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Abstract
Super-resolution techniques like PALM and STORM require accurate localization of single
fluorophores detected using a CCD. Popular localization algorithms inefficiently assume each
photon registered by a pixel can only come from an area in the specimen corresponding to that
pixel (not from neighboring areas), before iteratively (slowly) fitting a Gaussian to pixel intensity;
they fail with noisy images. We present an alternative; a probability distribution extending over
many pixels is assigned to each photon, and independent distributions are joined to describe
emitter location. We compare algorithms, and recommend which serves best under different
conditions. At low signal-to-noise ratios, ours is 2-fold more precise than others, and 2 orders of
magnitude faster; at high ratios, it closely approximates the maximum likelihood estimate.

Introduction
Techniques for ‘super-resolution’ fluorescence microscopy like PALM (photo-activation
localization microscopy) [1] and STORM (stochastic optical reconstruction microscopy) [2]
depend upon precise localization of single fluorophores. Such localization represents a
challenge, as photons emitted from a point source are detected by a CCD to yield a pixelated
image; then, relevant information in the pixels must be used to deduce the true location of
the point source. The various localization methods currently in use differ in precision and
speed. For example, minimizing least-square distances (MLS) and maximum likelihood
estimation (MLE) fit a Gaussian distribution to pixel intensities before estimating a fluor’s
location; MLS is the most popular but less precise, while MLE is more involved but can
achieve the theoretical minimum uncertainty [3-5]. Both are iterative and so computationally
intensive; consequently, attempts have been made to maximize accuracy and minimize
computation time [6-9]. More problematic, fitting implies an underlying model, which can
introduce errors, especially at low signal-to-noise ratios (S:N). The straightforward center-
of-mass (CM) estimate [10] has the advantages of simplicity and speed, but is considered
less accurate than the iterative methods (mistakenly, as we shall see); as a result, it is not
being used for PALM/STORM.

Borrowing principles from ‘pixel-less’ imaging – a technique that uses a photomultiplier as
a detector [11] – we present a non-iterative (and so rapid) way of localizing fluors imaged
with a CCD. Each photon registered in the image carries spatial information about the
location of its source. As this information is blurred by the point-spread function (PSF) of
the microscope, we use the PSF to define many independent probability distributions that
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describe the emitter’s possible locations – one for each photon in the population (Fig. 1(a)).
We then assume that all photons came from the same emitter (the usual and fundamental
basis of localization), and aggregate probability distributions; the result is a joint distribution
(JD) of the probability of the emitter’s location (Figs. 1(b) and 1(c)). Localization by JD is
similar to a weighted form of CM, offering advantages in simplicity and speed, and – for the
curious practitioner – we detail the differences between the two. We also compare the
performance of the various methods both quantitatively (using computer-generated images)
and qualitatively (using ‘real’ images). Our results enable us to recommend which approach
to use with images containing different degrees of noise, depending on whether precision or
speed is the priority. We find that the most popular – MLS – is never the algorithm of
choice. At high signal-to-noise ratios, MLE yields the highest precision, while JD offers a
quick, closed-form alternative; with very noisy images (where both MLS and MLE fail) JD
proves the most accurate.

Results
Theory

In a typical single-molecule or PALM/STORM experiment, an image is acquired by
collecting photons from temporally- and spatially-isolated emitters using a CCD. As many
photons fall on one pixel, this is analogous to binning data into a histogram, with loss of
sub-pixel (sub-bin) spatial information. We will think of individual photons as independent
carriers of spatial information. Then, given a pixel that has registered one photon,
conventional localization methods (such as MLE, MLS, and CM) would treat a photon as
having a spatial distribution represented by the blue line in Fig. 1(a). The photon has a
probability density function (i.e., the probability of the location of the source of that photon)
that is uniformly flat over the whole area of the pixel, giving a 2-D rectangular or ‘top-hat’
distribution, with zero probability in neighboring pixels. [Note that this probability density
function refers to one photon and not to many.] In other words, uncertainty is inaccurately
recorded as a uniform distribution over just one pixel. In contrast, JD localization represents
this uncertainty as a normal distribution that spreads over several pixels (see the one red
curve in Fig. 1(a), and the many red curves in Fig. 1(b)).

The PSF serves as an initial estimate of the uncertainty imparted on the position of every
photon by the microscope, and we initially use a normal distribution to approximate it [12]
(as is common in the field). Such a distribution is uniquely described by center location (μi)
and width (σi). Our default is to place μi at the center of a pixel and use σi equivalent to that
of the PSF (Fig. 1(c), left); alternatively, μi and/or σi can be varied to suit the needs of a
particular experiment (Fig. 1(c), right). After applying a distribution to each photon,
distributions are aggregated to infer the probability of the location of the emitter (Figs. 1(b)
and 1(c)). [Similar joining of independent probability distributions has been proposed for
geolocation [13].] We have derived a simple equation to facilitate closed-form (non-
iterative) – and so rapid – calculation.

(1)

Here, μo is the best estimate of the location of the emitter and N is the number of photons.
[See Methods at the end of the manuscript for derivation.]

In contrast, methods such as MLS and MLE describe the probability of emitter location by
fitting a curve to pixel intensities, which involves many sequential calculations, then
deducing location information from that curve. We now benchmark test the different
methods, first for precision and then for speed.
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Quantitative comparison of precision
To assess precision, we use computer-generated images of a point source whose location is
known. In each simulation, a ‘point source’ emits a known number of ‘photons’ that ‘pass’
through a ‘microscope’ (to be blurred by the PSF) to yield an image (initially 15×15 pixels)
on a ‘CCD’ then, a specified number of ‘background photons’ are added. Using 10,000 such
images for each condition analyzed, we go on to compute the 1-D root-mean-squared error
(RMSE) between the true location of the emitter and the location estimated using each of the
four methods.

In the first analyses (Figs. 2(a) and 2(b)), we apply JD using default settings (i.e., with μi set
at the pixel center, and σi equivalent to that of the PSF); then, the JD equation simplifies to
that used in CM (Methods). To aid comparison, we also plot the theoretical minimum
uncertainty that is attainable under the particular conditions used – a lower bound (LB)
computed using Eq. (6) of Thompson et al. [14]. This LB excludes effects of background
noise, but includes those due to pixel size and PSF, and so differences from the LB reflect
the influence of background noise on a method.

We first consider the case where background is absent (b = 0; Fig. 2(a)). As expected, errors
in localization given by all four methods decrease as the number of photons increases. Those
given by CM and JD lie on the LB at all photon counts tested. Below ~30 photons, MLS and
MLE ‘fail’ they either do not converge to a solution during the 200 iterations allowed, or
yield a 1-D RMSE > 1 pixel (so values are not shown here) – and they sometimes even
return a location outside the image (presumably because spot shape diverges significantly
from a Gaussian; Supplemental Fig. 1, Media 1). As photon count increases, MLE is
initially less accurate than MLS, but then errors fall progressively to reach the LB above
~100 photons. Errors given by MLS converge to a level 30% greater than the LB, as is well
documented [4, 5, 15].

We now randomly add an average of 10 background photons per pixel (i.e., b = 10; Fig.
2(b)). At the very lowest signal-to-noise ratio, all methods fail (in the case of JD and CM,
only because 1-D RMSE > 1 pixel). As the ratio progressively increases, JD and CM (when
corrected for background; Methods) are the first to return a 1-D RMSE of less than 1 pixel,
and then MLE and JD/CM (in that order) converge to the LB. Most PALM/STORM images
are formed from data with S:N >5 (e.g., Löschberger et al. [16]), where MLE returns
between 8 and 27% less RMSE than MLS.

As JD treats each photon separately, individual distributions can be tuned independently to
optimize the precision and/or speed achieved at a given signal-to-noise ratio. As a first
example, we eliminate the effects of outlying bright pixels that are likely to result from
noise. As the PSF falls off precipitously from the central peak, few photons emitted by a
point source will be detected in the image plane > 3σ distant from the true location. Then,
we consider all signal detected > 3σ from the center of the brightest pixel to be noise (i.e., >
3.5 pixels away), and nullify its effects on the JD by ascribing σi = ∞ to each of its
constituent distributions. This simple ‘optimized’ version of JD improves accuracy
(compared with CM) over a wide range of S:N (Fig. 2(c)). It is also more precise than MLE
at S:N < 2.7, than MLS at S:N < 3.0 and > 4.5, and it returns results within 5% of MLE at
S:N > 7.

Tuning JD variables
When applying JD, we hitherto set μi = pixel center and σi = σPSF; we now tune each to
maximize localization precision in noisy images (grey region in Fig. 2(c)) where MLS and
MLE fail – first varying each one alone, and then both together. [Just as the default version
of JD and CM produce the same results, we expect a tuned version of JD and an equivalent
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weighted CM variant (if developed) to do so too. However, we differentiate between JD and
CM for several inter-related reasons: (i) By the strictest definition, CM weights each pixel
position solely by a ‘mass’ equivalent to intensity; in contrast, in JD, μi and σi can be varied
depending on distance from (and position relative to) the brightest pixel (with intensity
determining the number of distributions to be joined together). (ii) Conceptually, CM
applies statistics to a population of photons, whilst JD disaggregates the population into
individual photons and then combines individual probabilities (with a consequential
reduction in speed; below). (iii) In principle, it should be possible to derive a general form of
CM that would allow tuning of the piecewise weightings of pixel positions to yield the same
precision as the JD variants (below), but such a generalization would inevitably mean that
the CM equation loses its characteristic simplicity.]

Consider Fig. 3(a), and the selected photon distributions (blue curves) in the cartoon on the
left. By default, μi is placed at the center of the CCD pixel registering the photon (blue
dots), even though that photon was probably emitted by a fluor in the central (brightest)
pixel in the specimen plane. Therefore, the x- and y-coordinates of μi associated with all
distributions – except those derived from the brightest pixel – are shifted between ⅕ − 1
pixel towards the brightest pixel (red dots mark new positions for a ½-pixel shift).
Distributions from the brightest pixel are also shifted from the central default location by a
distance proportional to the intensities of adjacent pixels (Methods, Eqs. (2) and (3)). [In all
cases, σi remains constant and equal to σPSF.] A shift of ½-pixel width yields the least error
(not shown), giving a ~5% reduction at S:N < 3 (Fig. 3(a), right).

Now consider Fig. 3(b). By default, σi is the width of the Gaussian that emulates the
microscope’s PSF. As an emitter is most likely to lie in the brightest pixel, we expand
distributions from other pixels (in the cartoon, the outer blue halo expands to give the outer
dilated red one); distributions from pixels lying progressively further away from the
brightest are expanded progressively more (Methods, Eqs. (4) and (5)). Distributions from
the brightest pixel and its immediate neighbors remain unchanged (in the cartoon, the central
blue halo gives an unchanged red halo). JD now yields up to 36% less error than CM (Fig.
3(b)); however, this comes at the price of higher error at higher signal-to-noise ratios
(Supplemental Fig. 2, left).

We now combine both strategies. It turns out that an x-y shift in μi of ¼ pixel (not ½ pixel
as in Fig. 3(a)) coupled with σi broadening (as in Fig. 3(b)) realizes up to 42% less error
than CM – and 51% less than MLE – at S:N = 1.6 (Fig. 3(c)). Note that MLS begins to break
down at S:N = 2.4 and fails completely below S:N = 1.9, while MLE never performs the
best in this noisy region. In conclusion, this ‘tuned’ version of JD exhibits less error than (i)
MLS at S:N < 2.4 and 5 < S:N < 38, (ii) MLE at S:N < 2.7, and (iii) CM at 1.3 < S:N < 24
(see also Supplemental Fig. 2, right (Media 1)).

Efficacy of localization algorithms is known to vary with image size [7] and the position of
the spot within the image [10]; for example, at low S:N, CM favors the geometric center of
the image. Therefore, we assessed the effects of reducing the size of the image window
(from 15×15 to 7×7 pixels) and the position of the emitter relative to the center of the
window (by up to 4 pixels), and found that the tuned version of JD still performs better and
more robustly than the others under noisy conditions (Supplemental Fig. 3).

Computation speed
To assess computation speed, we compared (using windows with 15×15, 13×13, and 10×10
pixels) the number of 2-D localizations per second using images with two S:N ratios
(indicated by arrows in Figs. 2(c) and 3(c)). As expected, higher S:N inevitably favors fast
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solution by the two iterative approaches (MLE and MLS), but both were slower than the
‘optimized’ and ‘tuned’ versions of JD, and much slower than CM (Fig. 4).

Localization using images of biological samples
We next compared performance of the four approaches using two kinds of images of
biological samples; unfortunately, the true location of fluors in both samples cannot be
known, so only qualitative comparisons can be made.

In the first example, RNA fluorescence in situ hybridization (RNA FISH) was used to tag,
with Alexa 467, a nascent RNA molecule at a transcription site in a nucleus; then, images of
the resulting foci were collected using a wide-field microscope. One-hundred images with a
S:N < 3 were chosen manually, passed to the four algorithms, and the resulting localizations
superimposed on each image; typical results are illustrated (Fig. 5(a); Media 2 gives results
for all 100 spots). Visual inspection suggests that the tuned version of JD performs at least
as well as, if not better than, the other methods.

Microtubules imaged using direct STORM (dSTORM) [17] provide the second example.
Tubulin in fixed cells was indirectly immuno-labeled with Alexa 647, 3×104 images of
temporally- and spatially-separated single flours in the same field collected, and 1.5×105

windows (11×11 pixels) containing 1 centrally-located spot selected for analysis using a
Gaussian spot-finding algorithm (Fig. 5(b)i illustrates a mean projection of all windows). A
typical window contained one spot with S:N > 9 (Fig. 5(b)ii). Individual windows were then
deliberately corrupted with a known level of noise (Fig. 5(b)iii and iv) – in this case to
reduce S:N to less than 3 (after noise was added, spots had a mean S:N of 2.8 and a 71% had
a S:N < 3). [See Supplemental Fig. 4 (Media 1) for a comparison of results obtained using
uncorrupted and corrupted windows.] Despite the noisy images, all but 14% of spots are still
detected by our simple spot-finding algorithm (not shown; spots found by the algorithm had
a mean S:N of 2.8, and 71% had a S:N < 3, so the 14% were missed as a result of random
chance and not low S:N). All windows were passed to the four algorithms, and localizations
convolved with a 20-nm Gaussian intensity profile to aid visualization. MLS (chosen as an
example because it is used most-often during the formation of STORM images) and the
tuned version of JD yield roughly equivalent images (Fig. 5(b)v and vi), although analysis of
nearest-neighbor distances indicates JD returns the most highly-structured images
(Supplemental Fig. 4(g)). It also yields fewer isolated results than the others (yellow circles
in Fig. 5(b)vi), which we assume are mislocalizations resulting from poor performance. We
again conclude that JD performs better with noisy images than methods used traditionally.

Discussion
During the application of ‘super-resolution’ techniques like PALM and STORM, photons
emitted from a point source pass through a microscope to yield an image on a CCD where
they are registered by many pixels. Successful localization of the point source then depends
on two critical steps. First, the pixelated ‘spot’ must be distinguished from others and the
inevitable background; we have not studied this step (we apply it only in Fig. 5(b) where we
rely on a cross-correlation-based ‘spot-finding’ algorithm to identify spots with S:N < 3).
Second, the position of the point-source must be deduced using the relevant information in
the isolated pixels. We introduce a method for performing this second step. Existing
methods (e.g., MLE, MLS, and CM) inaccurately assume the probability of the location of
each emitted photon is uniformly distributed over just one pixel; in contrast, our method
represents this uncertainty as a normal distribution that spreads over several pixels (Fig.
1(a)). We then aggregate many probability distributions to yield a joint distribution (JD) of
the probability of the location of the emitter (Figs. 1(b) and 1(c)).
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Localization by JD has the advantage of flexibility; each individual probability distribution
is defined solely by peak center (μi) and width (σi), and both can be tuned to improve
precision to meet the needs of a particular experiment (Fig. 3). We anticipate that additional
tuning of μi and σi (e.g., as functions of pixel intensity), and further optimization (e.g., of
the rate at which σi increases as a function of distance) – will improve precision even
further. In images where the PSF deviates from the ideal, different tuning parameters might
maximize precision. Moreover, the use of smaller pixels should also increase precision, as μi
could then be assigned more precisely. This can be accomplished, in spite of traditional
knowledge that reducing pixel size decreases precision [18], by applying distributions that
represent the PSF to each detected photon and summing overlapping regions to form
complex images [11]. [Here, images have 90-nm pixels so as to meet the Nyquist criterion
for a PSF with a 250-nm full width half maximum. Preliminary simulations indicate that a
reduction in pixel width to 1 nm reduces the 1-D RMSE in localization by an additional
3%.]

All versions of JD provide computational simplicity and speed because emitter location is
not calculated iteratively. Furthermore, all adeptly localize in windows with non-uniform
background, as broadening individual distributions negates the influence of bright pixels
distant from the brightest. They are also readily extended to both 3D localization (given a
Gaussian-like PSF in the axial dimension, computation of a third dimension is
straightforward because each axis is treated independently) and more than one color – and
so to real-time imaging deep within living specimens. Nevertheless, they have several
disadvantages. First, unlike the two fitting algorithms that ‘re-check’ spots selected by a
spot-finding algorithm for an appropriate Gaussian intensity profile, JD (and CM) provide
no such back-up. [Tests of various spot-finding algorithms suggest that local-maxima
techniques are liable to return multiple spots in one window, but 2-D normalized cross-
correlation with a Gaussian kernel robustly selected single spots from dSTORM data (not
shown).] Second, the initial disaggregation of pixel intensity into individual photons
followed by the aggregation of individual probabilities into a joint distribution inevitably
makes JD slower than CM. Third, the greatest gains at low S:N (from the ‘tuned’ version)
come at the cost of precision at high S:N. Fourth, the JD scheme fails completely when the
brightest pixel in a window does not contain the emitter.

We compared accuracy and speed of localization achieved by various methods using images
with a wide range of noise, and find that each has its own advantages and disadvantages
(Figs. 2-4). Although widely used [19], we suggest MLS should rarely, if ever, be the
algorithm of choice. At high signal-to-noise ratios, MLE – though the slowest – is the most
accurate (as reported by others [3-5, 7, 15]). At the highest signal-to-noise ratios, CM is only
marginally less accurate than MLE; at signal-to-noise ratios > 10, CM offers greater
precision than MLS. [A variant of CM involving a limited number of iterative computations
is even more accurate than the basic version [20].] If temporal resolution is of the greatest
concern (e.g., during real-time computation), CM is by far the fastest (Fig. 4), and its
simplicity makes it attractive to groups lacking sophisticated analysis software. [Other
closed-form solutions also produce fast results, but at the cost of precision [6, 21]]. Most
PALM/STORM images currently being analyzed have a S:N > 9 (as in the uncorrupted spot
in Fig. 5(b)ii), where MLE yields the highest precision (13-27% and 16-0.5% less 1-D
RMSE per pixel than MLS and CM, respectively). However, as the signal-to-noise ratio
falls, both MLE and MLS fail to converge to a solution during the 200 iterations used, or
yield an error > 1 pixel; then, the tuned version of JD becomes the most accurate. For
example, when S:N = 1.6, the tuned version returns 42% less 1-D RMSE per pixel than CM,
and offers a 2-fold improvement over MLE (Fig. 3(c)) – both significant increases in
precision. Both versions of JD are also two orders of magnitude faster than MLE – again a
significant increase (Fig. (4)).

Larkin and Cook Page 6

Opt Express. Author manuscript; available in PMC 2012 November 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In conclusion, we see no obstacles that might hinder the immediate adoption of JD for
‘super-resolution’ localization at low S:N; it allows use of spots in the noisier parts of the
image that are now being discarded from data sets used to form PALM/STORM images, and
will permit super-resolution imaging at the noisier depths of cells and tissues. We suggest
that the signal-to-noise ratio be measured prior to localization to determine the best method
to use. Then, if precision in location is the goal, MLE should be used at high ratios, and the
tuned version of JD a low ratios. As the signal-to-noise ratio in any PALM/STORM image
stack varies within one frame, and from frame to frame, the very highest precision can only
be achieved by applying MLE and/or an appropriately-tuned version of JD to each spot
depending on the immediate surroundings. Alternatively, if computation speed is paramount,
we suggest CM be used because the gains realized by MLE over CM at high S:N are small,
and the resulting STORM images are reasonably accurate (see Supplemental Fig. 4(b),
(Media 1)). Finally, the ‘optimized’ version of JD provides a ‘one-size-fits-all’ compromise
between simplicity, precision, and speed, which is more precise and faster than existing
methods.

Methods
Computer and software specifications

Computations were conducted on a standard desktop PC (2.83 GHz ‘Core2 Quad’ CPU,
Intel; 8 GB RAM; 64-bit Windows 7) using software written, compiled, and executed in
MATLAB (Mathworks version 7.9.0.529; R2009b) without parallel computing. Software for
implementing both ‘tuned’ and ‘optimized’ versions of JD is provided in Supplemental
Material.

Image generation and analysis
To permit accurate measurements of precision, simulations were run on computer-generated
images with known emitter locations. Except where specified otherwise, images contained
15×15 90-nm pixels (PSF FWHM = 250 nm, oversampled by 2.78, resulting pixel width =
90 nm). An ‘emitter’ was placed randomly (with sub-nanometer precision) anywhere in the
central 1/9th of an image (i.e., in the 5×5 central pixels in a 15×15 image). Coordinates of
‘emitted photons’ were then randomly generated (again with sub-nanometer precision) using
a 250-nm FWHM Gaussian distribution (the commonly-accepted representation of a PSF at
the resolution limit of a microscope [1, 2, 4, 12, 14]), and photons binned into pixels to
produce the final image. Where background noise was added, additional photon coordinates
were randomly (uniformly) distributed over the entire image to obtain the average level
indicated. Ten-thousand images were generated and analyzed for each data-point shown,
except for those in Supplemental Fig. 3(b) where data from 104 images were sorted by
distance into 0.1-pixel bins. Images were passed ‘blindly’ to localization algorithms, and the
same image sets were analyzed by all methods. Images were also generated using an
algorithm that first distributes photons normally in an image space, and then corrupts the
image space with Poisson noise [7]. Both algorithms yield images that appear similar to the
eye and result in identical localization error (not shown).

JD localization
JD begins by attributing different numbers of photon-events to each pixel using CCD
intensity, and ascribing an individual (normal) probability distribution of emitter location to
each photon (Fig. 1(c)). Such a distribution is uniquely described by center location (μi) and
width (σi), and the default is to place μi at the pixel center and use σi equivalent to that of
the PSF; alternatively, μi and/or σi can be varied. Here, we tune μi by shifting photons in all
pixels (other than the brightest) towards the brightest one. Thus, in one dimension:
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(2)

where μc is the location of the pixel center, di is the distance between the pixel and brightest
pixel, So is pixel width, and C is an arbitrary scaling constant (in Fig. 3(a) C = 2, and in all
other cases C = 4; 12 values of C between 1 and 5 were tested, and C = 4 yielded the highest
precision under the conditions described in Fig. 3(c)). Distributions from the brightest pixel
are also shifted from the central default location by a distance proportional to the intensities
of adjacent pixels. In the x-dimension:

(3)

where Io is the intensity of the brightest pixel and IR and IL are the intensities of the adjacent
pixels to its right and left, respectively (a similar shift is applied in the y-dimension relative
to the pixel intensities above and below). We also tune σi as a function of distance from the
brightest pixel. Thus, in one dimension, x:

(4)

Here, σPSF is the width of the PSF in terms of sigma, μmax is the center location of the
brightest pixel, 2.5 is scaling factor chosen such that σi = σPSF for the maximum pixel, and
g(x) is a piecewise Gaussian distribution function with a flat top:

(5)

Together, Eqs. (4) and (5) ensure that the distributions of photons from, and adjacent to, the
brightest pixel are equal to the PSF, those from surrounding pixels become progressively
wider the further away the pixels are, and those from distant pixels (i.e., > 3 σPSF) become
infinitely wide (see Supplemental Fig. 5 for plots of these functions). To increase
computation speed in the ‘optimized’ version of JD, the term 1/2.5g(x) in Eq. (4) is replaced
with σPSF, and μi = μc.

Probabilistically speaking, individual probability distributions are random variables,
independent and normally distributed. To infer the location of the emitter, individual
probabilities are aggregated as a joint density, which is also normally distributed [22]. Given
N variables, the joint density function in one dimension is:

(6)

Ignoring constant terms for simplicity (because they only affect the amplitude of the
function, which is not of immediate interest here), we get:

(7)

Next we define:
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(8)

so that

(9)

Factoring and, once again, ignoring constant terms:

(10)

After replacing k1 and k2, the joint distribution takes the form

(11)

which resembles a simple Gaussian distribution:

(12)

whose center is equal to the center of the joint distribution:

(13)

(13; same as Eq. (1))

Projection and inference are repeated for each orthogonal axis. The width of the joint
distribution does not provide a reliable estimate of localization precision, presumably
because it does not account for effects of background noise.

To get to the CM equation from Eq. (13), first we must set σi to a constant for all photons,
that is

(14)

The total number of photons in the image, N, can be rewritten for an m × n matrix as the
sum of pixel intensities, I,

(15)

We then set μi equal to pixel center positions, xi:

(16)

Finally, the sum of all photons is equal to the sum of pixel intensities. This yields the
estimated emitter location in one dimension, Cx:

(17)
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which is equal to Eq. (3) in Cheezum et al. [10]. Another, more general, form of this
equation would be required to incorporate weighting values equivalent to those implemented
in the ‘tuned’ version of JD localization.

Background correction
MLE and MLS inherently correct for background, as background level is an intrinsic fitting
parameter. In the presence of increasing background, emitter location estimated by CM and
JD progressively diverge from the true location towards the geometric center of the image;
therefore, high precision can only be achieved using these methods if background correction
is included. For CM, a standard background correction [10] is used prior to localization: a
noise threshold is defined (as the mean intensity plus two standard deviations in the two
peripheral pixels around the circumference, which includes the 104 peripheral pixels in a
15×15 image) and subtracted from the intensity of every pixel in the image. Another
background-correction algorithm tested (i.e., setting all pixels with intensity less than the
threshold to zero and leaving the remaining pixels unaltered) did not perform as well (not
shown). For the default version of JD, we first consider those pixels at or below the
threshold (estimated as for CM); σi of their distributions is set to infinity, reducing
amplitude to zero and negating any effect on localization. Then we consider pixels with
intensity above the threshold; σi is set to infinity for the proportion of distributions
corresponding to the fraction of intensity below the threshold. For the tuned and optimized
versions of JD, background is removed similarly (note that distributions coming from ‘non-
spot’ pixels with intensities between the noise ceiling and the brightest also have σi set to
infinity in Eqs. (4) and (5).

Localization by CM, MLS, & MLE
CM was computed with an in-house program (described by Cheezum et al. [10]) as the
mean of the locations of all pixel centers in the window weighted by their respective
intensities. MLS fitting to a 2-D Gaussian intensity profile was also computed with an in-
house program. Peak amplitude, background level, x- and y-width, plus x- and y-location
were set as fitting parameters. Regression continued until changes fluctuated < 0.01% or
until 200 iterations elapsed; when a solution was found, in most cases it was found within 10
iterations. MLE of a 2-D Gaussian intensity profile was implemented directly, as provided
by others [5]. Neither fitting algorithm yielded a smooth line at low S:N in Fig. 3 even
though 104 measurements were made for each data point; therefore, plots were smoothed by
linear regression.

Precision measurements
Post-localization, estimates were compared with true locations of emitters and root-mean-
squared errors (RMSE) computed. Signal-to-noise ratio is computed in different ways
throughout the literature. Here,

(18)

where Io is the maximum pixel intensity, b is the background – the mean intensity of the two
concentric sets of peripheral pixels in the image (i.e., the 104 peripheral pixels in a 15×15
image) – and Nb is the RMS intensity of the same peripheral pixels. This computation is as
in Cheezum et al. [10], with two differences: (i) signal was measured as the maximum pixel
intensity (instead of mean spot intensity) because images were generally so noisy, and (ii)
noise was sampled from peripheral pixels (not across the whole image) to assess better the
degree to which signal stands above fluctuations in background.
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Speed test
All computations to assess speed were conducted serially on the same set of 1,000 images in
this order: ‘optimized’ version of JD, ‘tuned’ version of JD, CM, MLS, and MLE. To test
the possibility that residual computer memory loss retarded sequential computations,
computations were repeated in reverse order and yielded identical results. The derivatives
for MLS were computed by hand and implemented as linear equations to avoid built-in
MATLAB functions known to be slow. The numbers of localizations/sec from our routine
were compared with those reported by Smith et al. [7] (obtained using least-squares fitting
on a single processor), and are similar (not shown). The mean computation rate of three
independent trials is reported (in Fig. 4, standard deviations were < 1% in all cases).

RNA FISH images
Nuclear transcription sites containing nascent (intronic) RNA were detected using RNA
FISH. Monkey kidney cells (cos-7) were transiently transfected with a plasmid encoding an
EGFP gene (as in Xu and Cook [23]) with an intron containing sequences derived from
intron 1 of human SAMD4A. One day after transfection, cells were seeded on to a coverslip
etched with 0.1% hydrofluoric acid, and re-grown; 40 h post-transfection, cells were
transferred to ‘CSK buffer’ for 10 min, and fixed (4% paraformaldehyde; 20 min; 20°C)
[24]. Nascent (intronic) SAMD4A RNA was then detected by RNA-FISH using 50-
nucleotide probes each tagged with ~5 Alexa 647 fluors (as in Papantonis et al. [25]). After
hybridization, cells were mounted in Vectashield (Vector Laboratories) containing 1 μg/ml
DAPI (4,6-diamidino-2-phenylindole; Sigma), and imaged using a Zeiss Axiovert
microscope (63×/1.43 numerical aperture objective) equipped with a CCD camera
(CoolSNAPHQ, Photometrics). Sub-diffraction spots marking nuclear transcription sites with
a S:N < 3 were selected manually for analysis.

dSTORM Images
Direct STORM (dSTORM) images were kindly provided by S. Van De Linde [8].
Microtubules in fixed cos-7 cells were indirectly immuno-labeled with Alexa 647, and
30,000 images (excitation at 641 nm under inclined illumination, emission recorded between
665 and 735 nm) of spatially-separated sub-diffraction sized spots in one field collected
(image acquisition rate 885 s−1) using an EM-CCD camera (Andor; EM-gain = 200; pre-
amp-gain = 1). Spots were identified by 2-D cross-correlation with a randomly-generated 2-
D Gaussian intensity pattern, and candidates for fitting selected by a minimum cross-
correlation value. 154,040 windows (11×11 pixels) containing 1 spot were selected, and
independently corrupted with noise until S:N measured < 3; then each window was passed
to each of the four localization algorithms (Supplemental Fig. 4(a), (Media 1)). Localization
results were rounded to the nearest nanometer, and used to reconstruct an image of the
whole field using 1-nm pixels. To aid visualization, each of the resulting images was
convolved with a 2-D Gaussian intensity profile with a 20 nm FWHM. Contrast and
brightness of all images displayed are equal between methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
JD localization. (a) An individual photon carries information about the probability of an
emitter’s location. CM/MLS/MLE (blue) assume equal probability throughout the pixel,
with zero probability elsewhere; JD localization (red) uses a normal distribution to emulate
microscope PSF (FWHM = 2.8x pixel width) which spreads beyond the pixel (shaded area
The area under both curves is equal. (b) Principles behind JD localization. Each photon
represented in a pixel is treated individually (1, 2, and 3, photons indicated by x1, x2, x3),
individual probabilities of the location of the emitter, Pi (red curves) are aggregated to yield
the joint probability, P, of emitter location (green). (c) Flow diagram for JD localization.
Photons are attributed to each pixel dependent on intensity, and a probability distribution of
the source of each photon is built using peak location (μi) and width (σi). The peak can be
located at pixel centre (left) or anywhere within or outside the pixel (right); the width can be
that of PSF (left) or any arbitrary value (e.g., as a function of distance, di, from the most
intense pixel; right). Background (bkgd) noise is estimated and the influence of background
photons nullified by setting σi = ∞. Then, probabilities of individual photons are projected
onto a single axis, combined to infer the probability of emitter location for that axis, and the
projection and inference repeated for each axis.
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Fig. 2.
Qualitative comparison of methods. Computer-generated images (15×15 pixels) like those
illustrated were generated using 10-104 emitter photons and different numbers of
background photons (i.e., b = 0 or 10 photons/pixel) to give different signal-to-noise ratios
(S:N); then, the root-mean-square error of localization in one dimension (1-D RMSE in nm
or pixel units) was calculated (104 localizations per data point) using the methods indicated.
Photon counts (top) and S:N (bottom) are indicated in some typical images. The lower
bound, LB (blue dashed line), is computed using Eq. (6) of Thompson et al. [14] and plotted
here and in subsequent Figures as a reference. (a) With no background (b = 0), the ‘default’
version of JD returns the same results as CM, and both track the LB; MLS and MLE fail at
low photon counts. The failure of MLS without background is examined more in
Supplemental Fig. 1(b). In the presence of background (b = 10), all methods fail at low
photon counts; at moderate counts, MLE performs best, and at high counts MLS is the worst
as the others converge to the minimum error. (c) An ‘optimized’ version of JD increases
precision at low S:N while retaining precision at high S:N. The grey region is analyzed
further in Fig. 3. Arrows: conditions used in Fig. 4.
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Fig. 3.
Tuning μi and σi to maximize localization precision near the detection limit. The 1-D RMSE
in location of a point source was determined using 104 computer-generated images (15×15
pixels, 50-250 emitter photons, b = 10) per data point. JD localizations were determined by
varying peak position (μi) and/or width (σi). Errors obtained using CM, MLS, and MLE,
plus the lower bound (LB), are included for comparison (MLS/MLE plots smoothed by
linear regression). (a) Varying μi depending on distance, di, from the most intense pixel (σi
= σPSF for all distributions). Peaks of distributions are shifted towards the brightest pixel (in
this example the central one) by ½ a pixel in both x- and y-dimensions. Left: cartoon
illustrating how this shift applies to selected distributions (from blue curves/dots to red
curves/dots). Right: JD localization yields 5% less error than CM for all S:N shown. (b)
Varying σi as a function of distance, di, from the most intense pixel (as μi = pixel center for
all distributions). Widths of distributions from the brightest pixel remain equal to σPSF, as
those from surrounding ones expand. Left: cartoon illustrating these changes for selected
distributions (from blue curves/halos to red curves/halos). Localization using JD yields up to
36% less error than CM. (c) Varying both peak position and width (as in (a) and (b), but
using an x and y shift of ¼ pixel for μi). Representative images are shown (with photon
counts given in white, and S:N in yellow). At this low S:N, JD localization yields less error
than other methods. Arrow: condition used in Fig. 4. Error over the full range of S:N is
shown in Supplemental Fig. 2. The effects of window size and offset of emitter from
window center are shown in Supplemental Fig. 3.
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Fig. 4.
Computation speeds of the different methods (expressed relative to that of MLE). The times
taken by the different methods to compute 2-D localizations were determined using 104

computer-generated images (15×15, 13×13, or 10×10 pixels) using conditions at the points
indicated by the arrows in Figs. 2(c) and 3(c) (either 183 photons, b = 10, and S:N = 2; or
1,000 photons, b = 10, and S:N = 10). JD was tested using both ‘optimized’ and ‘tuned’
versions. Our MLS script gave 390 localizations per second with 15×15-pixel images, which
is even faster than other reports on comparable computers [7]; it was also 50-times faster
than an MLE script written by others [5] but implemented by us. JD applied using the
‘optimized’ conditions was 120- to 180-times faster than MLE, and the ‘tuned’ version was
100- to 140-times faster than MLE. As expected, CM (applied with background correction)
proved the fastest, but both JD versions were faster than the two iterative techniques.
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Fig. 5.
Localization using ‘real’ images of transcription sites and microtubules in monkey cells
(cos-7). (a) Nascent RNA at transcription sites. Cells expressing an EGFP gene containing
an intron were fixed, and (nascent) EGFP transcripts detected using RNA FISH with probes
targeting a short (sub-resolution) segment of the intron; images were collected using a wide-
field microscope and CCD (90-nm pixels). One-hundred spots with S:N < 3 (histogram)
were chosen manually, and four examples are shown at the top; the panels below illustrate
the central 5x5 pixels in the upper panels, with 2-D localizations obtained by the different
methods. As S:N decreases (left-to-right), localizations become more scattered (see Media 2
for results with all 100 spots). (b) Microtubules. Cells were fixed, microtubules indirectly
immuno-labeled with Alexa 647, and a series of 30,000 images of temporally- and spatially-
separated spots of one field collected using inclined illumination and an EM-CCD (155-nm
pixels); 154,040 windows (11×11 pixels) containing 1 centrally-located spot were selected
for analysis (using a Gaussian spot-finding algorithm). (i) Mean projection of all windows.
(ii) One representative window (the histogram below illustrates the number of windows with
different S:N). (iii) Individual windows were deliberately corrupted with noise (typical
example and histogram shown). (iv) Mean projection of all resulting windows. Individual
windows were now passed to each of the four methods, and localizations convolved with a
20-nm Gaussian intensity profile to aid visualization. (v, vi) Localizations obtained by MLS
and the tuned version of JD yield roughly equivalent images. (vii) Magnified areas of the
inset in (vi). Large circles in JD images contain fewer isolated results than the others,
consistent with fewer mis-localizations (see also Supplemental Fig. 4(d)).
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