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Human T-cell leukemia virus type-1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL). Hypercalcemia is common
in patients with ATL. These patients rarely develop metastatic calcification and acute pancreatitis. The underlying pathogenesis of
this condition is osteoclast hyperactivity with associated overproduction of parathyroid hormone-related protein, which results in
hypercalcemia in association with bone demineralization. The discovery of the osteoclast differentiation factor receptor activator of
nuclear factor-κB ligand (RANKL), its receptor RANK, and its decoy receptor osteoprotegerin (OPG), enhanced our understanding
of the mechanisms of ATL-associated hypercalcemia. Macrophage inflammatory protein-1-α, tumor necrosis factor-α, interleukin-
1, and interleukin-6 are important molecules that enhance the migration and differentiation of osteoclasts and the associated
enhanced production of RANKL for osteoblast formation. In this paper, we focus on metastatic calcification and acute pancreatitis
in ATL, highlighting recent advances in the understanding of the molecular role of the RANKL/RANK/OPG system including
its interaction with various cytokines and calciotropic hormones in the regulation of osteoclastogenesis for bone resorption in
hypercalcemic ATL patients.

1. Introduction

Adult T-cell leukemia (ATL) was first reported as a new
clinical entity in 1977 in Japan [1, 2]. The predominant
physical findings are skin involvement, such as erythroderma
and nodule formation due to the infiltration of neoplastic
cells, lymphadenopathy, and hepatosplenomegaly. The ATL
cells are of mature T-helper phenotype and have a character-
istic appearance with especially indented or lobulated nuclei.
Hypercalcemia is common in patients with ATL, and such
patients often show increased numbers of osteoclasts.

A type C retrovirus was isolated from patients with cuta-
neous T-cell lymphoma by Poiesz and colleagues in 1980 [3].
This virus was later renamed human T-cell leukemia virus
type 1 (HTLV-1). In 1981, Hinuma et al. [4] and Yoshida and
colleagues [5] reported the isolation of a type C retrovirus
named adult T-cell leukemia virus. The two isolates of human
leukemia virus, HTLV-1, and adult T-cell leukemia virus,

were later confirmed to be the same species of human
retrovirus HTLV type I (US isolate) and ATLV (Japanese
isolate) [6].

Approximately 16 to 20 million people are infected
with HTLV-1 worldwide, and 1 to 5% of the infected
individuals develop ATL during their lifetime [7] caused
by the transformation of their CD4+ T cells [8]. In Japan,
it is estimated that 1.2 million individuals are infected by
HTLV-1, and more than 800 new cases of ATL are diagnosed
each year [9]. The disease is endemic in southwest Japan,
especially Okinawa, Nagasaki, Kagoshima, and Miyazaki, and
also in the Caribbean islands, parts of Central Africa, South
America, Melanesia, Papua New Guinea, Solomon island,
and Australian aborigines [10–12].

HTLV-1 associated myelopathy was recognized in tropi-
cal areas independent of that in the Caribbean [13] and Japan
[14]. Subsequently, due to its association with HTLV-1, the
disease was named HTLV-1 associated myelopathy/tropical
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spastic paraparesis (HAM/TSP). HAM/TSP is mainly a
chronic inflammation of the white matter of the lower
thoracic spinal cord, causing spastic paraparesis in the
lower limbs [15]. Clinically, HAM/TSP is characterized by
higher production of proinflammatory cytokines, such as
interferon-γ and tumor necrosis factor-α (TNF-α), and accu-
mulation of Tax-specific CD8+ T cells in the cerebrospinal
fluid [16–20].

Patients with ATL frequently develop hypercalcemia.
The authors reported four hypercalcemic ATL autopsy cases
with metastatic calcifications [21, 22] including one with
acute pancreatitis [21]. The reported incidence of acute
pancreatitis in the registered ATL cases in Japan is 4%
[23, 24]. Patients with ATL are also reported to be positive
for parathyroid hormone-related protein (PTHrP) in ATL
cells [25]. Furthermore, marked activation of osteoclasts was
noted in the bone marrow of these patients, which could be
due to the enhanced production of PTHrP in ATL cells [22].

Mechanical stresses and hormonal changes induce bone
remodeling throughout the skeletal system, through osteo-
clastic bone resorption and osteoblastic bone formation
[26]. The osteoclasts are multinucleated cells that originate
from the monocytes/macrophages [27, 28]. Experimental
evidence suggests that ATL cells stimulate the differentia-
tion of hematopoietic precursors into osteoclasts [29]. The
activity of osteoclasts is regulated by various cytokines and
calciotropic hormones including macrophage inflammatory
protein-1-alpha (MIP-1α), TNF-α, interleukin-1 (IL-1), IL-
6, IL-11, macrophage-colony stimulating factors (M-CSF),
PTH, PTHrP, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3),
and calcitonin [30–32]. Members of the TNF and TNF-
receptor (TNFR) superfamily, receptor activator of nuclear
factor-κB ligand (RANKL), receptor activator of nuclear
factor-κB (RANK), and osteoprotegerin (OPG) also play
a key role in the formation and activation of osteoclasts
in conjunction with various cytokines and calciotropic
hormones [30, 33, 34].

2. Metastatic Calcification

The mechanism of calcification in the viscera is categorized
into two groups. Metastatic calcification with hypercalcemia
occurs when calcium deposits in previously normal tissue
whereas dystrophic calcification occurs in previously dam-
aged tissue. (1) Dystrophic calcification in injured or necrotic
tissue in a normal serum calcium level, such as tuberculosis,
abscess, and hydatid disease. (2) Metastatic calcification
can be divided into malignant and nonmalignant causes.
Metastatic calcification in malignancy is reported in parathy-
roid carcinoma, multiple myeloma, lymphoma, leukemia,
hypopharyngeal squamous cell carcinoma, synovial sarcoma,
breast carcinoma, and choriocarcinoma. There are many
causes of benign visceral metastatic calcification, but chronic
renal failure is the most common. Most of the other benign
causes are related to calcium balance, such as hypervita-
minosis D and hyperparathyroidism [21, 35].

The mechanism of metastatic calcification is not clear.
Metastatic calcification deposition can be influenced by
release of excess calcium salts from bone, phosphate

concentration, alkaline phosphatase activity, and viscera
physicochemical conditions under alkalosis. The Ca3(PO4)2

and CaCO3 salts precipitate in tissues that have a favor-
able physicochemical environment under an alkaline pH
condition. The liberated Ca3(PO4)2 and CaCO3 salts are
transported via the blood in soluble form, which increased
delivery and precipitation in tissues with alkalosis. Therefore,
it is concluded that calcium salts precipitate in an alkaline
environment [35, 36].

Hypercalcemia is one of the most difficult complication
to treat in patients with ATL and a common direct cause of
early death. Hypercalcemia is more severe in patients with
ATL than that associated with other hematological malignan-
cies [37]. The high frequency of hypercalcemia is the most
striking feature of ATL; about 70% of ATL patients have high
serum calcium levels during the clinical course of the disease,
particularly during the aggressive stage of ATL [38]. Several
pathological studies of ATL patients with hypercalcemia have
indicated that high serum calcium levels are due to increased
number of osteoclasts and accelerated bone resorption. This
disease state is characterized by increased osteoclast activity
with demineralization of bones and hypercalcemia. We
reported previously that serum calcium levels ranged from
15.4 to 19.4 mg/dL (normal range: 8.4 to 10.4 mg/dL) in ATL
patients with metastatic calcification [22]. The possibility of
metastatic calcification should be considered in ATL patients
associated with hypercalcemia who have abnormal shadow
by roentgenogram [35, 39]. Other useful diagnostic proce-
dures are imaging with computed tomography (CT) [35],
magnetic resonance (MR) [40], and bone scintigraphy [35].

Metastatic calcification in ATL-hypercalcemia is com-
monly seen in alveolar septa of the lungs (Figure 1(a)),
renal tubules (Figure 1(b)), and myocardium (Figure 1(c)).
We reported previously the following rates of metastatic
calcification in patients with ATL-hypercalcemia: tubules of
kidneys: 100%, pulmonary alveolar septa of lungs: 100%,
myocardium: 75%, muscular layer of stomach: 50%, lower
portion of the aortic media: 50%, gastric mucosa: 25%,
testicular tubules: 25%, and liver: 25% (Figure 1(d)) [22].
Metastatic calcification has also been reported in other
organs, including the tongue, pancreas, and spleen [41].
Metastatic calcification of Disse’s spaces in the liver of
patients with ATL was first reported by Haratake and co-
workers in 1985 [42], followed by Senba and colleagues in
1990 [21].

Histopathological examination of osseous tissue sections
from ATL patients with hypercalcemia show scattered osteo-
clasts around the cortex in the vertebrae (Figure 1(e)) [22,
36, 37, 41], although all parathyroid glands were histologi-
cally normal [22]. Osteoblast activation is accompanied by
osteoclast proliferation.

3. Acute Pancreatitis with Hypercalcemia

ATL associated with hypercalcemia and acute pancreatitis
was first described in 1984 by Hosokawa et al. [43], followed
later by other reports in 1990s [21, 44, 45]. Hypercalcemia
is difficult to treat and can be the cause of death in ATL
[46, 47]. The relation between hypercalcemia and acute
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Figure 1: Hypercalcemia in ATL is associated with metastatic calcification. (a)–(d): Metastatic calcification is seen in the pulmonary alveolar
septa of the lungs ((a) magnification, ×400), renal tubules of kidneys ((b) magnification, ×200), myocardium ((c) magnification, ×100),
and Disses’s space, hepatic cell membrane, and central vein wall ((d) magnification, ×200). von Kossa’s staining for calcium. (e) Osteoclasts
are found in the osseous tissue, and infiltration of numerous leukemic lymphoma cells in the bone marrow of the vertebra. Osteoclasts are
multinucleated giant cells. Arrows: typical osteoclasts. Hematoxylin and eosin staining. Magnification,×400. (f) Immunohistochemistry for
PTHrP in leukemic lymphoma cells in ATL. PTHrP-positive cells are stained brown. This case was lymphoma type. The large cells were ATL
cells, which were infiltrated in normal lymph nodes. ATL cells produce PTHrP, on the other hand, surrounding normal lymphocytes did not
produce PTHrP. Magnification, ×400.

pancreatitis in patients with ATL was suggested based on the
observation of pancreatitis in hypercalcemic renal transplant
recipients [48]. However, the exact reason linking hypercal-
cemia and acute pancreatitis in patients with ATL remains
to be elucidated. A plausible theory [49] is the following
sequence: high serum calcium levels increase calcium levels
in pancreatic juice, which result in accelerated calcium-
dependent conversion of trypsinogen to trypsin, leading
to acute pancreatitis. Another possibility involves the high
levels of nephrogenous cyclic adenosine monophosphate
[47], which stimulate pancreatic secretion in the extralobular
ductal system of the pancreas [50], resulting in acute
pancreatitis due to occlusion of the pancreatic duct [23].

4. PTHrP and Hypercalcemia

PTHrP is a polypeptide hormone discovered in 1987 and
is structurally similar to PTH [51–53]. The aminotermi-
nal peptides of PTHrP have PTH-like actions in osseous
and renal tissues by binding to a common receptor for
PTH/PTHrP (PTH-1 receptor), resulting in hypercalcemia
[54–56]. PTHrP was originally isolated from specific tumors
as the humoral hypercalcemia of malignancy [57], and is
overexpressed in many types of neoplasms [58]. Several
cytokines, such as IL-1 and transforming growth factor-β
(TGF-β), and PTHrP have been implicated in ATL-associated
hypercalcemia. Among these factors, PTHrP is considered to
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Figure 2: Developmental stages of osteoclast lineage. Osteoclasts are derived from hematopoietic precursor cells, and belong to the
monocytes/macrophages lineage. With response to macrophage-colony stimulating factor (M-CSF), hematopoietic stem cells undergo
differentiation into the granulocyte macrophage colony forming units (CFU-GM), which are the common precursor cells of granulocytes,
macrophages, and osteoclasts. CFU-GM-derived cells differentiate to form mononuclear preosteoclast, which fuse together to subsequently
form multinucleated osteoclasts.

stimulate osteoclasts, resulting in increased bone resorption.
Moreover, IL-2 increases PTHrP production and secretion in
HTLV-1 infected T cells [59, 60]. In addition, PTHrP and
IL-6 act synergistically in causing humoral hypercalcemia
of malignancy [61, 62]. PTHrP is also overexpressed in
ATL cells (Figure 1(f)). The HTLV-1 oncoprotein, Tax is
a phosphoprotein localized in the nucleus and acts to
transactivate the PTHrP gene in ATL cells and is also involved
in the transcription of the PTHrP gene in vivo [63, 64].
Furthermore, Tax upregulates PTHrP gene expression in
vitro and also transactivates the PTHrP promoter [65].
Other studies showed that Tax acts in synergy with Ets-
1, AP-1, and AP-2, to increase PTHrP gene transcription
[66, 67]. Immunodeficient mice implanted with leukemic
cells from patients with ATL exhibited hypercalcemia and
overexpressed PTHrP [68]. However, PTHrP cannot directly
induce the differentiation of hematopoietic precursor cells to
osteoclasts [69]. Furthermore, high serum levels of PTHrP
are not always associated with hypercalcemia in patients
with ATL, suggesting the involvement of other factors in the
development of hypercalcemia [70]. The MET-1/NOD/SCID
model demonstrated that RANKL expression correlates
with the secretion of PTHrP and IL-6, as well as with
hypercalcemia [32]. Therefore, PTHrP is not always the
major mediator of hypercalcemia in humoral hypercalcemia
of malignancy; rather, the latter involves many other factors.

5. Osteoclast Differentiation
and Hypercalcemia

Hypercalcemia is one of the most frequent and serious
complications in patients with ATL and is due to marked
bone resorption associated with osteoclast accumulation.
The osseous tissue is consistently remodeled by the bone
forming osteoblasts and the bone resorbing osteoclasts.
Osteoclasts are multinucleated giant cells present only in
the bone. They are derived from hematopoietic precursor
cells, and belong to the monocytes/macrophage lineage.
Specifically, they are formed mononuclear preosteoclasts,
which fuse to form multinucleated osteoclast. The earliest

Mesenchymal
stem cell

Preosteoblast Osteoblast Osteocyte

Figure 3: Developmental stages of osteoblast lineage. Osteoblasts
are derived from undifferentiated mesenchymal stem cells. The
osteoprogenitor cells progress through defined stages from pre-
osteoblasts to osteoblasts and finally to osteocytes, which is
responsible of mineralization and calcified bone formation.

identifiable osteoclast precursor cells are the granulocyte
macrophage colony forming units (CFU-GM), which give
rise to granulocytes, monocytes, and osteoclasts. CFU-GM
derived cells differentiate to committed osteoclast precursors,
which are postmitotic cells, and fuse to form multinucleated
osteoclasts (Figure 2) [30, 71]. During differentiation of
osteoclasts, precursor cells sequentially express c-Fms (M-
CSF receptor) followed by RANK [72]. M-CSF and RANKL
produced by osteoblasts appear to play an important role
in the proliferation and differentiation of osteoclast pro-
genitors [73]. Osteoblasts are derived from undifferentiated
mesenchymal stem cells present in the bone marrow, which
further differentiate into osteocytes and are embedded in
the calcified bone (Figure 3) [74]. The interaction between
RANKL and RANK stimulates osteoclast formation and
differentiation by activation of several transcription factors
that regulate osteoclastogenesis [75, 76].

Molecular biological research has enhanced our under-
standing of the mechanism of bone resorption. This process
is controlled by a system comprised of three key proteins:
the RANK, RANKL, and OPG. These proteins mediate
bone remodeling and disorders of mineral metabolism in
humoral hypercalcemia of malignancy. RANK, RANKL, and
OPG are members of the TNF/TNFR superfamily. Several
studies have established a consistent relationship between the
RANK/RANKL/OPG pathway and skeletal lesions related to
disorders of mineral metabolism [29, 30]. The recognition of
the RANK/RANKL/OPG system and its interaction with var-
ious cytokines and calciotropic hormones in the regulation
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Figure 4: Molecular mechanism of osteoclast differentiation and activation involving the RANKL/RANK/OPG system. Bone remodeling is
a balance between formation and resorption through the control of osteoblast and osteoclast activities. Receptor activator of nuclear factor-
κB ligand (RANKL), receptor activator of nuclear factor-κB (RANK), and osteoprotegerin (OPG) play important roles in bone remodeling
and disorders of mineral metabolism. Bone resorbing factors, such as PTH, PTHrP, IL-1, IL-6, IL-11, and 1α,25(OH)2D3, act on osteoblasts
to induce the membrane associated factor called RANKL, which recognizes RANK present on the surface of osteoclast progenitors and
osteoclasts. M-CSF is an essential factor for osteoclast proliferation and differentiation, which is produced by osteoblasts in osseous tissue.
Reaction of OPG with RANKL inhibits the binding of osteoclast precursors and osteoclasts to RANKL, therefore, OPG acts as a decoy receptor
in the RANKL/RANK interaction. Blue structure: M-CSF (macrophage-colony stimulating factor), pink structure: M-CSF receptor (c-Fms),
black structure: RANK (receptor activator of nuclear factor-κB), red structure: RANKL (RANK ligand), that is, osteoclast differentiation
factor, orange structure: OPG (osteoprotegerin), that is, osteoclastogenesis inhibitory factor.

of osteoclastogenesis have led to further understanding of the
mechanism underlying the bone remodeling process in ATL
with hypercalcemia.

RANK was discovered by direct sequencing of cDNA
from a human bone marrow-derived myeloid dendritic cells
[77]. Sequencing of the RANK gene showed it to be a
type I transmembrane glycoprotein and also a member
of the TNFR family. RKNKL is a TNF-related cytokine
expressed by various bone cells including osteoblasts and
their immature precursors [78]. Importantly, the target cells
of bone resorbing hormones and cytokines are osteoblasts
rather than osteoclast progenitors. The expression of RANKL
in human and murine osteoblasts is stimulated by various
cytokines (IL-1, IL-6, IL-11, MIP-1α, and TNF-α), and cal-
ciotropic hormones including PTH, PTHrP, 1α,25(OH)2D3,
and prostaglandin E2 (PGE2) [32, 74, 79, 80]. These are
also thought to be important in enhancing the migration
and differentiation of osteoclast progenitors into mature
osteoclasts by stimulating RANKL production by osteoblasts
and stromal cells [30]. PTHrP, IL-11, and PGE2 are
most important factors in osteoclast differentiation, which
results in RANNKL interaction with the surface of imma-
ture osteoblasts [30]. Increased production of RANKL by
osteoblasts leads to osteoclast differentiation, resulting in
increased bone resorption.

The decoy receptor OPG with RANKL is also thought
to be a key mechanism in the control of bone turnover
(Figure 4). OPG was first identified by sequence homology
to the TNFR family [81]. OPG is a soluble a glycoprotein
secreted by various mesenchymally derived cells such as
osteoblasts and bone marrow stromal cells [82]. Reaction of

OPG with RANKL inhibits the binding of osteoclast precur-
sors and osteoclasts to RANKL. Therefore, OPG is produced
by osteoblasts and acts as a decoy receptor by binding at high
affinity to RANKL, therefore, preventing the interaction with
RANK [81, 83, 84]. As a consequence of binding to RANKL,
OPG acts as an effective inhibitor of osteoclast proliferation,
differentiation, activation, and survival, and therefore, it
inhibits bone resorption, resulting in bone protection [83].
In this regard, various metabolic regulators modulate OPG
expression and secretion by osteoblasts/stromal cells. These
include IL-1, TNF-α, and TGF-β, which increase OPG
secretion while various stimulators of bone resorption, such
as PTH, PGE2, and 1α,25(OH)2D3 reduce its secretion [78,
79, 85].

6. Molecular Mechanisms of
Hypercalcemia in ATL

As discussed above, HTLV-1 is the causative factor of ATL,
and patients with ATL often exhibit humoral hypercalcemia
of malignancy [86], which is induced by PTHrP and
cytokines, such as IL-1, IL-6, TGF-β, and MIP-1α [65, 87–
94]. About 70% of ATL patients develop hypercalcemia
throughout the clinical course [38]. Overexpression of the
RANKL gene correlates with hypercalcemia in ATL. In vitro
studies have shown that ATL cells obtained from patients
with hypercalcemia, which overexpress RANKL gene tran-
scripts, induced the differentiation of human hematopoietic
precursor cells into osteoclast in the presence of M-CSF.
In contrast, ATL cells from patients with normal serum
calcium levels did not induce such differentiation, suggesting
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that the expression of the RANKL gene in ATL cells is
involved in the induction of differentiation of these cells.
These results suggest that ATL cells induce the differentiation
of the hematopoietic precursor cells to osteoclast through
RANKL expressed on their surface, in cooperation with
M-CSF, and ultimately cause hypercalcemia [29]. In ATL
patients with metastasis and hypercalcemia, activation of
the MIP-1α, TNF-α, IL-1, and IL-6 molecules is induced
by Tax-stimulated NF-κB activation [93, 94]. Interestingly,
RANKL induces osteoclast formation through the NF-κB
signaling pathway, which is critical for osteoclastogenesis.
Animals lacking both the p50 and p52 subunits of NF-κB
develop severe osteopetrosis [95]. These putative steps in the
pathogenesis of disease are supported by evidence derived
from tissue culture experiments, xenograft mouse models,
and clinical observations in patients [96–100]. Moreover,
amino acid sequences homologous to gp46-197 were found
in the carboxyl-terminal half of OPG. Administration of
the gp46-197 peptide reduced bone mineral density and
significantly increased serum calcium levels. The central
region of HTLV-1 gp46 acts as an antagonist for OPG and
promotes the development of hypercalcemia [101]. HTLV-
1 infected cells were found to deregulate the expression of
OPG in osteoblast precursors [102]. Ectopic expression of
the HTLV-1 basic leucine zipper factor was sufficient to
activate Dickkopf-1 transcription in an HTLV-1 infected and
uninfected T-cell line [103]. It is possible that HTLV-1 basic
leucine zipper factor activates Dickkopf-1 expression at some
stage of ATL, thus, indirectly facilitating changes in RANKL
and OPG expression, and contributing to the accelerated
bone resorption associated with ATL [103].
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