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Abstract

Purpose: Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia
normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely
a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and
consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic
differentiation process itself.

Materials and Methods: Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic
conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and
protein secretion.

Results: The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia,
normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels
of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia,
hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA
levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein
expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic
differentiation.

Conclusions: Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic
differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of
hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes,
which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression.

Citation: Leijten JCH, Moreira Teixeira LS, Landman EBM, van Blitterswijk CA, Karperien M (2012) Hypoxia Inhibits Hypertrophic Differentiation and Endochondral
Ossification in Explanted Tibiae. PLoS ONE 7(11): e49896. doi:10.1371/journal.pone.0049896

Editor: Frank Beier, University of Western Ontario, Canada

Received July 22, 2012; Accepted October 18, 2012; Published November 21, 2012

Copyright: � 2012 Leijten et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors gratefully acknowledge the support of the TeRM Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands
Ministry of Education, Culture and Science. This research was supported by the Project P2.02 OAcontrol of the research program of the BioMedical Materials
institute, co-funded by the Dutch Ministry of Economic Affairs, Agriculture and Innovation. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: h.b.j.karperien@utwente.nl

Introduction

Longitudinal growth of long bones is a tightly regulated

process that is driven by hypertrophic differentiation and

endochondral ossification of hyaline cartilage [1]. During

maturation, the cartilaginous ends of long bones can be divided

into three general zones: the resting, proliferative and hyper-

trophic zone. The resting zone is located closest to the ends of

the diarthrodial long bones and is populated by small and

round chondrocytes. Adjacent to the resting zone is the

proliferative zone, which is characterized by vertical columns

of actively proliferating chondrocytes. At the end of the

proliferative zone, chondrocytes start maturing into terminally

differentiated enlarged chondrocytes, which are located in the

hypertrophic zone. Before hypertrophic chondrocytes undergo

apoptosis they partially degrade and mineralize the extracellular

matrix. Additionally, hypertrophic chondrocytes produce large

amounts of angiogenic factors, such as vascular endothelial

growth factor (Vegf) that recruits invading blood vessels into the

hypertrophic cartilage [2]. This not only allows for the

infiltration of amongst others bone forming cells, but also the

alleviation of hypoxic stress (less than 5% oxygen) that occurs in

most of the hyaline cartilage [3,4].

Cells are able to adapt to hypoxia by means of the stabilization

of hypoxia inducible transcription factors (Hifs) which sub-

sequently influence the expression of genes that contain hypoxia

responsive enhancer elements in their promoter region [5,6].

Hypoxia regulated genes are amongst others involved in
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metabolism, bioenergetics and growth allowing cells to adapt to

and survive in low oxygen tensions [7,8,9]. Additionally, hypoxia

stimulates chondrogenic behavior in both mesenchymal stromal

cells (MSCs) and chondrocytes [10,11]. This stimulation occurs

through both Sox9 dependent and independent pathways [12].

Alleviating hypoxia, in cultures of chondrogenically differentiated

MSCs, results in a strong catabolic response [13]. Based on these

lines of evidence, we hypothesized that oxygen tension is an active

regulator of hypertrophic differentiation and consequently longi-

tudinal bone growth.

In this study, we have investigated the effects of normoxia

and hypoxia on longitudinal growth of mouse fetal long bones.

We show that hypoxia, compared to normoxia, mitigates

longitudinal bone growth by inhibiting hypertrophic differenti-

ation and subsequent endochondral ossification. Furthermore,

normoxia stimulates the calcification of the hypertrophic zone.

Together our data suggest that oxygen tension, in particular the

transition from hypoxia to normoxia, is an active and potent

regulatory factor in endochondral ossification and longitudinal

growth.

Methods

Ethics Statement
This study was performed by strictly following the recommen-

dations of the guidelines of the general Dutch animal laboratory

(GDL). The protocol was permitted by the Committee on the

Ethics of Animal Experiments of the University of Utrecht (Permit

Number: DEC 2009.III.09.093). All efforts were made to

minimize suffering.

Tibiae Organ Cultures
Tibiae were harvested from E17.5 fetal FVB-Type mice

(Harlan) and cultured in medium consisting of a-MEM supple-

mented with 10% heat inactivated fetal bovine serum (Biowhit-

taker) and 100 U/ml penicillin and 100 mg/ml streptomycin

(Gibco). Tibiae were either cultured in a low oxygen incubator at

2.5 percent oxygen (proox model C21, Biospherix) or at 21

percent oxygen (Sanyo) up to 21 days receiving twice a week fresh

medium. Microphotographs of the growing tibiae were taken at

multiple time points to determine their respective longitudinal

growth (N= 18).

Histological Analysis
Tibiae were fixated using 10% buffered formalin, dehydrated

using graded ethanols and embedded in paraffin. Specimen

were longitudinally cut at 5 mm thickness using a microtome

(Microm HM355S), deparaffinized in xylene and rehydrated by

treatment with graded ethanols. Sections were stained with

Alcian blue and Nuclear fast red (N=15) or Alizarin red S

(N= 15) according to standard procedures. For image analysis

ImageJ software was used. Cartilage zones were judged as

follows: small round chondrocytes were counted as the resting

zone, stacked columnar chondrocytes were identified as the

proliferative zone and the inflated chondrocytes following the

proliferative zone were taken as hypertrophic zone. Length of

the cartilaginous zones was determined as the shortest possible

length as measured in midsaggital sections. The surface of the

cartilaginous or bone area of midsaggital sections were

quantified by calculating the blue or red surface area of the

Alcian blue and Alizarin red S stained sections respectively

(N= 15).

Total RNA Isolation
Tibiae were washed in phosphate buffered saline. Both

cartilaginous ends of the explanted tibiae were removed with

a surgical blade under a stereomicroscope (Nikon SMZ800). Six

cartilage specimens were pooled (N= 5) in a 2 ml tube and

crushed using a Pellet stamp (Kontes) in the presence of Trizol

(Invitrogen). Total RNA was isolated from the lysate using the

NucleospinH RNA II (Macherey-nagel) according to manufac-

turer’s protocol.

Quantitative Real-time Reverse Transcriptase-polymerase
Chain Reaction (qRT-PCR)
For each condition, one mg of total RNA was reverse

transcribed into cDNA using the iScripttm cDNA synthesis kit

(BioRad) in accordance with the manufacturer’s instructions.

Subsequently, expression of various genes was investigated by

qRT-PCR. In short, 20 ng cDNA was amplified using sensimix

(GC Biotech) on a MyIQ single color Real-time PCR detection

system (BioRad) and analyzed with iQtm5 optical system

software (Biorad). The cDNA was denatured for 10 minutes

followed by 45 cycles of 15 seconds 95uC, 20 seconds 60uC and

20 seconds of 72uC after which a melting curve was generated.

Primer sequences are available upon request.

Enzyme-linked Immunosorbent Assay (ELISA)
Medium with (N= 5) or without (N= 4) explanted tibiae was

cultured up to 7 days in either hypoxic or normoxic conditions

after which it was collected. Protein concentrations of secreted

Frzb and Dkk1 were determined by ELISA following the

manufacturer’s instructions (R&D Systems).

Figure 1. Explanted tibiae cultured 21 days under hypoxic or normoxic conditions. (A) Microphotographs of representative tibiae at
different points in time. (B) Using image analysis the average tibiae lengths were calculated. (N= 18). * = P,0.05. ** = P,0.01.
doi:10.1371/journal.pone.0049896.g001
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Statistical Analysis
Statistical differences between two groups were analyzed using

the Student’s t-test or one-way ANOVA. Statistical significance

was set to a P,0.05 and indicated with an asterisk and/or hash-

sign. Results are presented as mean of (how many repeats) 6

standard deviation (SD).

Results

Normoxia Increases Longitudinal Growth
Biweekly macroscopical examination of explanted tibiae

cultured up to 21 days in normoxia or hypoxia demonstrated

longitudinal bone growth regardless in either condition (Figure 1A).

Figure 2. Histological analysis of calcification in explanted tibiae. (A) Midsagittal sections of tibiae were stained with Alizarin red after
explantation or cultured seven days under hypoxic or normoxic conditions. (B) Image analysis was used to determine the length of the intensely
calcified tissue, which was taken as the broken line indicated in ‘A’. (C) The area of calcification was used to determine relative calcification of the
samples. (D) Higher magnification microphotographs were used to investigate the calcification of the hypertrophic cartilage that resides on top of
the intensely stained bone. The dashed line represents the osteochondral interface. (N = 15). * = P,0.05 compared to freshly isolated tibiae.
#=P,0.05 compared to normoxic condition of the same time point.
doi:10.1371/journal.pone.0049896.g002
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Tibiae cultured under normoxic conditions grew significantly

longer than tibiae cultured under hypoxic conditions (Figure 1B).

The difference in longitudinal growth rate between both culture

conditions was particularly dominant during the first week of the

culture period. Remarkably, in hypoxia a marked increase in tissue

growth was observed at the lateral sites of the osseous –

cartilaginous interface (Figure 1, arrows). This suggested that the

out-in gradient of oxygen was able to influence the shape of

developing cartilage.

Normoxia Stimulates Endochondral Ossification
To investigate whether the oxygen level dependent difference in

growth was a result of endochondral ossification, midsagittal

sections of tibiae cultured for 7 days under normoxic or hypoxic

conditions were analysed histologically using Alizarin red S

staining (Figure 2A). All tibiae increased in mineralized bone

length, defined as the length between the cartilaginous ends.

However, the area of mineralized bone of tibiae cultured under

normoxic conditions was significantly longer than of tibiae

cultured under hypoxic conditions (Figure 2B). This suggested

that normoxia increased the pace of endochondral ossification. In

contrast, semi-quantitative image analysis on midsagittal sections

suggested that hypoxia resulted in higher absolute levels of

calcification (Figure 2C). Interestingly, while the bone was more

calcified under hypoxic conditions, evidenced amongst others by

the increase in width of the bone collar, calcification of the

hypertrophic cartilage was more intense in growth plates cultured

under normoxic conditions (Figure 2D).

Normoxia Increases Hypertrophic Zone’s Length
The length of the resting, proliferative and hypertrophic zone

was determined based on Alcian blue and nuclear fast red stained

midsaggital sections of tibiae cultured up to 7 days (Figure 3A).

Freshly explanted uncultured tibiae showed similar zonal lengths

compared to previously published observations [14]. All cultured

tibiae showed a comparable increase in total cartilage length

regardless of the culture conditions. However, we noted a remark-

able difference in zonal organization of the primary growth plates:

Tibiae cultured under normoxic conditions showed a progressive

increase in length of the hypertrophic zone. In contrast, tibiae

cultured under hypoxic conditions showed a progressive increase

in the length of the resting zone (Figure 3B). Additionally, the total

Figure 3. Histological analysis of zonal lengths in explanted tibiae. Midsagittal sections of tibiae were stained with Alcian blue and Nuclear
fast red directly after explantation or after culture up to seven days under either hypoxic or normoxic conditions (A). Image analysis was used to
measure the sizes of the different cartilaginous zones (B) and the surface of the cartilaginous area (C). (N = 15). * = P,0.05 compared to freshly
isolated tibiae. #=P,0.05 compared to normoxic condition of the same time point.
doi:10.1371/journal.pone.0049896.g003
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cartilaginous surface area of midsagittal sections was significantly

smaller in tibiae cultured under normoxic conditions compared to

hypoxic conditions (Figure 3C).

Normoxia Increases Hypertrophy Markers’ mRNA
Expression
The cartilaginous heads of tibiae demonstrated lower levels of

chondrogenic genes such as Acan, Col2a1 and Sox9 when cultured

under normoxic conditions then under hypoxic conditions

(Figure 4A). Matrix metalloproteinases (Mmps) mRNA levels

responded diversely to different oxygen levels; normoxia down

regulated Mmp3 mRNA, it up regulated Mmp9 and tended to

increase Mmp13 mRNA levels (Figure 4B). The mRNA levels of

genes related to hypertrophic chondrocytes such as Runx2,

Col10a1, and Alpl were all expressed at a significantly higher level

under normoxic culture conditions (Figure 4C). This suggested

that hypoxia might be an important physiological factor prevent-

ing hypertrophic differentiation. Indeed, the mRNA levels of

Grem1 and Frzb, which we previously reported to be potent

inhibitors of hypertrophic differentiation [15], were significantly

up regulated under hypoxic conditions compared to normoxic

conditions (Figure 4D).

Normoxia Reduces Frzb and Dkk1 Protein Levels
To investigate the effect of the oxygen level on Frzb and Dkk1

protein expression, tibiae were cultured for 7 days after which their

protein levels were quantified. In line with mRNA expression,

Frzb and Dkk1 protein levels were significantly higher under

hypoxic conditions compared to normoxic conditions (Figure 5A).

Moreover, we investigated the effect of the oxygen level on Frzb

and Dkk1 degradation. Fresh culture medium containing 10%

fetal bovine serum was incubated at 37uC for up to 7 days in the

absence of tibiae. This demonstrated that Frzb and Dkk1 protein

levels declined more rapidly under normoxic conditions compared

to hypoxic conditions (Figure 5B).

Discussion

Longitudinal growth of long bones is driven by chondrocyte

proliferation, chondrocyte hypertrophy and subsequent endo-

chondral ossification of hyaline cartilage. This cartilage is pre-

dominantly avascular and its nutrient supply is dependent on

diffusion from the surrounding tissue, being either the perichon-

drium or the blood vessels in the primary spongiosum. Conse-

quently, out-in gradients of oxygen are present in hyaline cartilage

[16]. The blood vessel formation at the osteochondral interface

Figure 4. Gene expression in the cartilaginous heads of explanted tibiae. At 7 days mRNA was isolated and quantified using qPCR. Data are
expressed as fold change relative to mRNA expression in normoxia Effect of hypoxia on mRNA expression of (A) typical cartilage markers, (B) cartilage
degrading MMPs, (C) hypertrophic markers and (D) secreted Wnt and BMP antagonists able to inhibit hyptrophic differentiation. (N = 5). * = P,0.05
compared to hypoxia.
doi:10.1371/journal.pone.0049896.g004
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alleviates the terminally differentiated hypertrophic cartilage from

its hypoxic stress [4,9]. This effectively creates an oxygen gradient

along the hypertrophic differentiating cartilage.

In this study, we have shown that oxygen levels were able to

influence hypertrophic differentiation and subsequent endochon-

dral ossification in explanted long bones cultured ex vivo. In

particular, we demonstrated that normoxic conditions stimulate

longitudinal growth compared to hypoxic conditions. This was, at

least partly, explained by the difference in terminal differentiation;

hypoxia retains chondrocytes in the resting zone while normoxia

stimulates them to progress towards the hypertrophic zone.

Indeed, the length of the mineralized bone grew significantly

larger under normoxic conditions compared to hypoxic condi-

tions. Previous reports typically described angiogenesis and the

subsequent alleviation of hypoxia as a causal effect of hypertrophic

differentiation. Here we report that the alleviation of hypoxia also

plays an active role in regulating the process of hypertrophic

differentiation itself.

Indeed, we observed a significantly lower expression of Acan,

Col2a1 and Sox9 when explanted tibiae were cultured under

normoxic conditions. Moreover, the shape of the tibiae became

progressively more atypical under hypoxic conditions compared to

normoxic conditions. This suggests that the out-in oxygen

gradient, generated by the vascularized tissues surrounding the

hyaline cartilage, as found in vivo, might contribute to defining the

shape of the (cartilaginous ends of) long bones and controlling the

direction of long bone elongation.

Blood vessels penetrate from the osteochondral regions into the

hypertrophic zone. This process is driven by Vegf, which is

expressed by hypertrophic chondrocytes and to a lesser extent by

proliferative zone chondrocytes in response to the hypoxic

conditions in the cartilage anlage [17]. This leads to vasculariza-

tion of the cartilage, which results in normoxic conditions of the

previously hypoxic cartilage. Compared to explants cultured in

hypoxia, normoxic culture resulted in an increased expression of

genes related to hypertrophic differentiation such as Runx2,

Col10a1, Mmp1 and Mmp13 in the cartilaginous heads of the long

bones [1,13]. Increased expression of genes related to the terminal

differentiation of hyaline cartilage coincided with an increased

width of the hypertrophic zone in explants cultured in normoxia

compared to explants cultured in hypoxia. In addition, we

demonstrated that the mRNA levels of Grem1 and Frzb as well as

protein secretion of Frzb and Dkk1 were significantly lower under

normoxia compared to hypoxia. Previously, we have shown that

these three secreted antagonists are potent inhibitors of hypertro-

phic differentiation and subsequent endochondral ossification in

explanted tibiae [15]. Indeed, in this study we observed an inverse

correlation between the expression of these antagonists and

Figure 5. Effect of hypoxic and normoxic culture conditions on Frzb and Dkk1 protein levels. (A) Frzb and Dkk1 levels were quantified in
the conditioned medium of tibiae, which were cultured for 7 days without receiving new medium in either hypoxia or normoxia (N = 5). (B) The effect
of oxygen levels on Frzb and Dkk1 on protein activity over time was studied by exposing culture medium containing 10% fetal bovine serum to
either hypoxia or normoxia for 7 days in 37uC. (N = 4). Frzb and Dkk1 protein levels were analyzed using ELISA. * = P,0.05 compared to normoxic
condition of the same time point.
doi:10.1371/journal.pone.0049896.g005
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hypertrophic differentiation. Therefore it is tempting to suggest

that the effect of oxygen levels on hypertrophic differentiation of

chondrocytes is at least in part mediated via the expression of these

antagonists.

Tibiae contain a multitude of non-chondrocyte cell types,

including osteoblasts and perichondral cells. It is possible that

oxygen level mediated crosstalk occurs between the different cell

types. However, studies in which Hifs were specifically (in)acti-

vated did not influence the longitudinal growth [9,18]. Therefore,

the observed effect on longitudinal growth is unlikely to be solely

induced by a secondary cell source.

Taken together, we have demonstrated that the oxygen level is

able to act as a potent regulator of chondrocyte’s hypertrophic

differentiation and endochondral ossification of developing long

bones.
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