion and respiratory infections, although it has been identified in several cattle cases, where the cattle showed various symptoms (9). EHV-1 is also known to cause equine herpesvirus myeloencephalopathy, which has recently been increasing (7). Because EHV-9 and EHV-1 are genetically close to each other but have different host ranges and pathogenicities, comparison of their genomes should help to explain their differences in host range and neuropathogenicity.

Nucleotide sequence accession number. The EHV-9 strain P21 genome sequence has been deposited in GenBank under accession number AP010838.

ACKNOWLEDGMENT

This work was supported by MEXT KAKENHI grant number 17380181 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- 1. Reference deleted.
- 2. Donovan TA, et al. 2009. Meningoencephalitis in a polar bear caused by equine herpesvirus 9 (EHV-9). Vet. Pathol. 46:1138–1143.
- 3. Fukushi H, et al. 1997. Gazelle herpesvirus 1: a new neurotropic herpesvirus immunologically related to equine herpesvirus 1. Virology 227:34–44.
- 4. Fukushi H, et al. 2000. A hamster model of equine herpesvirus 9 induced encephalitis. J. Neurovirol. 6:314–319.
- 5. Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res. 8:195–202.
- Kasem S, et al. 2008. Equine herpesvirus type 9 in giraffe with encephalitis. Emerg. Infect. Dis. 14:1948–1949.
- 7. Lunn DP, et al. 2009. Equine herpesvirus-1 consensus statement. J. Vet. Intern. Med. 23:450–461.
- Narita M, Uchimura A, Kawanabe M, Fukushi H, Hirai K. 2001. Invasion and spread of equine herpesvirus 9 in the olfactory pathway of pigs after intranasal inoculation. J. Comp. Pathol. 124:265–272.
- Pagamjav O, et al. 2007. Molecular characterization of equine herpesvirus 1 (EHV-1) isolated from cattle indicating no specific mutations associated with the interspecies transmission. Microbiol. Immunol. 51:313– 319.
- Schrenzel MD, et al. 2008. New hosts for equine herpesvirus 9. Emerg. Infect. Dis. 14:1616–1619.
- Taniguchi A, et al. 2000. Pathogencity of a new neurotropic equine herpesvirus 9 (gazelle herpesvirus 1) in horses. J. Vet. Med. Sci. 62:215– 218.
- 12. Taniguchi A, et al. 2000. Equine herpesvirus 9 induced lethal encephalomyelitis in experimentally infected goats. Arch. Virol. 145:2619–2627.
- 13. Yanai T, et al. 2003. Experimental infection of equine herpesvirus 9 in dogs. Vet. Pathol. 40:263–267.

Received 24 September 2012 Accepted 24 September 2012 Address correspondence to Hideto Fukushi, hfukushi@gifu-u.ac.jp.

* Present address: Tsuyoshi Yamaguchi, Laboratory of Veterinary Hygiene, Department of Veterinary Medicine, and Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan; Souichi Yamada, Department of Virology I, National Institute of Infectious Diseases, Toyama, Tokyo, Japan. Copyright © 2012, American Society for Microbiology. All Rights Reserved.