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Although observations from biochemistry and cell biology seem-
ingly illustrate hundreds of examples of exquisite molecular adap-
tations, the fact that experimental manipulation can often result in
improvements in cellular infrastructure raises the question as to
what ultimately limits the level of molecular perfection achievable
by natural selection. Here, it is argued that random genetic drift can
impose a strong barrier to the advancement of molecular refine-
ments by adaptive processes. Moreover, although substantial im-
provements in fitness may sometimes be accomplished via the
emergence of novel cellular features that improve on previously
established mechanisms, such advances are expected to often be
transient, with overall fitness eventually returning to the level
before incorporation of the genetic novelty. As a consequence of
such changes, increased molecular/cellular complexity can arise
by Darwinian processes, while yielding no long-term increase in
adaptation and imposing increased energetic and mutational costs.
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Although natural selection is one of the most powerful forces
in the biological world, it is not all powerful. However, so

ingrained is the belief in the extraordinary power of selection that
when confronted by biological imperfections at the molecular and
morphological levels, most investigators simply invoke pleiotropic
constraints, i.e., negative functional relationships between two
traits influenced by the same genes, resulting from molecular
limitations, metabolic tradeoffs, etc.Whenmade in the absence of
any direct evidence, as is often the case, such adherence to the
adaptationist paradigm discourages the likelihood of recognizing
nonadaptive paths to the origin of organismal features (1–3).
Random genetic drift imposes a fundamental constraint on the

level of perfection achievable by natural selection. As a conse-
quence of the finite sampling of gametes and the linked nature of
genomes, all populations experience stochastic fluctuations in
allele frequencies that compromise the efficiency of selection.
Once a high enough level of molecular perfection has been ach-
ieved so that further refinements in fitness are smaller than the
prevailing force of drift, natural selection will be incapable of
promoting any additional improvement (4, 5). Depending on the
nature of the potential genetic variation underlying an adaptation,
this drift barrier may be reached before selection is confronted
with any physical, chemical, or bioenergetic constraints.
If, however, drift prevents natural selection from inexorably

moving cellular features toward a state of molecular perfection,
how do we account for the abundant examples of organisms using
layered mechanisms for dealing with intracellular problems? For
example, genome replication involves highly selective DNA pol-
ymerases, but the small fraction of initial base misincorporations
are subject to correction by subsequent proofreading, and the still
smaller fraction of errors that escape proofreading are generally
subject to mismatch repair. The accuracy of translation also de-
pends on a series of quality-control steps: proper loading of tRNA
synthetases by their cognate amino acids, proper recognition of
tRNAs by their cognate synthetases, proper codon recognition by
tRNAs, and a variety of mRNA surveillance mechanisms. In many
cases, proper protein folding depends on a series of chaperone

systems, and numerous mechanisms exist for the disposal of ter-
minally misfolded proteins.
Although these layered lines of defense are clearly advanta-

geous and in many cases essential to cell health, because the
simultaneous emergence of all components of a system is im-
plausible, several questions immediately arise. How can selection
promote the establishment of additional layers of fitness-en-
hancing mechanisms if the established primary lines of defense
are already highly refined? When such changes are assimilated
into a population, does an increase in overall fitness necessarily
follow? Do the preexisting mechanisms retain their full effi-
ciency, with a permanent increase in adaptation being achieved,
or does an added layer of protection inevitably result in the re-
laxation and eventual degeneration of earlier established mech-
anisms (6, 7)?

Results
Limits to Perfection. As a point of departure, we first consider the
evolutionary features of an arbitrary character under a simple
mutational model. A discrete array of alleles is assumed, with the
upper limit to fitness being scaled to 1.0, and the selective dis-
advantage of allele i, si = e−ki, asymptotically approaching zero
with increasing i (Fig. 1). A homogeneous stepwise mutation
process is assumed, such that each allele i mutates to the next
highest fitness class i + 1 at rate u and to the next lowest class i −
1 at rate v. Under this model, a population is expected to evolve
upwardly in the allelic series until the point is reached where the
advantage of the next highest allele is so weak that selection is
rendered ineffective either by the power of random genetic drift
or by mutation pressure in the downward direction. This point
will depend on the effective size of the population (N, assumed
here to be haploid, which defines the magnitude of genetic drift
1/N), by the granularity of the fitness effects of adjacent allelic
classes (k), and by the ratio of downward to upward mutation
rates (v/u).
Although the behavior of loci harboring multiple alleles can be

quite complicated, two limiting cases for this stepwise-mutation
model yield simple generalizations. At the small-population size
extreme, (u + v)N < 1, there will generally be only a few alleles
segregating in the population at any point in time. Such a pop-
ulation will then typically move between adjacent classes in
a nearly stepwise fashion, and can thus be categorized reasonably
well by the feature of its most recent common ancestor (8). Letting
ϕx,y denote the probability of fixation of a single mutant allele of
class y arising on a background of allele x, the approximate rate of
transition of class i to i + 1 is Nuϕi,i+1 and to i − 1 is Nvϕi,i−1.
Using Kimura’s (9) diffusion approximation for the fixation

probabilities, noting that si − si+1 is the net selective advantage of
allele i + 1 in an i background, and taking advantage of the fact
that the ratio of fixation probabilities of advantageous and del-
eterious mutations with the same s is e2Ns in a haploid population
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(10), a simple solution can be obtained for the equilibrium mean
frequencies of each allele,

bpi = ðu=vÞie−2N   si

T
; [1]

where T is the sum of the numerators for all bpi. Under this model,bpi can be interpreted as the probability that allele i is the most
recent common ancestor of the full collection of alleles in the
population, with adjacent allelic classes (i − 1 and i + 1) poten-
tially segregating in between fixation periods. As shown in Fig. 2,
this expression closely approximates the average long-term rep-
resentation of alleles in a steady-state population with (u + v)
N < 1, derived from the results of stochastic computer simulations.
The drift barrier to further adaptive progress is defined by the

threshold allele (i = n*) at the point in the array where the rate
of establishment of the next best allele (the product of the up-
ward mutation rate and the fixation probability) is approximately
equal to that in the opposite direction (i.e., the rate of reversion).

Because the ratio of fixation probabilities for beneficial and
deleterious alleles with equal absolute effects is e2Ns, the critical
selection coefficient at stochastic equilibrium is s* ’ [ln(v + u)]/
(2N) assuming v > u. Using the above definition for s, at sto-
chastic selection–mutation–drift equilibrium, the population is
then expected to stall near allelic position

n* ’ lnð2NkÞ− ln½lnðv=uÞ�
k

; [2]

assuming k � 1. Allelic position n* closely approximates the
peaks of the three leftmost plots in Fig. 2.
For an effectively infinite population size, the dynamics of

allele-frequency change (p to p′) can be expressed as

p′1 = ½W1p1ð1− uÞ+W2p2v�=W ; [3a]

p′i = ½Wi−1pi−1u+Wipið1− u− vÞ+Wi+1pi+1v�
�
W ; [3b]

p′imax =
�
Wimax−1pimax−1u+Wimaxpimax ð1− vÞ��W [3c]

where the middle equation applies to all but the first and final
alleles in the series, andW =

Pimax
i=1piWi: Iteration of these equations

from any starting point, with imax set at an arbitrarily large value,
leads to the limiting equilibrium distribution of allele frequencies.
Although a population can wander slightly above the n* allelic

state by stochastic mutation and drift, such alleles cannot be
maintained by selection. Thus, for relatively small population
sizes, provided there is a mutational bias in the downward di-
rection, which seems certain in virtually all cases of molecular
adaptation, a fairly tight distribution of allelic probabilities is
maintained over evolutionary time, despite the fact that all allelic
classes are accessible by mutation. For the extreme case in which
u = v (no mutational bias), alleles in states beyond the drift
barrier are free to randomly evolve in both directions, and a flat
distribution of bpi is expected beyond n* (8). However, because
a random walk from n* to some substantially higher state (n′)
requires on the order of e

ffiffiffiffiffiffiffiffiffiffiffi
ðn′−n∗Þ

p
=u generations (11), such a

distribution may rarely ever be realized in nature.
The limits to adaptation can be quantified as the magnitude of

fitness load resulting from the inability of selection to promote
the most advantageous alleles, i.e., as the reduction of the
equilibrium mean population fitness relative to the scaled max-
imum of 1.0,

L=
Ximax

i= 1

sibpi; [4]

where the sum is over all alleles with nonzero equilibrium fre-
quencies. Provided the rate of deleterious mutation exceeds the
rate of adaptive mutation (v > u) and (u + v)N < 1, an equi-
librium population will generally be close to the state defined by
Eq. 2, and

L ’ lnðv=uÞ
2Nk

[5]

This expression for the fitness load (in effect, a measure of allelic
imperfection) differs from previous results that assumed the
presence of just two possible alleles (e.g., ref. 12), often with
mutations only producing the disadvantageous allele (e.g., ref.
13), and also from prior results with multiallelic models that have
assumed either symmetrical mutation patterns (i.e., u = v), or
Fisher’s (14) geometric model in which v/u effectively increases
with the degree of adaptation (8, 15, 16). Nevertheless, although

Fig. 1. Fitness function and selection coefficients for an allelic series de-
fined by the exponential model described in the text. The drift barrier to
allelic improvement is illustrated for two population sizes.

Fig. 2. Allele-frequency distributions at various effective population sizes
(from 104 to 109). The histograms were derived from simulations of a
Wright–Fisher population, whereas the three leftmost line graphs depict
the expectations given by Eq. 1, and the results for an infinite population
size were obtained from the recursion equations Eqs. 3a–3c. In all cases, the
total mutation rate is u + v = 10−6, u/(u + v) = 0.1, and k = 0.1.
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the exact expression for the drift load appears to be model de-
pendent, a unifying feature of Eq. 5 and all prior work is an
inverse relationship between the equilibrium level of molecular
imperfection and the effective population size. A strong fitness
gradient among alleles (large k) reduces the load because adja-
cent alleles are more easily discriminated by selection, and
a relatively high incidence of adaptive (forward) mutations (low
v/u) further reduces the load because selection is less opposed by
mutation pressure.
At the other extreme, as N → ∞, the population approaches

the expected distribution of segregating allele frequencies under
selection–mutation balance, obtainable from Eqs. 3a–3c. In this
case, provided v/u > 5, i.e., the equilibrium load is

L ’ v− u½lnðv=uÞ�2; [6]

independent of k, although N must be enormous for this limit to
be reached (Fig. 3). Eq. 6 shows that Haldane’s (13) classical
result of the genetic load being equal to the deleterious mutation
rate in an effectively infinite population even holds with multiple
alleles, provided there are no advantageous mutations, but gives
an overestimate when u ≠ 0.

Establishment of a Secondary Line of Defense. Supposing the ge-
notypic distribution of a primary line of defense has settled into
the steady-state selection–mutation–drift equilibrium, the possi-
bility still exists that a second line of defense with a sufficiently
large initial effect on fitness can be promoted by at least transient
positive selection. In a large population, such establishment will
be least likely if the new mutation arises in a low background-
fitness class, as such individuals are destined to be lost by selec-
tion, but colonization of a high background-fitness genotype may
give a sufficiently high boost in total fitness to promote fixation of
the two-layered system. To have a reasonable chance of success,
the boost in fitness would need to be greater than the incremental
effects of beneficial mutations for the primary line of defense. A
small population transiently fixed for a relatively low quality allele
may also provide a viable path to invasion of a second layer.
Consider the situation in which themutation to a secondary layer

of defense causes an improvement in fitness in a carrier equivalent

to moving up the allelic ladder by j steps, so that the absolute se-
lective disadvantage of an individual in class i at the first layer would
be reduced to si+j = e−k(i+j), and the probability of fixation of the
new layer is given by ϕi,i+j. The overall probability of establishment
depends on the frequency distribution of the background trait in
which the mutation for the new layer of defense arises,

pe;j ’
Ximax

i= 1

bpiϕi;i+j: [7]

The maximum probability of establishment arises when the
second layer completely eliminates all deficiencies of the first
layer, which implies a relative selective advantage equal to si.
An example of the sensitivity to fixation of a second layer of

defense in the small population-size domain is shown in Fig. 4,
where bpi is defined by Eq. 1. With the fitness model used, vir-
tually identical results are obtained for all population sizes in the
domain satisfying N(u + v) < 1. The fact that the probability of
fixation exceeds the neutral expectation of 1/N in all cases clearly
demonstrates that the establishment of a second layer of defense
can be promoted by selection even if the first layer is at the drift
barrier. Simulations with small population sizes give slightly
higher probabilities of establishment than the theoretical approx-
imations, and those with larger population sizes yield even higher
probabilities.

Consequences of Evolutionary Layering. Having been promoted by
natural selection, establishment of a second layer of defense will
initially lead to an increase in mean population fitness. However,
this boost in fitness may also be transitory unless the presence of
a second layer somehow magnifies the fitness-enhancing effects
separating adjacent allelic classes (k in the above model). Con-
sequently, depending on the nature of the molecular adaptation,
the initial excursion below the drift barrier resulting from the
invasion of a second layer of defense may gradually dissipate as
deleterious alleles with effects too small to be opposed by se-
lection accumulate at one or both loci, with the joint effects of
the two-layered system eventually returning to the same layer of
perfection as the initial one-layered system. In principle, this
means that the efficiency of the first layer is unlikely to ever
improve from its initial state, assuming that the equilibrium state
had been reached. Likewise, assuming a similar magnitude of
mutational effects for both layers (e.g., constant k), the efficiency
of the secondary layer is unlikely to improve any further unless it
comes at the expense of the first layer.
For the model presented above, an explicit statement can be

made by considering the joint combination of alleles across both
loci satisfying n* = n1* + n2* ; as defined in Eq. 2, with the level
of perfection at each layer then being defined as 1− e−kni*. In
effect, this leads to a ridge of combinations of states at the two
loci defining the bivariate drift barrier s* = [ln(v + u)]/(2N) (Fig.
5). This implies that a negative relationship is expected to evolve
between the levels of perfection of the two traits in independent
populations, or at various points of time within a lineage con-
taining the two traits. With all points on the equilibrium ridge
having equivalent fitness, such populations are free to drift in
one direction or the other, even to the point of losing one of the
traits, although directional bias may be induced by the pattern of
mutation pressure.
A few examples of this behavior, generated by stochastic

simulations of populations following the fixation of a newly
arisen allele for the second trait, are given in Fig. 6. In all cases,
the initial improvement in overall fitness resulting from the es-
tablishment of the second layer is followed by a gradual loss of
perfection in each trait, until a point on the bivariate drift barrier
is reached where mean fitness is essentially the same as that
before invasion of the second layer.

Fig. 3. Equilibrium fitness loads as a function of the effective population
size. Solid, dashed, and dotted lines are for u/v = 1/3, 1/9, and 1/999, re-
spectively. Straight lines to the left are given by Eq. 5, and data points were
obtained by computer simulation of a Wright–Fisher model. The final
(rightmost) data points for each curve are the infinite-population size limits
obtained by use of Eqs. 3a–3c. In all cases, the total mutation rate is u + v =
10−6, and k = 0.1.
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Discussion
Although the preceding results rely on just one of many possible
mutation–selection models, they clarify the general roles that
random genetic drift plays in defining the ability of natural se-
lection to refine the performance of molecular/cellular features.
In general, the level of sustainable molecular perfection is in-
versely proportional to the effective size of a population, with
small populations experiencing the fixation of suboptimal alleles
and large populations experiencing an additional segregational

load from recurrent mutational introduction. In both cases, the
vast majority of alleles that are likely rise to moderate frequen-
cies are effectively neutral with respect to each other.
The concept of a drift barrier to adaptive performance is im-

plicit in several previous theoretical studies. For example, Hartl
et al. (4) suggested that enzyme activities evolve to levels at which
further mutational improvements in fitness have effects smaller
than 1/(4N), leading to the conclusion that effective neutrality is
an expected outcome of natural selection. Wylie and Shakhno-
vich (17) provide a very similar explanation for the marginal
stability of proteins, i.e., the tendency to be just one or two
mutations away from misfolding (18). In effect, they argue that
smaller populations will typically move down the fitness-stability
function to a point that ensures larger (but still effectively neu-
tral) effects of mutations. The idea of evolved effective neutrality
is also implicit in theory on the evolution of quantitative traits
under stabilizing selection in finite populations (19, 20).
Any selection coefficient between adjacent classes of s* ’

[ln(v + u)]/(2N) defines an approximate point at which selective
progress will be stalled, regardless of the relationship of s across
an entire allelic series. Although the model used here assumed
an exponential decline in fitness costs between consecutive allelic
states, more complex allelic topographies might exhibit irregu-
larities. For example, some adjacent classes of intermediate-state
alleles might have small enough selection differentials that adap-
tive progress cannot be promoted by selection, even though suf-
ficient advancement might lead to a domain where the selection
gradient becomes sufficiently steep to allow further progress. Such
conditions do not violate the principle of a drift barrier, but simply
broaden considerations to allow for multiple possible stalling
points depending on initial circumstances. For sufficiently large
populations, however, such hurdles may only be transient in na-
ture, as rare instances may arise in which multiple mutations in
segregating alleles enable populations to move efficiently into
a new domain (21, 22). An additional complication worth further
consideration is the change in the ratio of beneficial to deleterious
mutations (presumably a decline) that may arise as traits move
closer and closer to the point of perfection (14), which will further
inhibit progress toward molecular perfection in accordance with
the preceding expression.
Despite the generality of the concepts outlined above, it

appears that a drift barrier can occasionally be surmounted by the
introduction of a novel feature endowing a sufficiently large im-
provement in a molecular pathway. However, such enhancements
in fitness may often be transient, as subsequent mutations with
mildly deleterious effects in one or both components cause the
joint system to revert back to a point where the magnitude of
mutational effects again exceeds the power of drift. There will
then inevitably be a series of alternative multivariate states that
are equivalent in terms of overall fitness, resulting in the evolution
of negative correlations between the efficiencies of redundant
pathways, as populations wander over a ridge of equivalent mul-
titrait fitness combinations. It may be useful to consider this
passive mechanism for the emergence of negative associations
between functionally related traits as an alternative to the wide-
spread notion that tradeoffs between fitness components always
evolve as a direct consequence of pleiotropic constraints and/or
correlated selection (23–25).
If the components of a multitiered system are completely sub-

stitutable, each component is expected to be lost with equal prob-
ability. However, mechanisms likely exist that encourage a greater
probability of loss of one component of a layered system relative to
another, e.g., differential metabolic costs, differential vulner-
abilities to mutational breakdown, and/or the acquisition of sec-
ondary beneficial functions that ensure preservation by natural
selection. One might also imagine that an overall increase in mo-
lecular refinement could be achieved if the addition of a second
layer somehow altered the mutational landscape in a way that

Fig. 4. Probability of establishment of a second layer of defense as a func-
tion of the initial improvement, given for the small population-size domain
using Eqs. 1 and 5. In both cases, the total mutation rate is u + v = 10−6, and
k = 0.1. Virtually identical results are obtained for N = 104 and 105. The
probability of fixation is scaled to the neutral rate, being given as Np( j), so
a value equal to 1.0 implies simple drift to fixation without any assistance by
selection. Data points were obtained from simulations of a Wright–Fisher
model with complete linkage.

Fig. 5. Bivariate drift barrier for two ratios of rates of beneficial and del-
eterious mutation (u/v), and two effective population sizes (N), as defined by
the model in the text, and Eq. 2. All points along each line have equal fitness,
providing ridges for the drift of the bivariate system.
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magnified the fitness differences between alleles in adjacent classes,
as this would provide the system with greater resistance to invasion
of deleteriousmutations. Such a conditionmight arise, for example,
if the first layer becomes stalled at a level above the drift barrier by
physical/chemical constraints, and indeed a key unresolved issue
concerns the conditions under which such constraints are reached
before the point at which drift takes on significance.
A number of empirical observations appear to be consistent

with the drift-barrier hypothesis, just a few of which are given
here. First, replication fidelities of DNA polymerases are lower
in taxa with smaller effective population sizes, and also lower for
enzymes involved in fewer nucleotide transactions per cell cycle,
which presumably reduces the intensity of selection associated
with error propagation (5). Second, although the restriction of
licensing of DNA replication origins to one event per cell cycle is
critical to maintaining genome integrity, there is substantial
variation among eukaryotic lineages in the mechanisms regu-
lating such behavior (26, 27). As redundant mechanisms of
replication licensing control appear to be common within spe-
cies, these observations are consistent with the concept of evo-
lutionary layering and random wandering of independent
lineages over a multivariate drift barrier. Third, despite the
centrality of amino acid production to all organisms, substantial
differences in biosynthetic pathways exist among lineages (e.g.,
refs. 28–30), again suggestive of divergent resolution of re-
dundant pathways in ancestral species. Fourth, in Escherichia
coli, genes whose protein products are clients of the molecular
chaperone GroEL harbor significantly lower frequencies of op-
timal codons (and hence experience higher rates of misfolding
associated with translational errors, ref. 31) than do sporadic
clients (32). This suggests a bivariate drift barrier with respect to

solutions to the problem of protein folding. Finally, the fact that
the magnitude of selection associated with alternative codons in
organisms ranging from prokaryotes to vertebrates is typically
on the order of 1/(2N) (33) is consistent with the hypothesis
that translation mechanisms within cells evolve to levels of re-
finement inversely proportional to the power of drift.
In summary, the results of this study demonstrate that in-

creasingly complex mechanisms for dealing with cellular chal-
lenges can often be promoted in a population by natural
selection without any long-term advantage in terms of mean
population fitness. In fact, such increments in complexity can
impose at least two costs: (i) the energetic demands associated
with maintaining an additional cellular component; and (ii) the
increased vulnerability of the overall system to inactivating
mutations, owing to the increased number of mutational targets.
Indeed, if the features of individual members of jointly rein-
forcing suites of genes evolve to reduced levels of refinement, as
suggested by Fig. 5, mutants that return to a single-gene state
(e.g., null mutations) are expected to have reduced performance
relative to the ancestral single-gene condition. As pointed out by
Frank (6), an appreciation for the internal evolutionary dynamics
of redundant systems provides an alternative perspective on the
origin and maintenance of the myriad of molecular attributes
often interpreted as acquired enhancements of cellular robust-
ness (34).
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Fig. 6. Stochastic dynamics of the average levels of imperfection of two traits, individually and jointly. Horizontal dashed lines demarcate the initial level of
imperfection of the one-layered system.
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