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Abstract

Background: The normal human intravenous endotoxin model has been used for more than 50 years. It was once
considered a possible model of sepsis, but, because no infection is present, it is better described as a model of
systemic inflammation. We demonstrate herein that at least three of four systemic inflammatory response
syndrome (SIRS) criteria are achieved with the model.
Methods: Otherwise healthy human volunteers were given Escherichia coli endotoxin 2 ng/kg intravenously.
Vital signs were monitored, and blood samples were collected over time for assessment of white blood cells
(WBCs), cytokines, counter-regulatory hormones, and monocyte receptors.
Results: The means of three variables (core temperature, heart rate, WBC) met the SIRS criteria. Compared with
baseline, cytokines were elevated acutely, with tumor necrosis factor-alpha (TNFa) exhibiting temporal primacy
over the other cytokines. Counter-regulatory hormones (cortisol, epinephrine) also were elevated acutely. Fi-
nally, the monocyte cell-surface receptors cluster of differentiation molecule (CD) 11b and TNF receptor-II were
elevated and decreased, respectively.
Conclusions: The experimental human endotoxin model satisfies SIRS criteria and probably is best described as a
model of Toll-like receptor 4 agonist-induced systemic inflammation.

The normal volunteer human endotoxin model was
developed in the late 1960s at the U.S. National Institutes

of Health (NIH) by Doctor Sheldon Wolff and at the Uni-
versity of Maryland by Doctor Sheldon Greisman [1–4].
Subsequently, work with this model was continued at the
NIH by Doctors Anthony Suffredini and Joseph Parrillo [5,6]
and at Harvard University by Doctor Douglas Wilmore [7,8].
Doctor Lowry brought the model to Cornell University
Medical College (CUMC, now Weill Cornell Medical College)
in the mid-1980s. This time period preceded the 1992 defini-
tion of the systemic inflammatory response syndrome (SIRS)
as a clinical entity distinct from sepsis [9]. Earlier investigators
using the human endotoxin model argued that it was a po-
tential model of ‘‘sepsis,’’ an error that has dogged the model
even to the present. As we believe most investigators now
would acknowledge, the human endotoxin model is not of
sepsis, but rather of moderate systemic inflammation. Per-
haps it is not appreciated as widely that the relevant variables
in the model approach or exceed SIRS criteria, as will be
demonstrated herein.

Steve Lowry’s research endeavors began in earnest in the
1970s at the NIH, where he was a Fellow with Doctors Steven
Rosenberg and Murray Brennan at the Surgery Branch of the
National Cancer Institute. It was during this time that Steve’s
curiosity and passion for science and research developed, so
much so that Doctor Brennan subsequently invited Steve to
join him at the Memorial Sloan-Kettering Cancer Center
(MSKCC) in New York City. There, Steve completed a
fellowship in surgical oncology and was appointed an assis-
tant attending surgeon. While at MSKCC, Doctor Lowry’s
work and potential came to the attention of Doctor G. Tom
Shires, then the Lewis Atterburg Stimson Professor and chair
of surgery at CUMC. Doctor Shires recruited Steve as an as-
sistant professor of Surgery and, while at CUMC, Steve
blossomed fully as a scientist and researcher. After only three
years, he was awarded an R01 grant that continued without
interruption for 26 years, including 10 years with Method to
Extend Research in Time (MERIT) status. At first, Doctor
Lowry’s research focused on nutrition and metabolism issues
in normal human subjects and in burn patients, but
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broadened over the years into a multi-pronged approach that
included in vitro cellular and whole-animal investigations as
well as studies in intensive care unit (ICU) patients. The prong
of research that Steve adopted and that became, perhaps, the
mainstay of his laboratory was the human endotoxin chal-
lenge model, which is the focus of this paper.

Subjects and Methods

All studies were approved by and performed under the
guidelines of the Robert Wood Johnson Medical School In-
stitutional Review Board. After giving informed consent and
being screened for normality by history and physical exami-
nation, healthy human volunteers, 18–35 years and of both
genders, were given Escherichia coli O:113 endotoxin (kindly
supplied through Doctor Suffredini at the NIH Clinical Cen-
ter) intravenously (IV) at a dose of 2 ng/kg. The number of
subjects evaluated is given in the legends to each of the fig-
ures. Symptoms were documented by questionnaires in
which the following commonly experienced symptoms were
listed: Headache, chills, muscle aches, ocular photosensitivity,
and nausea or vomiting. Vital signs and blood samples were
obtained at the time points indicated in the figures. White
blood cells (WBCs) were counted by the clinical laboratory,
and cytokine concentrations were quantified by sandwich
enzyme-linked immunosorbent assays using recombinant
standards. The plasma cortisol concentration (hydrocorti-
sone) was measured by direct radioimmunoassay using a
polyclonal rabbit antiserum. Expression of cluster of differ-
entiation molecule (CD)11b and tumor necrosis factor

FIG. 1. Omnibus symptom scores (mean – standard error)
in normal human volunteers (n = 66) receiving intravenous
endotoxin. One-way repeated-measure analysis of variance
was performed; endotoxin effect was significant at p < 0.0001.

FIG. 2. Response of systemic inflammatory response
syndrome (SIRS) variables in normal human volunteers re-
ceiving intravenous endotoxin (LPS, 2 ng/kg) at time 0. (A)
Core (rectal) temperature (n = 72). (B) Heart rate (n = 72). (C)
Respiratory rate (n = 5). (D) White blood cell count (n = 60).
Graphs depict mean – standard error. Dashed lines indicate
SIRS criterion value for each variable. Hypothermia is not so
indicated for core temperature (panel A) because that crite-
rion is off-scale. Both leukopenia and leukocytosis are indi-
cated in panel D. One-way repeated-measures analysis of
variance was performed. For all variables, endotoxin effect
was significant at p < 0.0001.
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receptor (TNFR)-II by blood monocytes was determined by
two-color fluorescence flow cytometry. Data were analyzed
by one-way repeated-measures analysis of variance (ANO-
VA) to determine statistical significance (p £ 0.05).

Results

Symptoms

Symptoms (chills, myalgia, photosensitivity, nausea) were
recorded and combined into an omnibus ‘‘symptom score’’
(Fig. 1). The mean symptom score at baseline (0 h) was zero.
Substantial symptoms were manifested by 1 h after IV endo-
toxin administration, peaked at 2 h, and then declined until at
least 6 h after endotoxin was given.

SIRS variables

The variables that comprise the SIRS definition according
to the 1992 Consensus Conference ‘‘Definitions for Sepsis and
Organ Failure and Guidelines for the Use of Innovative
Therapies in Sepsis’’ [9] and reiterated and refined in 2001 [10]
are temperature (hyperthermia or hypothermia), tachycardia,
tachypnea, and abnormal WBC count (leukocytosis or
leukopenia).

As shown in Figure 2A, the core temperature increased
beginning as early as 1 h after endotoxin administration, with
maximum temperatures attained at 3–5 h and resolution by
9 h. The maximum mean core temperature approached
38.5�C, above the SIRS criterion for hyperthermia (38.3�C). To
meet the SIRS criterion for tachycardia, the heart rate must
exceed 90 beats/min. As shown in Figure 2B, by 3–4 h after
endotoxin injection, the mean heart rate met or exceeded this
value and then diminished, although it had not normalized
completely by the end of the 24-h study period. The re-
spiratory rate (Fig. 2C) approached the SIRS criterion of 20
breaths/min by 4 h after endotoxin administration. However,
the small number of subjects and relatively large variability
among subjects make a definitive statement difficult as to
whether the SIRS criterion for respiratory rate was satisfied.
Unfortunately, PaCO2 data were not collected. The mean
WBC count was *5,800/mm3 at baseline, decreased below
the SIRS leukopenia criterion of 4,000/mm3, and then

Table 1. Variables That Do (Yes) or May Not (No)

Reach Corresponding Systemic Inflammatory

Response Syndrome Criterion in Normal Human

Being Endotoxin Model

Variable Model

Core temperature elevation Yes
Increase in heart rate Yes
Increase in respiratory rate No
Increase in white blood cell count Yes

FIG. 3. Plasma cytokine responses in normal human vol-
unteers receiving intravenous endotoxin (LPS, 2 ng/kg) at
time 0. (A) Tumor necrosis factor-alpha (n = 24). (B) Inter-
leukin (IL)-6 (n = 32). (C) IL-8 (n = 30). (D) IL-10 (n = 31).
Graphs depict mean – standard error. One-way repeated-
measures analysis of variance was performed. For all cyto-
kines, endotoxin effect was significant at p < 0.0001.
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increased to more than 12,000 mm3 at 9 h post-endotoxin (Fig.
2D), thus also fulfilling the SIRS leukocytosis criterion for this
parameter (12,000 mm3). Table 1 summarizes the fulfilment of
the SIRS criteria, or lack thereof, after endotoxin administra-
tion for core temperature, heart rate, respiratory rate, and
WBC number. Only the variable of respiratory rate may not
meet the consensus criteria for SIRS in this model, although a
Type II error cannot be ruled out in view of the small number
of subjects. Fulfilling only two of the consensus criteria is
sufficient to diagnose SIRS clinically.

Inflammatory mediators

Doctor Lowry and his colleagues and collaborators played
a pivotal role in the discovery and characterization of several
inflammatory mediators (e.g., cytokines, chemokines, inter-
leukins [ILs]) [11–15]. Of special importance was the discov-
ery of cachectin/tumor necrosis factor (TNF)-alpha, one of the
most potent and proximal mediators, which is believed to be
an important driver of the inflammatory response, as es-
poused in the cytokine theory of inflammatory disease [11,12].

Figure 3A depicts the plasma TNF-a response to endotoxin
administration in normal human volunteers. The mean TNF-a
concentration, which was zero at baseline, increased begin-
ning 1 h after endotoxin administration, peaked at 1.5 h, and
again became undetectable by 4 h. By contrast, the mean
concentrations of other pro-inflammatory mediators such as

IL-6 (which also has anti-inflammatory effects) and IL-8
peaked at 2 h after endotoxin administration, later than TNF-
a. The potent anti-inflammatory mediator IL-10 peaked at 3 h
(Fig. 3B–D). These relations point to the temporal primacy of
the TNF-a response to endotoxin in this model.

Counter-regulatory hormones

These hormones, including cortisol and epinephrine, have
potent and pleiotropic physiological influences (e.g., meta-
bolic, fluid balance, cardiovascular) and additionally have
well-established anti-inflammatory effects [16–19]. In Fig. 4A
and B, plasma cortisol and epinephrine concentrations are
shown. Cortisol concentrations, already at their circadian
high point because of the morning (9:00 am) start time of the
study, doubled after endotoxin administration. Plasma epi-
nephrine concentrations manifested an even more dramatic,
*10-fold increase by 6 h after endotoxin administration.

Leukocyte inflammatory receptors

Blood leukocytes respond to inflammatory stimuli by up-
regulating or down-regulating certain receptors that partici-
pate in the response to inflammation or infection. Two such
receptors are CD11b and TNFR-II. The CD11b moiety is the
alpha-M subunit of an integrin named macrophage-1 antigen

FIG. 4. Plasma counter-regulatory responses in normal
human volunteers receiving intravenous endotoxin (LPS,
2 ng/kg) at time 0. (A) Cortisol (hydrocortisone)(n = 22). (B)
Epinephrine (n = 6). Graphs depict mean – standard error. One-
way repeated-measures analysis of variance was performed.
For cortisol, endotoxin effect was significant at p < 0.0001; for
epinephrine, effect was significant at p < 0.01.

FIG. 5. Blood monocyte cell-surface inflammatory receptor
responses in normal human volunteers given intravenous en-
dotoxin (LPS, 2 ng/kg) at time 0. (A) Cluster of differentiation
molecule (CD)11b [n = 11]. (B) Tumor necrosis factor receptor-II
(n = 11). Graphs depict mean – standard error. One-way re-
peated-measures analysis of variance was performed. For both
receptors, endotoxin effect was significant at p < 0.0001.
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or complement receptor 3. This integrin is expressed on
phagocytic cells (neutrophils and monocytes) and is con-
formationally up-regulated rapidly and robustly in response
to inflammation. The TNFR-II protein is expressed weakly
by neutrophils and strongly by monocytes and is down-
regulated strikingly in response to inflammation [20].

After IV endotoxin administration to human volunteers, an
increase in monocyte mean CD11b expression was detected
by 1 h, became maximal at 2–3 h, and returned to baseline by
24 h (Fig. 5A). By contrast, blood monocyte TNFR-II expres-
sion declined *80% from baseline by 2 h after endotoxin ad-
ministration, returned to baseline by 6 h, and increased by
*35% over baseline at the 24-h time point (Fig. 5B).

Discussion

In view of these results, generated using an IV 2 ng/kg
endotoxin challenge in normal human volunteers, the re-
sponses support this model strongly as one of moderate sys-
temic inflammation in which the SIRS criteria [9,10] are met
for core temperature (hyperthermia), heart rate, and WBC
count (leukocytosis). The respiratory rate approached but
perhaps did not satisfy the SIRS criterion, although, because
of the relatively small number of subjects, a Type II error
cannot be ruled out. Furthermore, the responses to endotoxin
occur in a consistent temporal sequence, although the mag-
nitudes may differ among individuals. Most effects resolve by
6–24 h after endotoxin administration. It should be empha-
sized firmly that, whereas this model appears to simulate
systemic inflammation fairly well, it is not a model of sepsis
because no infection is present, and patterns of cytokine re-
sponses are different in patients with, and animal models of,
sepsis [21]. Because endotoxin is a well-characterized patho-
gen-associated molecular pattern (PAMP) that signals
through Toll-like receptor-4 (TLR4), perhaps the most succinct
way to describe this model is as a model of TLR4 agonist-
induced systemic inflammation.

A major goal of using the human endotoxin model is to
understand the etiologic factors of systemic inflammation so
that rational clinical therapies to prevent or attenuate ampli-
fied or uncontrolled SIRS could be developed and investi-
gated. Indeed, over approximately the last 25 years,
Doctor Lowry and his colleagues employed the human en-
dotoxin model to assess the effects of nutrition (enteral vs.
parenteral, low lipid vs. high lipid) [22–25], cytokine antag-
onists (IL-1 receptor antagonist [RA], TNFR constructs) [26–
29], endotoxin antagonists (PEGylated polymyxin B) [30],
hormones (cortisol, epinephrine, growth hormone, insulin-
like growth factor [IGF]) [16–19,31], and modulators of co-
agulation (e.g., activated protein C) [32,33]. Many of these
compounds and approaches tested in the human endotoxin
model have graduated to clinical trials in ICU patients (e.g.,
low-dose cortisol, IL-1-RA, TNF antagonists). One, activated
protein C, was approved by the U.S. Food and Drug
Administration for use in sepsis for a decade before the
manufacturer withdrew it as ineffective [34–36]. Ironically,
although these clinical trials were performed in the context of
infection and sepsis, the ‘‘cytokine antagonist therapies’’ did
not prove to be efficacious in sepsis [37–39], although several
have become mainstream therapies for other inflammatory
diseases, including rheumatoid arthritis, inflammatory bowel
disease, and gout [40–45].

This paper has focused on the systemic inflammatory as-
pects of the human endotoxin model. However, a plethora of
other physiological responses have been investigated in the
model over the years by Doctor Lowry and others. Hormone
effects also include modulation of thyroid and growth hor-
mones [29,31,46]. Metabolic and coagulation effects [7,47–51]
are prominent, as are cardiovascular and pulmonary effects,
including attenuation of heart rate variability [19,52–55]. Fi-
nally, gut barrier function is compromised acutely in the
model [8], although, curiously, gastrointestinal distress is not
reported commonly by volunteers given IV endotoxin.
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