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Abstract

Background: Most economic theories are based on the premise that individuals maximize their own self-interest and
correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of
this paradigm goes far beyond academia–it underlies current macroeconomic and monetary policies, and is also an integral
part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent
financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal
decisions.

Methods and Findings: Here we propose to reconcile these contradictory perspectives by developing a simple binary-
choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we
define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results
consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to
risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss
aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we
show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon
the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that
shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the
coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions.

Conclusions: Rational economic behavior in which individuals maximize their own self interest is only one of many possible
types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to
survive is how behavior affects reproductive success in a given population’s environment. From this perspective,
intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality
are determined by physiological and environmental constraints.
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Introduction

Most economic theories assume that individuals behave

rationally, maximizing their own self-interest subject to resources

constraints. This framework has led to numerous breakthroughs in

economic science, including expected utility theory [1] (an

axiomatic formulation of rational behavior under uncertainty),

the notion of ‘‘rational expectations’’ [2] (individual expectations

are formed to be mutually consistent with those arising from

economic equilibria), and the ‘‘efficient markets hypothesis’’ [3,4]

(market prices fully reflect all available information). While other

alternatives have been proposed, such as heuristic approximation

(‘‘satisficing’’) and bounded rationality [5], the vast majority of

current economic models still assume the ideal of a fully rational

and optimizing individual, often referred to as Homo economicus.

The influence of this paradigm goes far beyond academia–it

underlies current macroeconomic and monetary policies, and has

also become an integral part of the rules and regulations that

govern financial markets today [6,7].

However, there is mounting empirical and experimental

evidence, including the recent financial crisis, suggesting that

humans do not always behave rationally, but often make
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seemingly random and suboptimal decisions [8]. These behavioral

anomalies are especially pronounced when elements of risk and

probability are involved, and two of the most well-known are

probability matching [9,10] (the tendency to choose randomly

between heads and tails when asked to guess the outcomes of a

series of independent biased-coin tosses, where the randomization

matches the probability of the biased coin), and loss aversion [11]

(the tendency to take greater risk when choosing between two

potential losses, and less risk when choosing between two potential

gains). Both behaviors are clearly suboptimal from the individual’s

perspective, yet they have been observed in thousands of

geographically diverse human subjects over several decades. Such

anomalous behaviors have also been observed in many non-

human subjects including ants [12–15], bees [16–18], fish [19,20],

pigeons [21,22], and primates [23], which suggests that they may

have a common and ancient origin, and an evolutionary role that

belies their apparent shortcomings.

Accordingly, several evolutionary models have been proposed to

explain these counterintuitive behaviors [24–26], as well as a

variety of other social customs including altruism, cooperation,

subterfuge, self-deception, kin selection, and reciprocity [27–31].

The fields of sociobiology and, more recently, evolutionary

psychology have expanded the reach of evolution to even broader

domains such as language, culture, and religion [29,32–35].

However, it is unclear how these behaviors relate to standard

economic theories of individual rationality, why they emerge in

some instances and not others, and what part intelligence plays in

such behaviors.

The economics literature has also considered evolutionary

arguments, primarily through the natural selection of utility

functions that individuals maximize [36–47]. In financial-market

contexts, the evolution of trading strategies [48–57] and supply/

demand functions [58–60] have also been considered. However,

the starting point for these models is considerably more

sophisticated behavior than what we propose in our framework.

In particular, utility maximization, the existence of excess demand

functions, or specific trading strategies already assume a certain

degree of goal-seeking behavior and intelligence, which are traits

we derive in a much simpler, less structured binary choice model

[26]. From purely mindless acts of choosing between two

alternatives, we show that natural selection alone is capable of

generating very specific behavioral patterns such as risk aversion,

loss aversion, and mixed strategies. More importantly, with this

primitive framework, we are able to derive the beginnings of what

can plausibly be construed as intelligent behavior and how such

intelligence is naturally bounded by environmental and physio-

logical constraints.

The key feature is the interaction between individual behavior

and the stochastic environment in which reproductive success is

determined, and the difference between idiosyncratic and system-

atic risk is of central importance as documented in many earlier

studies [24,26,38,40,46]. If all individuals behave identically and

deterministically, choosing the course of action that leads to the

highest expected number of offspring, this can lead to extinction if

reproductive uncertainty is perfectly correlated across individuals

in a given generation, i.e., if all individuals occupy the same

ecological niche. For example, if all individuals choose to forage in

the same higher-yielding patch, the first time that patch becomes

barren, the entire population will be wiped out. In such

environments, randomizing behavior such as Herrnstein’s Law

[10] may be favored by natural selection over any type of

deterministic behavior. What we observe as irrational behavior

may indeed be irrational from the individual’s perspective, but not

from the population’s perspective and it is the latter that is the

outcome of natural selection. However, if reproductive success is

statistically independent across individuals in a given generation–

corresponding to situations in which each individual occupies its

own unique niche–we show that natural selection favors individ-

ually optimal deterministic behavior instead.

Such a framework provides a natural definition of ‘‘intelli-

gence’’: any behavior that is positively correlated with reproduc-

tive success. If achieving such correlation imposes biological costs

on an individual–for example, because it requires attention,

memory, planning, and other cognitive faculties–these costs imply

an upper bound on the degree of intelligence that emerges through

selection. This yields an evolutionary foundation for ‘‘bounded

rationality’’ [5]–a heuristics-based model of behavior–as well as a

reconciliation between rational economic models and their

behavioral violations. Seemingly irrational behavior may be

irrational from the individual’s perspective but not necessarily

from the population perspective.

Model

Consider a population in which each individual (not necessarily

human) in a given generation t is faced with a single decision in its

lifetime, to choose action a or b, and this choice implies a certain

number of offspring xat or xbt, respectively, where xat and xbt are

random variables with joint distribution function W(xat,xbt). Let

individual i’s behavior be represented by a binary variable Iit

which equals 1 if a is chosen and 0 if b is chosen. Suppose that i
chooses a with probability f and chooses b with probability 1{f
where the probability f is any value between 0 and 1, including

the two endpoints (thus capturing purely deterministic behavior as

well). Then i’s behavior is given by the following Bernoulli random

variable I
f
it :

I
f
it ~

1 with probabilityf

0 with probability1{f

�
: ð1Þ

The parameter f represents the behavioral ‘‘phenotype’’ of an

individual, and we assume that this behavior is completely

‘‘mindless’’ in the sense that the individual’s decision I
f
it is

statistically independent of any other variables in its environment,

including the behaviors of others and the outcomes (xat,xbt). The

assumption of independence also implies the absence of any

strategic interactions between individuals, since i’s choice has no

impact on j’s reproductive outcomes.

If we assume that the offspring of type-f individuals are also of

the same type, and we start with an equal number of all types of

individuals in the population, we can explore the evolution of

behavior by identifying the value of f that exhibits the highest

geometric growth rate (or ‘‘fitness’’), which we denote by f �. Over

time, f � individuals will dominate the population at an exponen-

tially fast rate, hence the behavior f � will have ‘‘emerged’’ through

the forces of natural selection. We call f � the ‘‘growth-optimal’’

behavior to emphasize this fact.

The particular value of f � depends critically on the properties of

W(xat,xbt), which is a highly compact representation of the

biological features of the individual, its random environmental

circumstances, and the uncertain impact of behavior on fecundity.

Although such a model of evolution, in which individuals live for

one period and engage in asexual reproduction with no mutation,

is clearly stylized, it does capture the essence of how natural

selection shapes behavior. Extensions to biologically more realistic

features such as imperfect hereditary transmission of f , sexual

reproduction, and multiple rounds of offspring within a single
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lifetime can easily be accommodated via constraints on W and

more sophisticated relationships between the f of an offspring and

its parents, but at the expense of analytical tractability and

transparency.

Evolutionary Origin of Behavior
Despite the simplicity of this framework, its behavioral

implications are surprisingly rich. Suppose we assume that:

(A) (xat,xbt) is independently and identically distributed (IID)

from one generation to the next, identically distributed across

individuals i within a given generation t, and independent of all

other random variables including I
f
it for all f and i.

This assumption allows us to derive a simple expression for the

population of type-f individuals in any given generation. If nt(f ) is

the number of individuals of type f in the population in generation

t, then we have the following recursive expression that captures

population growth:

nt(f )~
Xnt{1(f )

i~1

½If
itxatz(1{I

f
it)xbt� ð2Þ

where i indexes all individuals of type f in the previous generation

t{1.

The assumption that W(xat,xbt) is identically distributed across

all individuals within a given generation implies that these

individuals are part of the same ecological niche and will produce

the same number of random offspring xjt if they choose action j,

j~a,b. This assumption is implicitly reflected in the fact that xat

and xbt do not require subscript i’s because they are identical

across all individuals i in any generation t. Therefore, (2) may be

written as:

nt(f )~xat

Xnt{1(f )

i~1

I
f
it z xbt

Xnt{1(f )

i~1

(1{I
f
it) ð3Þ

and the Law of Large Numbers implies that the geometric growth

rate of each subpopulation of type f converges in probability to the

following limit (see Text S1):

plim
t??

log nt(f )=t : a(f ) ~ E½log (fxaz(1{f )xb)� ð4Þ

where ‘‘plimt??’’ denotes convergence in probability and we

have omitted the t subscript without loss of generality because

(xat,xbt) are IID across generations.

By maximizing the growth rate a(f ) with respect to f , we can

determine the behavior f � that emerges through natural selection.

The maximum is given by:

f �~

1 if E½xa=xb�w1 and E½xb=xa�v1

solution to (6) if E½xa=xb�§1 and E½xb=xa�§1

0 if E½xa=xb�v1 and E½xb=xa�w1

0
B@ ð5Þ

where f � is defined implicitly in the second case of (5) by:

0 ~ E
xa{xb

f �xaz(1{f �)xb

� �
ð6Þ

and the expectations in (5) and (6) are with respect to the joint

distribution W(xa,xb).

The solution has three parts. We find that f �~1 if

E½xa=xb�w 1 and E½xb=xa�v 1, where these inequalities imply

that the reproductive yield of a is unambiguously higher than that

of b. Conversely, f �~0 if both inequalities are reversed, in which

case the reproductive yield of a is unambiguously lower than that

of b. However, if E½xa=xb�§ 1 and E½xb=xa�§ 1, then f � is

strictly greater than 0 and less than 1, and is given by the value

that satisfies the equality (6). In this case, because the reproductive

yield of a neither dominates nor is dominated by that of b, the

behavior that yields the fastest growth rate involves randomizing

between the two choices with probability f �, where f � is the value

that equates the expected ratio of the number of offspring from

each choice to the average number of offspring across the two

choices.

This result is surprising to economists because it seems

inconsistent with the maximization of self-interest, as well as the

deterministic behavior implied by expected utility theory [1].

Suppose E½xa�wE½xb� and Var½xa�~Var½xb� so that action a

leads to a larger number of offspring on average for the same level

of risk; from an individual’s perspective, the ‘‘rational’’ action

would be to always select a, f ~1. However, such individually

rational behavior will eventually be dominated by the faster-

growing f �-types, hence it cannot persist over time. The growth-

optimal behavior f � may be viewed as a primitive version of

‘‘altruism’’, i.e., behavior that is suboptimal for the individual but

which promotes the survival of the population.

A Simulation Experiment
The emergence of behavior is most easily seen through a simple

simulation of the binary-choice model in a specific context where

probability-matching behavior arises. Consider an environment in

which it is sunny and rainy with probability p~75% and

1{p~25%, respectively. Individuals must decide where to build

their nests, in the valley (choice a) or on a plateau (choice b).

During sunny days, nesting on a plateau will yield E½xa�~0
offspring because of the heat of the sun and lack of water, whereas

nesting in the valley yields E½xb�~3 offspring because of the

valley’s shade and the streams that run through it. During rainy

days, the exact opposite outcomes are realized: nesting in the

valley yields E½xb�~0 because the valley will flood, drowning all

offspring, but nesting on a plateau yields E½xa�~3 because the rain

clouds provide both water and protection from the sun. In this

environment, the behavior that maximizes the survival probability

of an individual’s offspring is to choose a all the time (f ~1) since

the probability of sunshine is 75%. However, such behavior

cannot survive–the first time it rains, all individuals of type f ~1
will be eliminated from the population. In fact, the behavior

yielding the highest growth rate is f �~0:75; hence, ‘‘probability

matching’’ behavior, also known as ‘‘Herrnstein’s Law’’,

[10,24,26] is evolutionarily dominant in this special case.

For other values of the outcomes of E½xa� and E½xb�, f ~p may

not yield the highest rate of growth, but f � can nevertheless be

strictly greater than 0 and less than 1, so that randomizing

behavior will still persist. When faced with environmental

randomness that affects the entire population in the same manner

(recall our ‘‘single-niche’’ assumption), and where the type of

randomness yields extreme outcomes for different behaviors,

deterministic behavior cannot survive because at some point, an

extreme outcome will occur, wiping out that subpopulation. The

only way to survive is to randomize, and the subpopulation that

grows fastest in this type of environment is one in which f �~p.

For concreteness, Table 1 contains a numerical simulation of this

example.

Bounded Rationality and Intelligence
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This simple example can be easily generalized to any arbitrary

number of offspring for both choices [26]:

Prob(xa~ca1,xb~cb1) ~ p [ ½0,1�
Prob(xa~ca2,xb~cb2) ~ 1{p : q

ð7Þ

where we assume that cij§0 and cajzcbj=0, i~a,b and j~1,2.

The condition cajzcbj=0 rules out the case where both caj and

cbj are 0, in which case the binary choice problem becomes

degenerate because both actions lead to extinction hence the only

choice that has any impact on fecundity is in the non-extinction

state, and the only behavior that is sustainable is to select the

action with the higher number of offspring.

The growth-optimal behavior in this case will depend on the

relation between the probability p and the relative-fecundity

variables rj:caj=cbj for each of the two possible states of the world

j~1,2. Applying (5) under the distribution (7) for W yields the

following growth-optimal behavior f �:

f �~

1 if r2[½qz
pq

r1{p
,?) and r1wp

p

1{r2
z

q

1{r1
if

r2[(
1

q
{

p

q
r1 ,qz

pq

r1{p
) and r1wp ,

or

r2[(
1

q
{

p

q
r1 ,?) and r1ƒp

0
BBBB@

0 if r2[½0,
1

q
{

p

q
r1 �

0
BBBBBBBBBBBBB@

ð8Þ

Since cij may be 0, the ratios rj may be infinite if a finite

numerator is divided by 0, which poses no issues for any of the

results in this paper as long as the usual conventions involving

infinity are followed. The ambiguous case of rj~0=0 is ruled out

by the condition cajzcbj=0.

Figure 1 illustrates the values of r1 and r2 that yield each of the

three types of behaviors in (8). When r1 and r2 satisfy the

condition:

0 ~ p
r2

1{r2
z q

1

1{r1
, ð9Þ

exact probability matching behavior arises, and the solid black

curve in Figure 1 illustrates the locus of values for which this

condition holds. The horizontal asymptote of the curve occurs at

r2~0, so as r2 tends toward zero and r1 becomes relatively large,

exact probability matching will be optimal (note that the

asymmetry between r1 and r2 is due entirely to our requirement

that f �~p and p=
1

2
). However, values of (r1,r2) off this curve

but still within the shaded region imply random behavior that is

approximately–but not exactly–probability matching [26], pro-

viding a potential explanation for more complex but non-

deterministic foraging patterns observed in various species [12–

14,17,18].

Idiosyncratic Reproductive Risk
Now suppose we change our assumption that individuals all

belong to the same ecological niche, and assume instead that:

(B) (xat,xbt) is IID across individuals in each generation, as well

as from one generation to the next, and independent of all other

random variables including I
f
it for all f and i.

This corresponds to the situation in which each individual

occupies its own unique niche, receiving a separate and

independent random draw xiat or xibt from the same respective

distributions as others. In this case, the Law of Large Numbers

applies across individuals within each generation as well as over

time, and the growth rate of type-f individuals is given by:

a(f ) ~ log (f maz(1{f )mb) ð10Þ

where mj:E½xj �, j~a,b. This function contains no random

variables and attains its maximum at f �~0 or1, depending on

whether mavmb or mawmb, respectively. Because individuals

within any given generation are already well diversified across

statistically independent niches, they can all engage in identical

behavior–individually optimal behavior–without the risk of

extinction.

When Nature yields systematic environmental shocks to an

entire population’s reproductive success, the population must

engage in random behavior to ensure that some of its members

will survive. However, when Nature imposes idiosyncratic shocks

Table 1. Simulated population sizes for binary-choice model
with five subpopulations in which individuals choose a with
probability f and b with probability 1{f , where
f ~0:20,0:5,0:75,0:9,1, and the initial population is 10 for each
f .

Generation f = .20 f = .50 f* = .75 f = .90 f = 1

1 21 6 12 24 30

2 12 6 6 57 90

3 6 12 12 144 270

4 18 9 24 387 810

5 45 18 48 1,020 2,430

6 96 21 108 2,766 7,290

7 60 42 240 834 21,870

8 45 54 528 2,292 65,610

9 18 87 1,233 690 196,830

10 9 138 2,712 204 590,490

11 12 204 6,123 555 1,771,470

12 36 294 13,824 159 5,314,410

13 87 462 31,149 435 15,943,230

14 42 768 69,954 1,155 0

15 27 1,161 157,122 3,114 0

16 15 1,668 353,712 8,448 0

17 3 2,451 795,171 22,860 0

18 3 3,648 1,787,613 61,734 0

19 9 5,469 4,020,045 166,878 0

20 21 8,022 9,047,583 450,672 0

21 6 12,213 6,786,657 1,215,723 0

22 0 18,306 15,272,328 366,051 0

23 0 27,429 34,366,023 987,813 0

24 0 41,019 77,323,623 2,667,984 0

25 0 61,131 173,996,290 7,203,495 0

Reproductive uncertainty is systematic and also binary, with
Prob(ma~3,mb~0)~0:75 and Prob(ma~0,mb~3)~0:25. In this setting,
probability matching f �~0:75 is the growth-optimal behavior.
doi:10.1371/journal.pone.0050310.t001
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across the population, deterministic behavior can persist because

the chances of all individuals experiencing bad draws becomes

infinitesimally small as the population size grows. This distinction

between systematic and idiosyncratic environments is the key to

reconciling seemingly irrational behavior with Homo economicus: the

former emerges from systematic environments, and the latter from

idiosyncratic ones. Apparently, ‘‘Nature abhors an undiversified

bet’’, hence the type of environmental risk to fecundity determines

the type of behavior that has greatest fitness. This observation has

profound consequences for behavior, including a natural definition

of intelligent behavior and bounded rationality.

Results

Using the binary-choice framework, natural definitions of

intelligence and bounded rationality follow directly. Recall that

the individuals in our model are mindless in the sense that their

behaviors are assumed to be statistically independent of all other

variables. Suppose we relax this assumption by allowing individual

decisions to be correlated with other variables such as xa and xb:

(C) Let I
f
it be correlated with xiat and xibt, and define

r:Corr½I f
it ,(xiat{xibt)� which is assumed to be fixed over

generations t.

Correlation between actions and reproductive success is the

essence of what we mean by ‘‘intelligent behavior.’’

Intelligence: An Evolutionary Definition
As before, consider an initial population with equal numbers of

individuals of all types f , and with arbitrary correlations between

I
f
it and xiat and xibt so that no single value is over-represented.

Applying the Law of Large Numbers, we see that the growth rate

for individuals of type f with correlations.

a(f ,r)~ log (f maz(1{f )mbzrs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (1{f )

p
) ð11Þ

where s is the standard deviation of xa{xb. In this case, the

growth rate is equal to the growth rate of the mindless population

plus an extra term rs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (1{f )

p
that reflects the impact of

correlation between an individual’s decision and the number of

offspring. Several implications follow immediately from this

expression.

First, subpopulations with negative correlation between behav-

ior and xa{xb clearly cannot survive in the long run; their growth

rates are less than the no-correlation case, and correspond to

counter-productive behavior in which decisions coincide with

lower-than-average reproductive outcomes more often than not,

i.e., choosing a when xa{xb is lower than average and choosing b

when the reverse is true. By the same logic, subpopulations with

positive correlation will grow faster, and individuals with the

highest correlations r� will dominate the population. We suggest

that these cases may be considered primitive forms of ‘‘intelli-

gence’’–behavior that yields improved fitness.

The subpopulation with the largest r will grow fastest and come

to dominate the population. For example, certain senses such as

hearing and eyesight are so highly correlated with reproductive

success that they become universally represented in the popula-

tion. By optimizing a(f ,r) with respect to f and r to yield f � and

r�, we arrive at the growth-optimal level of intelligence and

behavior that emerges from the population (see Text S1):

Figure 1. Regions of the (r1,r2)-plane that imply deterministic (f �~0 or 1) or randomizing (0vf �v1) behavior, where rj~caj=cbj

measures the relative fecundities of action a to action b in the two states j~1,2. The asymptotes of the curved boundary line occur at r1~p
and r2~q. Values of r1 and r2 for which exact probability matching is optimal is given by the solid black curve.
doi:10.1371/journal.pone.0050310.g001
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r� ~ 1, f � ~ Prob(xawxb) : ð12Þ

Perfect positive correlation always dominates imperfect correla-

tion, and despite the presence of idiosyncratic reproductive risk,

the growth-optimal behavior involves probability matching, albeit

a different kind in which f � matches the probability of xa

exceeding xb.

Bounded Rationality
If there is no biological cost to attaining r�~1, then perfect

correlation will quickly take over the entire population, and

because we have assumed no mutation from one generation to the

next, all individuals will eventually possess this trait. However, it

seems plausible that positive correlation would be associated with

positive cost. For example, by using certain defense mechanisms

such as chemical repellants or physical force, animals can fend off

predators. This behavior increases their expected number of

offspring, but the physiological cost of defense may decrease this

expectation, hence the evolutionary success of such behavior

depends on the net impact to fitness. If we define a cost function

c(r), then we can express the ‘‘net’’ impact of correlation by

deducting this cost from the correlation itself to yield the following

asymptotic growth rate of type-f individuals:

a(f ,r)~ log (f maz(1{f )mbz½r{c(r)�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (1{f )

p
) : ð13Þ

With plausible conditions on c(:) and W(xiat,xibt), there is a unique

solution (f �,r�) to a�~maxff ,rga(f ,r). Because r is subject to a

nonlinear constraint that depends on f , explicit expressions for

(f �,r�) are not as simple as the no-intelligence case (see Text S1

for details). However, the structure of the solution is qualitatively

identical and intuitive: f � reduces to three possibilities, either 0 or

1 if correlation is too ‘‘expensive’’ to achieve, or the probability-

matching solution f �~Prob(xawxb) if the cost function c(r) is

not too extreme. This growth-optimal solution is an example of

bounded rationality–bounded in the sense that higher levels of r
might be achievable but at too high a cost c(r). The behavior that

eventually dominates the population is good enough, where ‘‘good

enough’’ now has a precise meaning: they attain the maximum

growth rate a�. In other words, f � is an example of satisficing.

If the cost of intelligence is influenced by other biological and

environmental factors z~½z1 � � � zn�, then the multivariate cost

function c(r,z) will almost certainly induce a multiplicity of

solutions to the growth-optimization problem. This implies a

multitude of behaviors and levels of intelligence that can coexist

because they yield the same maximum population growth rate a�.
The set of behaviors f �(z) and intelligence r�(z) that emerge from

the population will be a function of z and given implicitly by the

solution to a�~maxff ,rga(f ,r). This provides a direct link

between adaptive behavior and the environment, which is the

basis for models of social evolution and evolutionary psychology

[27,29,61,62].

Discussion

The simplicity and generality of our framework suggest that the

behaviors we have derived are likely to be quite primitive on an

evolutionary timescale, and that most species will have developed

the necessarily biological apparatus to engage in such behavior

under the right environmental conditions.

However, evolution can also produce more sophisticated

behaviors such as overconfidence [63], altruism and self-deception

[61], and state-dependent strategies like the Hawk-Dove game

[64], which emerge as a result of more complex environmental

conditions. For example, if we assume that one individual’s action

can affect the reproductive success of another individual, e.g., i’s

fecundity is influenced by j’s selection of a or b, individuals

engaging in strategic behavior will reproduce more quickly than

those with simpler behaviors such as probability matching or loss

aversion. If the actions of individuals in the current generation can

affect the reproductive success of individuals in future generations,

even more complex dynamics are likely to emerge as in the well-

known overlapping generations model [65]. In a resource-

constrained environment in which one individual’s choice can

affect another individual’s reproductive success, strategic interac-

tions such as reciprocity and cooperation will likely emerge within

and across generations [28,31]. Other extensions of the binary-

choice framework include time varying environmental conditions

Wt(:,:), mutation through sexual reproduction, and multiple

reproductive cycles within a single lifetime (iteroparity). Each of

these extensions captures more realistic aspects of human behavior

and taken together, they may provide aggregate measures of

systemic risk and financial crisis [66].

In this paper, we have purposefully assumed a much simpler

structure, including an unconstrained stable stochastic environ-

ment with no strategic considerations, so as to determine what

types of behavior are truly primitive. Even in such a simple setting,

we find a surprisingly complex and subtle range of behaviors–

behaviors that do not always conform to common economic

intuition about rationality–can arise and persist via natural

selection. Simon [67] illustrated this principle vividly with the

example of a single ant traversing a mixed terrain of sand, rocks,

and grass. The ant’s path seems highly complex, but the

complexity may be due more to the environment than the ant’s

navigational algorithm.

This perspective has received more recent support from the

discovery of remarkably sophisticated social behavior among

bacteria [68–76]. There is little doubt that an individual bacterium

is mindless, yet colonies of such bacteria engage in seemingly

intelligent behavior such as competition, collaborative foraging,

and cell-to-cell chemotactic and physical communication. Such

behavior can ultimately be traced to genetic structures [66], but

the complementary approach of linking behavior directly to

reproductive outcomes may yield additional insights into the

common evolutionary origins of certain behaviors.

While it is nearly self-evident that the critical determinant of

which behavior emerges from a given population is the interaction

between the biological features of the individuals and the nature of

the environment, our simple framework shows just how powerful

environmental forces can be in shaping fundamental aspects of

decisionmaking. If we seek to understand the origin of intelligence

and the limits of rational behavior, we may find useful answers by

studying current and past environments in addition to studying

our genes.

Supporting Information

Figure S1 Values of c� and c�{c(c�) as functions of k, the cost

of intelligence parameter in equation (26) of Text S1.

(EPS)

Figure S2 Values of f � for particular values of k and

r~dz=(mb{ma). The region toward the upper left corresponds

to relatively costly intelligence and deterministic behavior of the

form f �~0. The region toward the lower right corresponds to

relatively cheap intelligence and probability matching of the form
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f �~Q. On the line between the two large regions, any value for f �

between 0 and Q is optimal.

(EPS)

Text S1 Proofs and derivations of all the results in the main text

are provided in this document.

(PDF)
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