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Abstract

The amino acid sequences of proteins determine their three-dimensional structures and functions. However, how sequence
information is related to structures and functions is still enigmatic. In this study, we show that at least a part of the sequence
information can be extracted by treating amino acid sequences of proteins as a collection of English words, based on a
working hypothesis that amino acid sequences of proteins are composed of short constituent amino acid sequences (SCSs)
or ‘‘words’’. We first confirmed that the English language highly likely follows Zipf’s law, a special case of power law. We
found that the rank-frequency plot of SCSs in proteins exhibits a similar distribution when low-rank tails are excluded. In
comparison with natural English and ‘‘compressed’’ English without spaces between words, amino acid sequences of
proteins show larger linear ranges and smaller exponents with heavier low-rank tails, demonstrating that the SCS
distribution in proteins is largely scale-free. A distribution pattern of SCSs in proteins is similar among species, but species-
specific features are also present. Based on the availability scores of SCSs, we found that sequence motifs are enriched in
high-availability sites (i.e., ‘‘key words’’) and vice versa. In fact, the highest availability peak within a given protein sequence
often directly corresponds to a sequence motif. The amino acid composition of high-availability sites within motifs is
different from that of entire motifs and all protein sequences, suggesting the possible functional importance of specific SCSs
and their compositional amino acids within motifs. We anticipate that our availability-based word decoding approach is
complementary to sequence alignment approaches in predicting functionally important sites of unknown proteins from
their amino acid sequences.
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Introduction

Anfinsen’s dogma or thermodynamic hypothesis states that the

amino acid sequences of proteins are necessary and sufficient to

determine their three-dimensional structures and functions that

realize kinetically probable and stable free energy minimum states

[1]. Information extraction from amino acid sequences is thus a

crucial step in understanding protein molecules. At present,

structural and functional prediction from amino acid sequences

largely depends on the intricate use of the accumulated

experimental data in the Protein Data Bank (PDB) [2], together

with the fundamental use of sequence alignments [3]. However, a

general rule on how protein sequence information is related to

three-dimensional structures and functions is largely unknown.

It has been known that many molecular biological programs for

sequence analysis contain a relation with linguistics mostly

implicitly [4]. But in some cases, explicit use of linguistic tools

for biological sequences has been performed, especially for analysis

of nucleotide sequences [4–6]. Linguistic applications to protein

amino acid sequences are less frequent, but Hidden Markov

models (HMMs), an application from speech processing, have

been widely employed to analyze a wide variety of proteins from

different viewpoints (e.g. [7,8]). In other studies, secondary

structure predictions based on linguistic rules, i.e., grammar, have

been proposed [4,9,10]. These approaches are largely based on

formal language theory. On the other hand, there is an approach

based on so-called ‘‘literary linguistics’’ including stylistics and

textual analysis [4].

In this study, we propose a novel approach based on literary

linguistics that decodes the amino acid sequences of proteins using

an analogy between amino acid sequences and a natural language,

e.g., English. Our linguistic approach does not involve sophisticated

algorithms. Instead, it is ‘‘intuitive’’ or ‘‘primitive’’, meaning that we

search for correspondence between short stretches of amino acid

sequences and English words. Proteins are composed of the 20

‘‘letters’’ of amino acids, whereas English sentences use the 26 letters

of the alphabet. English sentences are also composed of an

organized collection of words, and one could examine proteins

based on a working hypothesis that amino acid sequences can be

considered to be collections of short constituent sequences (SCSs), or

‘‘words’’, such as triplets (three-amino-acid stretches), quartets (four-

amino-acid stretches), and pentats (five-amino-acid stretches), that

are meaningfully localized by a set of rules, i.e., ‘‘grammar’’.

We previously demonstrated the importance of short stretches

in proteins by showing that length of secondary structures peaked
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at 5 or 6 amino acids [11,12], which could justify our protein

analysis based on SCSs. Our SCSs are basically identical to k-

tuples [13–16], but we consider SCSs more like real linguistic

words for general decoding, not merely a collection of simple

analysis units for alignment-free sequence comparisons. Another

synonym is n-grams, and the n-gram analysis has recently been

performed widely in extracting information from biological

sequences [17–21]. To our knowledge, however, the direct and

intuitive comparison between English and protein amino acid

sequences has not been performed.

An empirical law called Zipf’s law is known to be widely

applicable to natural languages, including English. This law states

that the occurrence or frequency of words in a system of natural

language is inversely proportional to their ranks [22]. Zipf’s law is

a special case of a power function that is expressed as y = a x-b,

where x is the rank, y is the frequency, a is a coefficient, and b is an

exponent that is a positive rational number. In languages, the

exponent is said to be nearly 1, in which case such a power

function is called Zipf’s law. This rank-frequency relationship in

languages holds true over at least a few orders of magnitude, which

can be shown by linear ranges of the log-log plot of Y = A – bX

where Y = log y, X = log x, and A = log a. This ‘‘scale-free’’

relationship appears to result from communication tradeoffs

between the speaker and the hearer. The communication tradeoffs

are known as the principle of least effort [23,24], which drives the

evolution of natural languages. Speakers try to minimize their

verbal effort to convey a given idea, preferring brief and

ambiguous words, whereas hearers want to minimize the process

of understanding, preferring brief but unambiguous words.

This tradeoff relationship between speaker and hearer could be

analogous to the relationship between the primary and tertiary

structures of proteins. During evolution, the primary structure

‘‘wants to’’ minimize its mutational amino acid changes, preferring

small sequential changes that cause only ambiguous functional

changes, whereas the tertiary structure ‘‘needs’’ small changes that

are precisely required for a particular function. This metaphorical

expression is simply another way of saying that protein sequences

result from molecular evolution driven by random and parsimo-

nious changes of amino acid sequences and by subsequent natural

selection for the stringent functionality of folded protein molecules.

Therefore, there is a possibility that protein sequences evolved

based on the principle of least effort and hence at least partially

follow Zipf’s law, or more generally, a power law. In this study, we

examined whether the SCSs in proteins [11,12,25–27], which

could be called ‘‘words’’, exhibit a similar or dissimilar distribution

to a power-law distribution.

We note that variations of SCSs are very large but exactly

limited in number. For example, all possible three-letter combi-

nation of amino acids (i.e., triplet) numbers exactly 8,000 ( = 203)

and no more. Similarly, all possible four-letter and five-letter

combinations (i.e., quartet and pentat) number exactly 160,000

( = 204) and 3,200,000 ( = 205), respectively. It is possible, using

modern computational power, to comprehensively document the

occurrence of all possible combinations of n amino acids (i.e.,

SCSs) in a large protein database, if n is relatively small, and this

documentation can be referred to as the ‘‘dictionary’’ of word

occurrence. Our strategy is to examine word usage using a

collection of non-redundant amino acid sequences (nr-aa) by

referring to the dictionary of word occurrence. We defined the

availability score (A) for each SCS in a given data set of letters as its

relative occurrence (see Materials and Methods) [25–27]. Using

the availability score as a tool for sequence examination, we

further compared high-availability sites with known motifs using a

collection of representative proteins from PDB-REPRDB [28].

Together, the present study shows that this linguistic approach is

likely useful in decoding protein amino acid sequences, focusing on

putative important sites, or ‘‘key words’’, which are defined as

high-availability sites.

Materials and Methods

Database and Program Resources
The entire nr-aa (non-redundant amino acid) database, which

includes all known amino acid sequences, was downloaded on

August 2, 2012 (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.

gz). In the nr-aa database, a given sequence was recorded only

once. When just a single amino acid is different between two

sequences, they were recorded as independent entries. Thus, each

nr-aa entry is supposed to be unique. This database amounted to

4,656,296,401 bytes (11,211,279,389 bytes after decompression),

containing 113,382,218 lines and 19,630,785 sequences.

Species-specific databases were constructed by collecting

sequences that have annotation of a given species name from

the nr-aa database. The species-specific databases of human (Homo

sapiens), fruit fly (Drosophila melanogaster), thale cress (Arabidopsis

thaliana), and colon bacterium (Escherichia coli) contained 229,084

sequences, 43,208 sequences, 64,087 sequences, and 24,123

sequences, respectively.

For English sentences, the content of Wikipedia English version

‘‘20120802 No. 23’’ was downloaded on August 2, 2012 (http://

dumps.wikimedia.org/enwiki/20120802/enwiki-20120802-pages-

meta-current23.xml-p018225001p020925000.bz2). This database

amounted to 1,098,053,588 bytes (5,845,167,428 bytes after

decompression). This 1 GB file was a part of the entre 16.5 GB

articles, but we considered it a representative of the entire article.

The original data were written in XML, and thus they contained

many control codes associated with XML and Wikimedia, which

were deleted as follows. Article data were extracted using

Parse::MediaWikiDump of Perl. HTML expressions and Media-

Wiki expressions were deleted using fgetss() and Text_Wiki_Me-

diawiki of PHP, respectively. We also deleted lines that begin with

the following: ‘‘|’’, ‘‘#’’, ‘‘!’’, ‘‘{’’, and ‘‘}’’. Lines that include ‘‘://

’’ were also deleted to avoid URL expressions. Lines with less than

200 bytes were deleted. Lines with 4,096 bytes were deleted if they

contained ‘‘{{’’. A portion that was enclosed by {{ and }} were

also deleted. After these operations, alphabets were extracted from

the database, and lower-case letters were converted to upper-case

letters. In the case of natural English, the number of words was

counted by our own program written in C language. In producing

the compressed English database, spaces between words were

deleted.

As described in our previous studies [26,27], we downloaded the

structural files from the Research Collaboratory for Structural

Bioinformatics Protein Data Bank [2] (RCSB-PDB or simply PDB

in this paper; http://www.pdb.org/) on November 18–19, 2007.

To avoid the redundant structural information, we focused on

1,590 entries (1,643 protein chains) of which the PDB-IDs

were specified by the PDB-REPRDB [28] (http://mbs.cbrc.jp/

pdbreprdb-cgi/). The PDB-REPRDB can specify a collection of

representative PDB entries in which similar entries in terms of

amino acid sequence and three-dimensional structure were

eliminated. Thus, each PDB-REPRDB entry is supposed to be

unique. Among the 1,644 protein chains specified, one sample was

not found in the PDB, and two files had wrong specifications on

secondary structures. These three files were eliminated from our

analysis. Therefore, we subsequently analyzed 1,641 proteins

[26,27].

Word Decoding of Protein Amino Acid Sequences
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Power Law Distributions
After recording the numbers and ranks of all possible words in a

database, log[rank] (expressed as logR) and log[number] (expressed

as logN) were calculated, and they were plotted on a logR-logN

two-dimensional space. A power law y = ax-b in an x-y plane can be

converted to Y = A – bX in the logarithmic X-Y space. Accordingly,

a plot between logR and logN shows a straight line if a given

collection of words follow a power law. The best-fit least-squares

line was drawn and its associated a (intercept), b (slope or

exponent), and r (correlation coefficient) were calculated using

gnuplot 4.6 (www.gnuplot.info; Geeknet, Inc., Fairfax, VA, USA,

2010). The best-fit line was shown by a thick red line, and other

thin lines were drawn in 0.05 exponent intervals.

After producing the X-Y plots, the linear ranges and their

exponents were determined manually. To do this, the best-fit line

of Y = A – bX that was the closest to a English or protein

distribution was first determined. The linear range was defined as

the range in which the distribution of interest did not cross the

straight lines of 60.15 exponents from the best-fit line. This

definition was set to meet a requirement of achieving a linear

width of more than two orders of magnitudes both in X- and Y-

axes in natural English. This is a proposed requirement for a

power-law distribution by Stumpf and Porter [29]. Based on this

definition, linear range and linear width were determined for

natural English, compressed English, and amino acid sequences.

For statistical evaluation for power-law distributions, a python

program called powerlaw. 4.1 was used [30–32], which was

downloaded in August 2012 at http://pypi.python.org/pypi/

powerlaw#downloads. This program was run with Scientific

Linux (containing numpy, atlas, and lapack), blas, and scipy.

Discriminant R value was used to judge the feasibility of a given

database to favor a power law. This discriminant R value is a

likelihood ratio between power law and other distributions, in this

case, an exponential. When a power law distribution is likely,

discriminant R is positive, whereas when it is unlikely, discriminant

R is negative.

Using these methods, we compared behaviors of natural

English, ‘‘compressed’’ English, and protein amino acid sequences

to describe how similar or dissimilar a protein distribution is to an

English distribution, and we did not intend to obtain exact

parameters of a probability density function for possible power-law

fits.

Calculation of Availability Scores
The basic definition and calculation of availability scores for

doublets and triplets are described elsewhere [25–27]. Briefly, we

defined the difference between the probabilistically estimated

count E and the real count R for each doublet or triplet in a

database as the relative count or availability for a given doublet or

triplet. The availability score A can be expressed as follows:

A~(R{E)=E~(R=E){1 ð1Þ

In this equation, E is calculated in the case of a triplet as follows:

E~Q . P1P2P3 ð2Þ

where Q is the total number of existing triplets in a database and

P1, P2 and P3 are the probabilities that a given amino acid appears

at a position, which are derived from occurrence of each amino

acid in that database. The probabilistically estimated count E does

not consider influences from near-by amino acids and thus cannot

be used singularly as an frequency indicator for real proteins.

What we would like to know is a possible biological bias in amino

acid sequences that can be extracted by availability score A that is

given in Eq. (1). It is this bias that makes availability-based analysis

valuable.

A more elaborate and accurate expression of E, which we used

in calculating A in the present study, is given as follows.

E(n0, n1,:::, nm{1)~tPm{1
k~0

rnk{xk

t{k
ð3Þ

To explain this Eq. (3), we first define ak as the (k+1)th amino

acid in an m-aa SCS (i.e., an amino acid m-mer). The other letters

in this equation are defined as follows: T, total number of amino

acids; t, total number of m-aa SCSs; nk, number of ak; and xk,

number of ak in a set {a0, a1, a2, …, ak21}. Additionally, r is defined

as t/T.

Let us examine the process of calculating E of a pentat (5-

amino-acid SCS), AAMAC. Here, a0 = A (alanine), a1 = A, a3 = M

(methionine), a4 = A, and a5 = C (cysteine). Suppose that there are

180 As, 30 Cs, and 50 Ms in a database. Thus, n0 = 180, n1 = 180,

n2 = 50, n3 = 180, and n4 = 30.

Now, xk is the number of ak in a set {a0, a1, a2, …, ak21}. For

example, let us focus on the fourth amino acid of the pentat

AAMAC, that is, a3 = A. Here, we write a set {a0, a1, a2, …,

ak21} = {A, A, M}, and because a3 = A is included twice in this set,

x3 = 2. This process is performed for all of the amino acids in

AAMAC, and we obtain x0 = 0, x1 = 1, x2 = 0, x3 = 2, and x4 = 0.

Using these numbers, E can be calculated as follows.

E(n0, n1,:::, nm{1)~tPm{1
k~0

rnk{xk

t{k

~E(180,180,50,180,30)~2300P4
k~0

0:96:nk{xk

2300{k

~2300:
0:96:n0{x0

2300{0
: 0:96:n1{x1

2300{1
: 0:96:n2{x2

2300{2

: 0:96:n3{x3

2300{3
: 0:96:n4{x4

2300{4

~2300:
0:96:180{0

2300{0
: 0:96:180{1

2300{1
: 0:96:50{0

2300{2

: 0:96:180{2

2300{3
: 0:96:30{0

2300{4

%2300:0:0751:0:0747:0:0227:0:0744:0:0125

%0:00027239

Construction of Availability Database and Availability Plot
Program

Sequences were extracted from the FASTA format database.

Linefeed codes were deleted. Original description of a protein

Word Decoding of Protein Amino Acid Sequences
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Figure 1. Distributions of English letters and protein amino acid sequences. The relationships between rank (R) and number (frequency) of
words (N) are shown in the log-log plots. The background red lines indicate Y = A – bX, where b varies with an interval of 0.05. The thick red line
indicates the best-fit least squares line. The green dots and lines indicate the observed results. (a) Natural English, following Zipf’s law (left), and
distribution of English word lengths (middle and right). The word lengths peak at 3. (b) Compressed English. (c) Protein amino acid sequences.
doi:10.1371/journal.pone.0050039.g001
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sequence often occupies two or more lines. We corrected it by

assigning only one line per sequence. When non-standard amino

acid codes (i.e., X, U, B, Z, J, O, and others) appeared, this

sequence was considered to end at that point, and analysis was

commenced from the next amino acid. The total number of amino

acids and total number of n-aa SCSs in the collected sequences

were calculated by our own analysis program written in C

language. Similarly, the numbers of all possible n-aa SCSs (n = 1, 2,

…, 6) in the collected sequences were calculated. Using these

numbers, the availability scores were calculated for each n-aa SCS

using Eq. (3), which resulted in the availability database. The

availability plot program was constructed to assign availability

score found in the availability database to each n-aa SCS. We used

a MacPro computer with a CPU 2.53 GHz Intel core 2 Duo and

4 GB (1067 MHz) DDR memory or with a CPU 3 GHz 4 core

Xenon x2 and 12 GB (667 MHz) memory for these calculations.

Graphical output of the availability plot program was set to be

drawn in JavaScript.

The availability plot program is open to the public as a web-

interactive program, which is a part of the SCS package posted at

http://bio.ads.ie.u-ryukyu.ac.jp, updated on September 9, 2012.

The updated SCS package is based on the nr-aa and English

Wikipedia databases downloaded on August 2, 2012. The original

version of the availability plot program was based on the nr-aa

database downloaded on November 25, 2009 and on the entire

English Wikipedia on November 7, 2009, which is still available at

http://bio.ads.ie.u-ryukyu.ac.jp/200902/. The availability analy-

sis performed in the present study used the original version of the

nr-aa and English Wikipedia databases. Users should note that this

program accepts only a single sequence at a time for a manual

query. Both original and relative availability scores are displayed

in a table, but only relative availability values are shown

graphically. Users are encouraged to use Microsoft Excel and

other related software to make one’s own availability plots using

the spreadsheet-friendly outputs of this program. The SCS

package is a web server that also contains other availability-based

programs. These programs are already open to the public, but

currently under evaluation and thus not yet formally published.

Motif Analysis and Rank Order Analysis
Web-interactive PROSITE scan [33] (http://prosite.expasy.

org/) was used for motif identification. We focused on the

sequence motifs that contain 20 amino acids or less. Based on this

length limit, we identified 521 motifs that contain 6,842 amino

acids in 397 proteins out of 1,641. The average length of these

motifs was 13.13 amino acids. Among these motifs, there were 195

motifs that contained high-availability sites (A$3), which were

analyzed in terms of amino acid composition. In contrast, there

were 73 proteins out of 1641 that contain motifs longer than 21

amino acids.

To examine the correspondence between availability peaks and

sequence motifs, we first defined the relative availability score (rA)

in a given protein. The largest availability score was set to 100%,

and the other scores were proportionally adjusted to yield relative

scores in a given protein. We examined how well the 100% rA sites

and the more-than-50% rA sites corresponded to sequence motifs.

We obtained percentages of proteins in which there is a direct

correspondence between motifs and those high rA sites.

The distribution of the availability scores of sequence motifs was

compared with that of a random stretch of 13 amino acids the

sequence of which was specified randomly in protein sequences

that contain the identified motifs. When the random assignment

process specified a 13-amino-acid stretch that overlapped with

identified motifs, that 13-amino-acid stretch was discarded and the

next random search was conducted until 521 random sequences

were obtained. The rank order distances of the amino acid

composition were calculated as a simple subtraction of the order

number of the query sequences from those of the full sequences.

Table 1. a, b, and r values for English and proteins.

Letter Sequences a b r

Natural English 1.86107 0.79 0.59

Compressed English

Singlet 1.96108 0.53 0.77

Doublet 3.66107 0.49 0.83

Triplet 2.26107 0.60 0.74

Quartet 6.06106 0.54 0.80

Pentat 5.36106 0.58 0.74

Hexat 3.96106 0.58 0.73

Proteins (nr-aa)

Singlet 6.66108 0.34 0.85

Doublet 6.96107 0.29 0.93

Triplet 9.16106 0.30 0.96

Quartet 7.36105 0.41 0.94

Pentat 8.36105 0.52 0.83

doi:10.1371/journal.pone.0050039.t001

Figure 2. The exponent and linear widths of compressed English and proteins in the rank-frequency plot. (a) The exponent b and
correlation coefficient r in compressed English and proteins. (b) The linear width in compressed English and proteins both in X- and Y-axes.
doi:10.1371/journal.pone.0050039.g002
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The rank order distance (ROD) scores for each pool of amino

acids, which indicates deviation in rank order from the full

sequences, were calculated as described in the previous study [26].

The statistical analyses were performed using SYSTAT13 (Systat

Software, Inc., Chicago).

Results

Characterization of Natural English
We first examined current natural English in reference to Zipf’s

law (or power law) using a web version of an encyclopedia,

Wikipedia. The log-log plot of rank (R) in the X-axis and

occurrence (N) in the Y-axis largely exhibited a nearly straight line

within a linear range of 2.7–5.0 in X-axis (more accurately 102.7–

105.0, but expressed as such just for convenience; linear width was

thus 2.3) with an exponent b of 0.79 and a correlation coefficient r

of 0.59 (Figure 1a, left; Table 1). A linear range in Y-axis was 1.3–

5.0, and thus its linear width was 3.7. These linear ranges in X-

and Y-axes spanned more than two orders of magnitude,

indicating a scale-free nature of the English word distribution.

We noted that the word length peaks at 3 and gradually declines as

the length increases in natural English (Figure 1a, middle and

right).

Characterization of Compressed English
In the case of protein sequences, there is no space between

words, as in the Japanese language, and we have no way to

determine word gaps in proteins. Thus, we next examined no-

space ‘‘compressed’’ English sentences to see if compressed English

can retain the characteristics of original English. For simplicity, we

assumed in this analysis that the word length (i.e., the number of

letters in a word) is uniform. In other words, we assumed that all

words have an identical number of letters (n = 1, 2, …, 6), similar

to the triplet genetic code. But we counted all possible

combinations of words by conceptually sliding a word window

one by one over letter sequences. That is, we examined all

‘‘reading frames’’ simultaneously.

In compressed English, the log-log plots of rank and

occurrence exhibited the exponents that were smaller than that

of natural English but their correlation coefficients were larger

(Figures 1b, 2a; Table 1). The largest exponent b was 0.60 in

triplet, but those of pentat and hexat, 0.58, were comparably

large (Figure 2a; Table 1). Notably, their linear ranges and widths

in pentat and hexat were larger than those of natural English

(Figure 2b; Table 3). Discriminant R values were positive for

triplet, quartet, pentat, and hexat (Table 2). These results

demonstrate that compressed English favors a power law over

an exponential when it is considered to be composed of 3-, 4-, 5-,

or 6-letter words.

The 3-letter word (triplet) system had the largest exponent

among the n-letter word systems examined here. The linear widths

in both X- and Y-axes peaked at the 3-letter word (triplet) system,

although the 5- and 6-letter word (pentat and hexat) systems

Table 2. Discriminant R values for English and proteins using powerlaw.4.1.

Letter Sequences All rank used Top 50% ranks Top 10% ranks

R p-value R p-value R p-value

Natural English 5.86106 0.0 5.86106 0.0 4.46105 0.0

Compressed English

Singlet –6.06101 3.1610–47 –1.5 0.20 6.8610–3 0.97

Doublet –5.16102 1.4610–23 –3.76101 0.0010 –1.9 0.44

Triplet 2.56104 0.0 5.96103 4.9610–134 7.56101 0.090

Quartet 1.36106 0.0 4.56105 0.0 2.26104 0.0

Pentat 1.36107 0.0 5.06106 0.0 4.36105 0.0

Hexat 4.86107 0.0 2.46107 0.0 2.26106 0.0

Proteins (nr-aa)

Singlet –5.66101 0.0 –1.1610–1 0.80 1.5610–3 0.99

Doublet –1.06104 0.0 –1.86101 5.7610–8 7.6610–2 0.92

Triplet –1.86104 0.0 –4.16102 3.4610–70 –7.2 0.31

Quartet –2.86105 0.0 –6.36103 0.0 1.56101 0.78

Pentat –3.96106 0.0 –3.36104 1.8610–138 1.86104 7.9610–226

doi:10.1371/journal.pone.0050039.t002

Table 3. The linear ranges and linear widths of compressed
English and protein amino acid sequences.

SCS (word) Singlet Doublet Triplet Quartet Pentat Hexat

N of constituent
aa* 1 2 3 4 5 6

English

Linear range X 0.9–1.1 1.5–2.5 0.7–3.5 1.9–4.5 0.7–5.0 0.5–5.7

Linear width X 0.2 1.0 2.8 2.6 4.3 5.2

Linear range Y 7.4–7.9 6.0–7.0 3.7–6.8 3.7–6.0 2.3–6.0 2.0–6.0

Linear width Y 0.5 1.0 3.1 2.3 3.7 4.0

Protein

Linear range X 0.3–1.3 0.6–2.5 0.0–3.9 0.0–5.2 0.6–6.5 1.1–7.9

Linear width X 1.0 1.9 3.9 5.2 5.9 6.8

Linear range Y 8.3–8.8 6.9–7.8 5.3–7.0 3.9–6.3 2.3–5.9 0.3–5.0

Linear width Y 0.5 0.9 1.7 2.4 3.6 4.7

Note: linear range of natural English (X, Y) = (2.7–5.0, 1.3–5.0); linear width of
natural English (X, Y) = (2.3, 3.7).
*aa: amino acid.
doi:10.1371/journal.pone.0050039.t003
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showed larger linear widths. These results did not contradict the

fact that natural English (without compression) has mode and

mean values of letter lengths of 3 and 4.8, respectively.

Characterization of Protein Amino Acid Sequences
The rank-frequency plots of protein sequences using the nr-aa

database with 1- to 5-amino-acid lengths (singlet, doublet, triplet,

Figure 3. Relationship between remaining top rank sample (%) and discriminant R value. (a) nr-aa (all). (b) H. sapiens. (c) D. melanogaster.
(d) A. thaliana. (e) E. coli.
doi:10.1371/journal.pone.0050039.g003
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quartet, and pentat) showed exponents that were smaller than 1.0

(Figure 1c, 2a; Table 1) but exhibited straight lines in wider ranges

than those of natural and compressed English (Figures 1c, 2b;

Table 3). Both the exponent and linear range gradually increased,

as the amino acid length of the system increased (Figure 2a, b). We

were unable to detect any peaks of exponent and linear range, in

contrast to compressed English. Notably in proteins, low-rank

SCSs appeared to be highly deviated from the straight line in the

systems of any word lengths (Figure 1c). Large linear ranges,

relatively small exponents, and deviation of low-rank samples were

three features that may characterize the protein distributions.

Among them, large linear range is one of the requirements for a

power-law distribution [29], but small exponent is not. Overall,

the protein distributions are likely different from a simple power-

law distribution.

It is highly likely that deviation of low-rank samples serves as a

noise to prevent the protein SCSs to exhibit a power-law

distribution. As expected, despite the large linear ranges, all n-aa

SCS systems showed highly negative discriminant R values

(Table 2). We also obtained discriminant R values for protein

samples with top 50% ranks and top 10% ranks (Table 2). Use of

top 10% ranks made discriminant R values positive, although only

the pentat system had significantly low p-values (Table 2). The

relationship between the remaining top rank samples (%) and

Figure 4. The rank-frequency relationship of proteins in four model organisms. Boundaries at the top 50% rank samples were indicated by
blue dotted line. (a) H. sapiens. (b) D. melanogaster. (c) A. thaliana. (d) E. coli.
doi:10.1371/journal.pone.0050039.g004

Word Decoding of Protein Amino Acid Sequences

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e50039



discriminant R value indicated a strong contribution of the low-

rank samples to the negativity of discriminant R value (Figure 3a).

We then examined behavior of natural English by obtaining

discriminant R value using a program called ‘‘powerlaw’’.

Although the exponent of natural English did not reach 1.0 as

discussed above, discriminant R value was highly positive (Table 2),

indicating that natural English favors a power law over an

exponential.

We conclude that the low-rank samples of protein amino acid

sequences do not follow a power-law distribution, but the high-

rank samples tend to exhibit a scale-free distribution with

reasonably large linear ranges of both X- and Y- axes.

Species-dependent Variations of Protein Distribution
We next used the human (Homo sapiens), fly (Drosophila

melanogaster), plant (Arabidopsis thaliana), and bacterium (Escherichia

coli) proteins to examine whether the distribution characteristics

that were observed in the nr-aa database are present in a species-

dependent or species-independent fashion (Figure 4). The systems

of these species showed very similar rank-frequency distributions

to one another and to those of the nr-aa database; large linear

ranges, relatively small exponents, and deviation of low rank

samples were all observed (Figures 4, 5; Tables 4, 5). For example,

the exponents, correlation coefficients, and liner widths of the

pentat systems of the human and fly proteins (Figure 5; Tables 4,

5) were comparable to those of the compressed English (Figure 2;

Tables 1, 3). On the other hand, we also observed differences

between species (Figure 5; Tables 4, 5). For example, the human

system showed relatively large linear widths both in X- and Y-axes

and relatively high exponents among the four species that were

examined.

We then tested if these species-specific proteins favor a power-

law distribution over an exponential. Discriminant R values were

all negative except the pentat system of E. coli, indicating that they

did not favor a power-law distribution with the exception of E. coli

(Table 6). This could be due to the low-rank samples that

contribute to deformation of the distributions. When only top 75%

or 50% samples were used, positive discriminant Rs were obtained

for the pentat systems of most species (Table 6). We next checked

relationship between the remaining top rank samples (%) and

discriminant R value (Figure 3b-e). From the singlet to quartet

systems, more elimination resulted in higher discriminant R values,

but the maximum discriminant R values scarcely exceeded zero.

However, in the pentat systems, elimination of up to about 50%

resulted in the positive discriminant R values in H. sapiens, D.

melanogaster, and A. thaliana (Figure 3b-d). Exception was again E.

coli, in which the elimination process caused decrease of

discriminant R values (Figure 3e).

We conclude that the word distributions are largely similar

among species, but some species-specific features are also present,

which are more prominent in the pentat systems. In analogy to

natural languages, species-specific protein languages may be

considered ‘‘dialects’’.

Relative Availability Score Matches Sequence Motifs
We next explored whether we can identify functionally

important short sequences, or ‘‘key words’’, in proteins. We

anticipated that key words would be at least partially equivalent to

Figure 5. The exponents and linear widths of proteins from four model organisms in the rank-frequency plots. (a) The exponent b. (b)
The correlation coefficient r. (c) The linear width of X-axis. (d) Linear width of Y-axis.
doi:10.1371/journal.pone.0050039.g005
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sequence motifs in proteins. Sequence motifs are defined in a

sequence context (not in a structural context) as small stretches of

amino acids that are highly conserved among related proteins.

Using a collection of 1,641 representative proteins, we examined

the possible relationship, if any, between the high-availability sites

and known sequence motifs.

Is it possible for the availability score to specify motifs efficiently in a

given amino acid sequence? We found 521 motifs in 397 proteins out

of 1,641 using the PROSITE search. Visual inspection of these motifs

with availability plots showed that some motifs were ‘‘captured’’ nicely

by high-availability sites using the pentat system and that non-motif

regions showed much lower availability scores (Figure 6).

In identifying motifs based on availability scores, the relative

values in a given protein are more important than an arbitrary

threshold value. We thus calculated the relative availability score

(rA) for a given protein: it is derived from the maximum availability

score that was set to 100%, with the other scores being

proportionally calculated. We found that 17.1% of these motifs

can be identified by the positions of pentats, with rA = 100%

(Figure 7). That is, the probability that the highest pentat peak in a

given protein matches a motif is 17.1%. Similarly, when we use the

arbitrary threshold for pentats, rA$50%, these peaks match motifs

in 33.5% of the cases (Figure 5).

Sequence Motifs are Rich in High-availability Sites
Among these 397 motif-containing proteins, pentats with A$3

occupied 9.5% of all possible pentats in these proteins. To

examine whether motifs contain high-availability sites more than

the entire proteins do, we calculated the percentage of pentats

with A$3, which was 12.9%. This result indicates a 1.4-fold

enrichment of high-availability sites in motifs. Similarly, sequence

motifs occupied 5.4% of the entire amino acids of 397 proteins. To

examine whether high-availability sites (pentat A$3) are enriched

in motifs, we calculated the percentage of motifs in the high-

availability sites, which was 10.5%. This result indicates a 1.9-fold

enrichment of motifs in high-availability sites (pentat A$3).

The availability scores of the pentats in motifs were compared

with those of randomly specified amino acid regions taken from

the same proteins (Figure 8a). The median values of motifs and

random sequences were 1.20 and 0.60, respectively. The number

of pentats with A$5 is 50 in motifs and 25 in random sequences,

respectively. The overall distribution patterns were significantly

different as indicated by a Mann-Whitney U-test (p,0.0001).

High-availability Sites within Motifs Contain Specific
Amino Acids

We further characterized the high-availability triplets, quartets,

and pentats (A$3) within the 521 motifs identified above

(Figure 8b). The ranking of the amino acid composition of the

entire set of motifs was relatively similar to that of ‘‘all’’ sequences,

with a relative order distance (ROD) score of 4.80. Exceptional

amino acids with increased rank within motifs were C (cysteine;

rank change score +15) and H (histidine; +7). The amino acid

composition of high-availability sites (A$3) within motifs showed

Table 4. a, b, and r values for species-specific proteins.

Letter Sequences a b r

Homo sapiens

Singlet 8.06106 0.34 0.85

Doublet 1.26106 0.37 0.90

Triplet 2.16105 0.38 0.92

Quartet 7.46104 0.45 0.89

Pentat 6.16104 0.54 0.79

Drosophila
melanogaster

Singlet 2.06106 0.29 0.86

Doublet 3.26105 0.35 0.91

Triplet 6.76104 0.40 0.91

Quartet 2.66104 0.49 0.86

Pentat 1.86104 0.59 0.73

Arabidopsis thaliana

Singlet 2.56106 0.33 0.85

Doublet 3.06105 0.31 0.92

Triplet 5.96104 0.37 0.93

Quartet 1.56104 0.41 0.93

Pentat 4.86103 0.45 0.91

Escherichia coli

Singlet 6.96105 0.35 0.84

Doublet 1.06105 0.37 0.90

Triplet 1.76104 0.37 0.93

Quartet 3.446103 0.39 0.94

Pentat 1.76103 0.43 0.92

doi:10.1371/journal.pone.0050039.t004

Table 5. The linear ranges and linear widths of amino acid
sequences of species-specific proteins.

SCS (word) Singlet Doublet Triplet Quartet Pentat

N of
constituent aa* 1 2 3 4 5

Homo sapiens

Linear range X 0.3–1.1 0.5–2.6 0.9–3.8 0.8–5.0 0.7–6.3

Linear width X 0.8 2.1 2.9 4.2 5.6

Linear range Y 6.3–6.8 4.7–5.8 3.0–4.8 1.8–4.5 0.3–4.3

Linear width Y 0.5 1.1 1.8 2.7 4.0

Drosophila
melanogaster

Linear range X 0.5–1.1 0.5–2.5 1.0–2.8 1.3–5.0 1.8–6.3

Linear width X 0.6 2.0 1.8 3.7 4.5

Linear range Y 5.8–6.5 4.3–5.3 2.7–4.3 1.0–3.5 0.0–3.0

Linear range Y 0.7 1.0 1.6 2.5 3.0

Arabidopsis
thaliana

Linear range X 0.3–1.1 0.0–2.6 0.8–3.8 1.0–5.0 1.1–6.3

Linear width X 0.8 2.6 3.0 4.0 5.2

Linear range Y 5.7–6.3 4.3–5.5 2.5–4.3 1.3–3.5 0.0–3.0

Linear width Y 0.6 1.2 1.6 2.2 3.0

Escherichia coli

Linear range X 0.3–1.1 0.5–2.6 0.8–3.9 1.1–5.0 1.6–6.0

Linear width X 0.8 2.1 3.1 3.9 4.4

Linear range Y 5.3–5.8 3.7–4.8 2.2–3.8 0.8–2.9 0.0–2.3

Linear width Y 0.5 1.1 1.6 2.1 2.3

*aa: amino acid.
doi:10.1371/journal.pone.0050039.t005
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more varied rankings. Hydrophobic amino acids, such as L

(leucine), A (alanine), and V (valine), had high ranks both in all

sequences and in motifs, but their rank orders decreased

considerably in the high-availability pentats, quartets, and triplets.

Instead, C (cysteine; +18 in pentats and quartets) and H (histidine;

+14 in pentats and +16 in quartets) were prominent in the high-

availability pentats and quartets. The rank order distance (ROD)

scores were highest in the high-availability quartets, 8.53, and the

high-availability pentats and triplets also showed relatively high

ROD scores of 7.46 and 6.68, respectively. These analyses

demonstrated that high-availability sites within motifs are distinct

from other regions of motifs, suggesting that these sites may be

functionally important.

Discussion

In this study, we showed that at least a part of sequence

information can be extracted by treating amino acid sequences of

proteins as a natural language, i.e., current English. Our analysis

of current English from Wikipedia is consistent with a recent

mathematical study on the same data source [34]. That is, we

confirmed that natural English most likely follows a power law.

Furthermore, we showed that elimination of spaces that produced

‘‘compressed English’’ did not hamper a power-law distribution in

the triplet, quartet, pentat, and hexat systems, mainly judging from

discriminant R values (together with p-values) and linear widths

both in X- and Y-axes in the log-log plot of rank and occurrence.

Overall patterns of natural English and compressed English are

similar to each other (see Figure 1a and 1b). Thus, we think that

the compressed English retains important characteristics of natural

English. This result may not be very surprising, because classical

Latin literature was written without spaces before the seventh or

eighth century [35]. Also, there are many languages that do not

have spaces between words such as Japanese, Korean, and

Chinese.

It appears that linear widths depend on the number of letters in

words or SCSs to be examined. This is understandable, because a

repertoire of SCSs increases dramatically when the number of

letters in words or SCSs increases. Hence, it is not unexpected to

find the fact that compressed English in the 6-letter (hexat) system

scored best among the n-letter word systems examined here. This

result does not immediately mean that English sentences are

mostly composed of 6-letter words, because we did not perform

analysis on 7-letter words or more. We detected peaks of the

exponent and linear width at the 3-letter (triplet) system, which

may indicate the average word length of natural English.

However, we admit that this could be a simple coincidence.

We found that the frequency of SCSs of proteins showed a

scale-free distribution only when low-rank tails are excluded.

Although the power law behaviors are now found in many

molecular biological systems [4,36–41], Stumpf and Porter [29]

proposed that, to conclusively show a scale-free nature of a given

distribution, linearity must be obtained over at least two orders of

magnitude both in X- and Y- axes in the log-log plot of rank and

Table 6. Discriminant R values for species-specific proteins using powerlaw. 4.1.

Letter Sequences All rank used Top 75% ranks Top 50% ranks

R p-value R p-value R p-value

Homo sapiens

Singlet –5.26101 0.0 –1.9 1.8610–2 –1.1610–3 1.00

Doublet –9.06102 0.0 –4.36101 3.4610–12 –2.36101 9.4610–11

Triplet –1.46104 0.0 –7.76102 1.5610–91 –2.56102 3.0610–23

Quartet –1.86105 0.0 –7.06103 5.2610–77 1.66103 6.0 610–8

Pentat –6.06105 0.0 7.86104 6.1610–53 1.76105 0.0

Drosophila melanogaster

Singlet –5.06101 0.0 –2.8 1.6610–6 1.7610–1 0.65

Doublet –8.56102 0.0 –5.56101 1.6610–22 –2.06101 2.0610–11

Triplet –1.36104 0.0 –1.06103 1.4610–122 –3.16102 7.3610–19

Quartet –1.56105 0.0 –1.66104 4.8610–288 –3.76103 7.6610–21

Pentat –8.46104 2.3610–196 4.46104 1.6610–66 6.76104 1.4610–234

Arabidopsis thaliana

Singlet –5.06101 0.0 –2.2 1.0610–3 –8.5610–2 0.84

Doublet –8.66102 0.0 –6.16101 8.5610–25 –1.86101 5.5610–7

Triplet –1.36104 0.0 –9.46102 9.1610–132 –3.66102 4.5610–44

Quartet –1.56105 0.0 –1.56104 0.0 –4.66103 7.3610–141

Pentat –3.46105 0.0 –2.16104 4.9610–40 2.06104 5.0610–52

Escherichia coli

Singlet –4.86101 0.0 –1.3 5.7610–2 –1.8610–1 0.70

Doublet –7.96102 0.0 –6.26101 3.3610–24 –2.26101 1.2610–11

Triplet –1.16104 0.0 –1.26103 1.7610–232 –4.26102 2.8610–77

Quartet –7.46104 0.0 –1.56104 0.0 –5.06103 1.2610–233

Pentat 3.86105 0.0 3.76105 0.0 1.86105 0.0

doi:10.1371/journal.pone.0050039.t006
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occurrence. We found that, in the quartet, pentat, and haxat

protein systems, linear widths both in X- and Y-axes exceeded 2.0,

and their linear widths are larger than those of the compressed

English systems.

To be sure, not all studies affirmed the importance of the power

law in analyzing the linguistic systems [42], and many claimed

power-law systems, especially, biological network systems, may

indeed be false-positive results, because they lack rigorous

quantitative statistical analysis [29–32]. However, the recent

mathematical analysis supported the traditional view of the

usefulness of the power law [43–46]. Methodologically, the

present study compared protein amino acid sequences to a natural

language, English, which is known to follow a power law. To

perform a comparative analysis, we used the python powerlaw

program that statistically judges the feasibility of a given

distribution to favor a power law over an exponential. Addition-

ally, we directly examined linear width for a given distribution,

which could serve as a relatively simple method to judge whether

to have a scale-free nature. Considering that protein linear regions

appeared to be larger than English, it is reasonable to think that

the low-rank samples in proteins strongly contribute to the

negativity of discriminant R values. Exclusion of the low-rank

samples indeed made discriminant R values to be positive at least

in the pentat system. Together, we can state that high-rank protein

amino acid sequences tend to exhibit a scale-free distribution but

low-rank tails do not, and this fact suggests that they may have

language-like characteristics at least partly. The positive discrim-

inant R value in the pentat system may be consistent with the fact

that the length of secondary structures peaked at 5 or 6 amino

acids [11,12].

We observed a few characteristics that may be unique to protein

distributions, which may be as important as similarity to English.

First, the exponent is smaller than that of natural English despite

wide ranges in linearity. However, this result is also observed in

Figure 6. The availability plots of two examples of amino acid sequences of proteins, peptidase M10 (top) and ribonuclease T2
(bottom). X-and Y-axes indicate protein amino acid sequence and availability score, respectively.
doi:10.1371/journal.pone.0050039.g006
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compressed English. Second, relatively large linear ranges are

conspicuous in proteins in contrast to a loosely curved distribution

both in natural and compressed English. Third, as discussed

above, low-rank samples are highly deviated from a linear

distribution. The biological significance of low-level samples in

proteins is not known at this point. Fourth, in contrast to

compressed English, we observed no peak in proteins; both

exponent and linear width appear to increase gradually as the

number of amino acids in SCSs increases. Examinations of

heptats, octats, nonats, and so on are expected in the future.

The distribution patterns of four species that were examined

here are largely similar to each other and to that of the nr-aa

database, although there are some differences in the exponent and

linear width among them. There seems no simple influence of

database size among these four systems. However, the most

important unique feature was found in the E. coli pentat system,

where it showed positive discriminant R value without any

elimination of low-rank samples. Whether this unique feature

can be attributed to prokaryotic proteins remains elusive. It may

be possible to find a species that exhibits a distribution that is more

Figure 7. The percentages of correspondence between se-
quence motifs and SCSs (i.e., triplets, quartets, and pentats).
The blue bars indicate rA = 100%, whereas the red bars indicate
rA$50%.
doi:10.1371/journal.pone.0050039.g007

Figure 8. The characterization of high-availability sites within motifs. (a) The distribution of the pentat availability scores within motifs and
random fragments. (b) The rank order analysis of the amino acid composition of full sequences, motifs, and high-availability areas of pentats,
quartets, and triplets within motifs. The rank order distance (ROD) scores are shown beside the horizontal bars. The numbers at the top of each amino
acid indicate the rank difference from the full sequences.
doi:10.1371/journal.pone.0050039.g008
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similar to the English distribution if other species are analyzed.

Similarly, it may be possible to find a non-English language that

exhibits a protein-type distribution if other natural languages are

analyzed. Further studies are necessary to pursue these possibilities.

It is likely that protein amino acid sequences are linguistically

more complex than human language texts [47], and thus we admit

that there may be a technical limitation of our approach to

decoding protein grammar. However, we identified putative ‘‘key

words’’ (i.e., high-availability sites) in proteins, some of which

corresponded nicely to sequence motifs. The correspondence of

high-availability sites to motifs is much higher in the pentat system

than in the quartet and triplet systems. However, if the working

hypothesis is correct, proteins are likely to be written by words

with different numbers of letters, and thus, the utility of quartets

and triplets should not be disregarded entirely at this point.

Within motifs, the high-availability sites in the pentat system are

richer in C (cysteine) and H (histidine), suggesting that high-

availability sites may be the most important sites within motifs. We

also examined the amino acid assignments [26] of motifs and those

of high-availability sites within motifs, which confirmed that the

high-availability sites within motifs are highly different from the

entire motif sequences (data not shown). Furthermore, approxi-

mately 17% of the highest availability sites (rA = 100%) in the

pentat system corresponded to known motifs. It is possible that the

highest availability sites that had no correspondence to any known

motifs may nonetheless be structurally and functionally important.

It is also likely that this method disproportionately identifies

certain groups of motifs.

Conventional motif identification and other amino acid

sequence comparisons are largely dependent upon successful

multiple alignments. Multiple alignments necessitate the sequence

homology of relatively long stretches of sequences. It is apparent

that sequence motifs are not enough to understand functionally

important sites, considering that only 24.2% of all proteins

examined (397 out of 1643) contained one or more motifs in our

survey, despite the fact that all proteins would have functionally

important sites. Our availability-based method is independent of

extensive sequence homology among many samples. Rather, in

the availability analysis, series of SCSs in a query protein sequence

are compared with all known sequences in the nr-aa database. We

anticipate that this word decoding approach can be complemen-

tary to the sequence alignment approach in predicting functional

sites of unknown amino acid sequences. Use with other functional

assignment programs, such as BLAST [3], PROSITE [33], and

hydropathy plotting [48], may be fruitful.

For sequence comparisons, tuple analysis has been extensively

performed [11–14], and a similar algorithm is used in BLAST to

find relevant sequences with longer similarities [3]. However, the

use of tuples, here called SCSs, has not been performed to find

‘‘key words’’ in conjunction with the linguistic analogy to current

English. An interesting case was found in Sawada and Honda [49],

in which structural diversity of short segments (identical to SCSs)

that were obtained from the PDB was evaluated by a single-pass

clustering algorithm. Notably, the structural diversity follows a

power-law distribution [49], which may fortify the results of the

present study in this paper.

It is well known that different amino acid sequences can form a

similar three-dimensional structure and that an identical amino

acid sequence can form alternative structures. This fact does not

deny the presence of functional SCSs in proteins. In languages,

different sentences can convey similar information, and an

identical sentence can mean totally different things. Both in

proteins and languages, the context is important in finalizing

structures or meanings. This ambiguity or flexibility that was

observed both in proteins and languages is further consistent with

our working analogies between proteins and languages.

Overall, based on a working hypothesis that amino acid

sequences are composed of SCSs that may be equivalent to

words, we were able to detect important sites in proteins, although

amino acid SCSs behave differently from English words in a few

points. Exhaustive word identification efforts could eventually

produce the dictionary of protein language. We speculate that

words are positioned according to a set of rules, called grammar or

idiomatic expressions, that can also be revealed by an availability-

based method (a pilot program has already been built into the SCS

package). These studies will contribute to protein engineering and

rational drug design in the future.
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3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.
4. Searls DB (2002) The language of genes. Nature 420: 211–217.

5. Searls DB (1997) Linguistic approaches to biological sequences. Comput Appl

Biosci 13: 333–344.
6. Chiang D, Joshi AK, Searls DB (2006) Grammatical representations of

macromolecular structure. J Comput Biol 13: 1077–1100.
7. Singh NK, Goodman A, Walter P, Helms V, Hayat S (2011) TMBHMM: a

frequency profile based HMM for predicting the topology of transmembrane
beta barrel proteins and the exposure status of transmembrane domains.

Biochim Biophys Acta 1814: 664–670.

8. Zhang L, Watson LT, Heath LS (2011) A network of SCOP hidden Markov
models and its analysis. BMC Bioinformatics 12: 191.

9. Abe N, Mamitsuka H (1997) Predicting protein secondary structure using
stochastic tree grammars. Machine Learn 29: 275–301.

10. Przytycka T, Srinivasan R, Rose GD (2002) Recursive domains in proteins.

Protein Sci 11: 409–417.

11. Otaki JM, Tsutsumi M, Gotoh T, Yamamoto H (2010) Secondary structure

characterization based on amino acid composition and availability in proteins.

J Chem Inf Model 50: 690–700.

12. Tsutsumi M, Otaki JM (2011) Parallel and antiparallel b-strands differ in amino

acid composition and availability of short constituent sequences. J Chem Inf

Model 50: 1457–1464.

13. Claverie J-M, Bougueleret L (1986) Heuristic information analysis of sequences.

Nucl Acid Res 14: 179–196.

14. Vinga S, Almeida JS (2003) Alignment-free sequence comparison – a review.

Bioinformatics 19: 513–523.

15. Vinga S, Gouveia-Oliveira R, Almeida JS (2004) Comparative evaluation of

word composition distances for the recognition of SCOP relationships.

Bioinformatics 20: 206–215.

16. Aita T, Husimi Y, Nishigaki K (2011) A mathematical consideration of the

word-composition vector method in comparison of biological sequences.

BioSystems 106: 67–75.

17. Radomski JP, Slonimski PP (2007) Primary sequences of proteins from complete

genomes display a singular periodicity: alignment-free n-gram analysis. C R Biol

330: 33–48.

18. Vries JK, Liu X, Bahar I (2007) The relationship between n-gram patterns and

protein secondary structure. Proteins 68: 830–838.

Word Decoding of Protein Amino Acid Sequences

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e50039



19. Vries JK, Liu X (2008) Subfamily specific conservation profiles for proteins

based on n-gram patterns. BMC Bioinformatics 9: 72.
20. Lin HN, Sung TY, Ho SY, Hsu WL (2010) Improving protein secondary

structure prediction based on short subsequences with local structure similarity.

BMC Genomics 11 Suppl 4: S4.
21. Osmanbeyoglu HU, Ganapathiraju MK (2011) N-gram analysis of 970

microbial organisms reveals presence of biological language models. BMC
Bioinformatics 12: 12.

22. Zipf GK (1935) Psycho-Biology of Languages: An Introduction to Dynamic

Philology. Boston: Houghton-Mifflin. 364 p.
23. Zipf GK (1949) Human Behavior and the Principle of Least Effort: An

Introduction to Human Ecology. Boston: Addison-Wesley. 585 p.
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