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Within the last decade, multiple novel congenital human disorders have been described with
genetic defects in known and/or novel components of several well-known DNA repair and
damage response pathways. Examples include disorders of impaired nucleotide excision
repair, DNA double-strand and single-strand break repair, as well as compromised DNA
damage-induced signal transduction including phosphorylation and ubiquitination. These
conditions further reinforce the importance of multiple genome stability pathways for health
and development in humans. Furthermore, these conditions inform our knowledge of the
biology of the mechanics of genome stability and in some cases provide potential routes to
help exploit these pathways therapeutically. Here, I will review a selection of these exciting
findings from the perspective of the disorders themselves, describing how they were identi-
fied, how genotype informs phenotype, and how these defects contribute to our growing
understanding of genome stability pathways.

The link between DNA damage, mutagenesis,
and malignant transformation is long estab-

lished. A logical extension is that a congenital
defect in a fundamental DNA repair pathway,
such as nucleotide excision repair (NER), would
be anticipated to be associated with a pro-
nounced cancer predisposition syndrome. In-
deed this is well known to be the case consid-
ering xeroderma pigmentosum (XP) (Cleaver
1968, 1969, 1970). In most XP subtypes, the
devastatingly overt .1000-fold elevated risk of
developing basal and squamous cell carcinomas
on sun-exposed areas of the skin is directly at-
tributable to a failure to remove highly muta-
genic solar ultraviolet (UV) radiation-induced
DNA photoproducts from the genome. In this

sense XP represents a paradigm of a DNA repair
disorder with a clear pathological link between
genotype and phenotype (Cleaver et al. 2009).

As our knowledge of the complexity of ge-
nome stability pathways has evolved, coupled
with the explosive technical advances in molec-
ular and cellular biology, more and more hu-
man disorders caused by defects in components
that constitute the genome stability network
continue to be described. At the most funda-
mental level, identification of these conditions
enables future accurate molecular diagnosis
(Raffan et al. 2011). This has relevance for as-
sociated comorbidities and is vital for informed
counseling of the parents, not just for family
planning and recurrence risk analysis, but can
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assuage destructive feelings of maternal/pater-
nal guilt and bring to an end what is often a
protracted and extremely stressful journey to
ascertain a clinical diagnosis (Raymond et al.
2010; Evans et al. 2011; Baker et al. 2012). These
disorders can also help inform the biology of
genome stability. Their diverse and often unan-
ticipated clinical features can provide evidence
for previously unappreciated biological connec-
tions (Griffith et al. 2008; Rauch et al. 2008;
Huang-Doran et al. 2011). Furthermore, these
insights can help optimize therapeutic strate-
gies for these conditions along with more com-
mon conditions such as cancer. For example,
the application of nonmyeloablative condition-
ing protocols for bone marrow transplantation
to combat the severe anemia and lymphoid ma-
lignancy in Fanconi anemia, or the use of re-
duced intensity radiotherapy strategies to treat
lymphoma in ataxia telangiectasia patients have
both been developed directly from our under-
standing the inherent sensitivity of cells from
these patients to specific forms of DNA damage
(Gennery et al. 2005; Resnick et al. 2005; Lavin
2008). The interest in developing specific inhib-
itors toward “drug-able” targets that play key
roles in DNA repair and the DNA damage re-
sponse, to increase the selective sensitivity of
tumor cells toward conventional DNA-damag-
ing therapies such as radiotherapy and certain
chemotherapies is currently an active area of
interest (Bryant and Helleday 2004; Helleday
et al. 2008; Evers et al. 2010; Helleday 2010).

Since 2005, there have been several nota-
ble descriptions of novel congenital disorders
caused by defects in known, or more important-
ly, novel components of several DNA repair and
DNA damage response pathways. These condi-
tions have been identified via a combination of
approaches: candidate gene approaches coupled
to educated guesswork based on known biolo-
gy of a particular pathway; by classical homo-
zygosity linkage analysis using consanguineous
families; and in recent years, by the growing
influence of next-generation whole exome se-
quencing. The latter approach, in particular, of-
fers the tantalizing prospect of being able to
identify additional potential genetic defects us-
ing single affected patients. Here, I will review

examples of some of the novel disorders that
have been described since 2005. I will first re-
view disorders of DNA repair pathways, includ-
ing those of nonhomologous DNA end joining
(NHEJ), base excision repair (BER)–single-
strand break repair (SSBR), NER, and homolo-
gous recombination (HR)–interstrand cross-
link (ICL) repair, before highlighting disorders
associated with defects in the DNA damage-in-
duced signal transduction responses (phos-
phorylation and ubiquitination).

NOVEL DISORDERS OF NHEJ

The mechanics of the NHEJ pathway are out-
lined in Chiruvella et al. (2013). Two disorders,
one caused by deficiency of a novel component,
the other by mutation of a well-known compo-
nent of NHEJ, have been described recently. Cells
from both disorders show pronounced defects
in DNA double-strand break repair (DSBR).

Cernunnos/XLF-SCID

NHEJ represents an important means of direct-
ly repairing DNA double-strand breaks (DSBs)
by a resealing process not dependent on the
availability of a homologous DNA strand. One
of the primary functions of NHEJ is the repair of
programmed DSBs in the immunoglobin (Ig)
and T-cell receptor (TCR) gene loci during the
process of V(D)J recombination to form the
complete Ig and TCR repertoire of the immune
system (Lieber 2010). Indeed the known human
conditions defective in a core component of
NHEJ, DNA ligase IV (LIG4) causing LIG4 syn-
drome and Artemis (DCLRE1C) causing Art-
SCID (severe combined immunodeficiency),
are associated with pronounced T- and B-cell
deficiencies (Moshous et al. 2001; O’Driscoll
et al. 2001, 2004; O’Driscoll and Jeggo 2006).
These patients suffer frequent infections from
an early age, invariably presenting initially in
the immunology clinic. Because of the DSB re-
pair defect and consequent ionizing radiation
sensitivity of cells from these patients, these
conditions are denoted as radiosensitive (RS)-
SCID, distinguishing them from other more
common causes of SCID such as RAG1/2 or
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adenosine deaminase deficiency (Riballo et al.
2004).

Understanding the cellular and clinical spec-
trum of RS-SCID enabled the subsequent iden-
tification of defects in what transpired to be a
novel NHEJ component: Cernunnos/XRCC4-
like factor (XLF), caused by mutations in
NHEJ1. Using a functional cDNA library-based
complementation cloning strategy, Buck and
colleagues used fibroblasts from a series of pa-
tients characterized by pronounced T- and B-
cell-minus SCID, growth retardation, and mi-
crocephaly (phenotypes reminiscent of LIG4
syndrome), identifying multiple mutations in
a novel gene they called Cernunnos (Buck et al.
2006). In a complementary approach, Ahnesorg
and colleagues showed that a previously unde-
scribed XRCC4 interactant they had identified
(XLF; XRCC4-like factor) was defective in a
well-characterized NHEJ-defective cell line,
2BN (Ahnesorg et al. 2006). This line was de-
rived from an RS-SCID patient that did not har-
bor a defect in any of the known NHEJ factors
(Dai et al. 2003). Subsequent functional analysis
suggests that Cernnunos/XLF may function in
stimulating the adenylation of DNA ligase IV,
an essential step in the ligation reaction thereby
facilitating DSB ligation (Riballo et al. 2009).

DNA-PKcs-SCID

The DNA-dependent protein kinase (DNA-PK)
complex is composed of the DNA-PK catalytic
subunit (DNA-PKcs), a phosphatidyl inositol-3
kinase-like protein kinase, and the KU70/80
heterodimer. KU70/80 has a very high affinity
for double-stranded DNA ends and recruits
DNA-PKcs to DSBs as the initial step of NHEJ
(Lees-Miller 1996; Smith and Jackson 1999;
Meek et al. 2008). Although the exact physio-
logically relevant substrates of DNA-PK are not
well defined, DNA-PKcs autophosphorylation
in trans at a DSB is essential for NHEJ, partic-
ularly for recruitment of Artemis during V(D)J
recombination (Chan et al. 2002; Ding et al.
2003; Cui et al. 2005; Meek et al. 2007). Arte-
mis-endonuclease activity plays an essential
role in opening the hairpin-sealed coding ends
formed by RAG1/2 endonuclease-mediated

cleavage at the Ig and TCR loci. Failure to pro-
cess these coding ends effectively results in SCID
(Moshous et al. 2001; Ma et al. 2002).

Compound heterozygous mutations in
PRKDC, the gene encoding DNA-PKcs, were
recently identified in a single case of RS-SCID
without associated developmental features such
as the microcephaly and growth delay seen
in LIG4 syndrome and Cernunnos/XLF-SCID
(van der Burg et al. 2009a,b). It is noteworthy in
this context that Artemis deficiency similarly is
not associated with developmental abnormali-
ties (Moshous et al. 2001; Li et al. 2002). The
identification of this novel and long-predicted
genetic defect (spontaneous DNA-PKcs defects
occur in Jack Russell terrier dogs, Arabian
horses, and mice [Fig. 1]) is owing to a thorough
analysis of the immunological profile of the af-
fected case (Bosma et al. 1983; Peterson et al.
1995; Wiler et al. 1995; Meek et al. 2001; van der
Burg et al. 2009b). Analysis of coding joints from
bone marrow precursor cells from the affected
patient showed an overrepresentation of elongat-
ed P elements (palindromic sequences) indica-
tive of a failure to cleave hairpin-sealed coding
ends (van der Burg et al. 2009b). This is a feature
of Artemis deficiency, yet no pathogenic muta-
tions were detected in DCLRE1C, or indeed in
LIG4 and NHEJ1. Because Artemis activity dur-
ing V(D)J is dependent on DNA-PKcs autophos-
phorylation and long P elements are a feature of
the DNA-PKcs-mutant SCID mouse, van der
Burg and colleagues focused their attention on
PRKDC (Schuler et al. 1991). Compound het-
erozygous mutations in PRKDC were identified
(p.delG2113 and p.L3062R), although unex-
pectedly, these did not appear to impact on
DNA-PKcs stability, expression, kinase activity,
or autophosphorylation capacity (van der Burg
et al. 2009a). Complementation-based analysis
indicated that p.L3062R, found in the highly
conserved FAT domain of DNA-PKcs, alone
impacted V(D)J and was the likely pathogenic
hypomorphic allele (Fig. 1) (van der Burg et al.
2009a,b). These unexpected findings are not
reflected by any of the known animal models
for DNA-PKcs deficiency, which all lack kinase
activity (Fig. 1) (van der Burg et al. 2009a,b).
Although it is possible that other PRKDC
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mutations that do impair DNA-PKcs-depen-
dent kinase activity may also occur in SCID
patients yet to be identified, these findings in-
dicate that assaying DNA-PK activity on pa-
tient-derived cells may not capture all potential
defects.

NOVEL DISORDERS OF BER
AND SSBR PATHWAYS

BER and SSBR constitute a vital defense not
only against the cytotoxic and mutagenic con-
sequences of endogenously generated reactive
oxygen species (ROS), but these pathways also
repair DNA breaks and nicks induced by the
programmed physiologically important func-
tion of topoisomerase I (Top I), to relieve tor-
sional tension within the double helix, which is
a normal by-product of transcription and DNA
replication (Caldecott 2008). These pathways
are reviewed in Krokan and Bjørås (2013).

Hyper-IgM Syndrome and Juvenile
Polyposis

The first step of BER involves the action of the
glycosylases, a diverse group of enzymes that act

to remove the damaged/modified base, gen-
erating an apurinic/apyrimidinic (AP) abasic
site. Over the last decade or so, congenital de-
fects in certain DNA glycosylases have been
identified, most notably in uracil DNA gly-
cosylase (UNG), MutY Escherichia coli homolog
glycosylase (MYH), and activation-induced cy-
tidine deaminase (AICDA). Both AICDA and
UNG are associated with the immunological
phenotype of hyper-IgM syndrome (Revy et
al. 2000; Imai et al. 2003). AICDA is a single-
strand DNA (ssDNA) deaminase that is essen-
tial for class switch recombination (CSR) of Ig’s
from IgM to other isotypes (IgG, IgA, etc.) and
for somatic hypermutation (SHM) to refine an-
tigen binding (Petersen et al. 2001; Petersen-
Mahrt et al. 2002). UNG removes uracil from
DNA, which can be generated by either cyto-
sine deamination or replicative-incorporation
of dUMP instead of dTMP. Therefore, UNG
plays a vital role in repressing G/C-to-A/T tran-
sitions. Because AICDA-mediated uracil gener-
ation is essential for CSR, it is unsurprising that
congenital defects in UNG would also result in
hyper-IgM syndrome (Imai et al. 2003).

E. coli mutY is a component of the bacteri-
al mismatch repair system that together with
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Figure 1. Different genetic defects in DNA-PKcs. Schematic representation of human DNA-PKcs (in purple)
showing the relative positioning of the FAT, FATC, and PI3K-calalytic kinase domains. The spontaneous dele-
tions (del) observed within DNA-PKcs in Jack Russell terriers, Arabian horse, and mouse are shown in gray, all of
which involve loss of the catalytic PI3K-active site.
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mutM reverts A/G and A/C mismatches. Oxi-
dative damage converts guanine into 8-oxo-7,
8-dihydro-20deoxyguanosine (8-oxo-G), which
can mispair with adenine resulting in G/C-
to-T/A transversions. MYH has nicking and
glycosylase activity against A/G, A/C, and A/
8-oxo-G mismatches, catalyzing the removal of
the adenine base (Fromme et al. 2004). Such G/
C-to-T/A transversions are frequently observed
in the APC gene (adenomatous polyposis coli)
associated with colorectal adenocarcinoma.
Germline mutations in MYH cause MYH-asso-
ciated juvenile polyposis, which presents with
colorectal carcinoma and sometimes pilomatri-
comas (calcifying cutaneous tumors of hair ma-
trix cells) (Jones et al. 2002; Baglioni et al. 2005).

Defective SSBR in Syndromal Ataxias

Congenital impairment of SSBR appears to be
strongly associated with neurological deficits.
Ataxia-oculomotorapraxia-1 (AOA-1) is caused
by mutations in APTX, the gene encoding apra-
taxin. AOA1 is characterized by early-onset cer-
ebellar ataxia, peripheral neuropathy, and ocu-
lomotor apraxia (Aicardi and Goutieres 1984).
Aprataxin interacts with XRCC1 and APTX-
mutated AOA1 cells are sensitive to agents that
cause DNA single-strand breaks. Aprataxin is a
member of the histidine triad family of nucleo-
tide hydrolases and transferases. During SSBR,
aprataxin resolves abortive ligation intermedi-
ates by catalyzing the nucleophilic release of ad-
enylate groups from 50-phosphate termini of
single-strand breaks producing a 50 phosphate
that can be effectively ligated (Ahel et al. 2006).
Therefore, it has been proposed that the neuro-
logical deficits in AOA-1 are likely the result of
accumulating unrepaired single-strand breaks
specifically in neurons (Ahel et al. 2006).

A defect in SSBR has also been documented
in cells from patients with spinocerebellar atax-
ia with axonal neuropathy-1 (SCAN-1), a pe-
ripheral neuropathy characterized by moderate
progressive ataxia, dysarthria, and cerebellar at-
rophy. All SCAN-1 patients identified to date
carry the same neomorphic active site mutation
(p.H493R) in TDP1 (tyrosyl-DNA phospho-
diesterase 1) (Takashima et al. 2002). TDP1 re-

moves Topo I-cleavable complexes (Topo I-
CCs) from DNA. The neomorphic TDP1p.H493R

allele has reduced enzymatic activity and accu-
mulates with increased half-life on Topo I-CCs
where it is thought to serve as a potent block to
transcription and replication forks (El-Khamisy
et al. 2005; Interthal et al. 2005).

Polynucleotide Kinase/Phosphatase
and Microcephaly, Developmental
Delay, and Seizure Syndrome

The most recent congenital defect identified in
a component of the SSBR machinery is that of
the dual kinase and phosphatase, polynucleo-
tide kinase/phosphatase (PNKP) (Shen et al.
2010). Very often the termini of DNA strand
breaks, whether induced by free radicals, Topo
I, or the action of AP lyase and/or endonucle-
ases, require processing to restore the 50-phos-
phate and 30-OH termini, essential for effective
ligation (Fig. 2A). PNKP restores these termini
as it possesses both 50-kinase and 30-phospha-
tase activity (Caldecott 2002; Weinfeld et al.
2011). PNKP is thought to play an active role
in SSBR and DSBR by virtue of its FHA do-
main-mediated interaction between CK2 phos-
phorylation sites on both XRCC1 and XRCC4,
respectively (Koch et al. 2004; Loizou et al.
2004). Multiple mutations in PNKP were iden-
tified by genome-wide linkage analysis in sever-
al consanguineous families with autosomal re-
cessive severe primary microcephaly, marked
developmental delay, hyperactivity, and intrac-
table seizures (MCSZ) (Shen et al. 2010). These
mutations were found in both the kinase and
phosphatase domain of PNKP, usually also im-
pacting on PNKP stability (Fig. 2B) (Shen et
al. 2010). Subsequent analysis using recombin-
ant versions of the MCSZ-associated mutant
PNKPs have shown differential impacts of spe-
cific mutations on kinase and phosphatase ac-
tivities (Reynolds et al. 2012). Collectively, the
functional evidence indicates that PNKP ac-
tivity is strongly impaired here, consistent with
attenuated DNA breakage repair observed in
MCSZ-patient-derived cells following H2O2 or
camptothecin (CPT, a Topo I inhibitor) treat-
ment (Shen et al. 2010; Reynolds et al. 2012).

Diseases and Defective Responses to DNA Damage

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a012773 5



Implications for Understanding Genotype–
Phenotype Relationships

This fascinating defect further expands our un-
derstanding of the clinical consequences of im-
paired SSBR specifically with respect to its role
in neurogenesis, as opposed to its presumed
function in preventing ROS-induced neurode-
generation. The contrast here to AOA-1 and
SCAN-1 is marked in this respect. MCSZ pa-
tients do not present with a neuropathy or atax-
ia but instead with a severe microcephaly with-
out obvious postnatal progressive cerebellar
degenerative or structural abnormalities sug-
gestive of embryonic stem cell deficit typical of
intrauterine programming (Fowden et al. 2006,
2008; Shen et al. 2010). The reasons for this are
not clear but may reflect the role of PNKP in the
repair of multiple types of damaged DNA break
termini and perhaps also in DSBR. Interesting-
ly, both LIG4 syndrome and Cernunnos/XLF-
SCID patients show microcephaly (O’Driscoll
et al. 2001; Buck et al. 2006).

The other marked clinical features charac-
teristic of MCSZ are the intractable seizures
coupled with developmental delay (Shen et al.
2010). The seizure phenotype, in particular, is
not a general feature of known DNA repair or
DNA damage response defective disorders, even
those associated with profound microcephaly
such as ATR-mutated Seckel syndrome (Good-
ship et al. 2000; O’Driscoll et al. 2003; O’Dris-
coll 2009b). The origins of this specific clinical
feature are currently unclear. But, it is tempting
to speculate that they may reflect some under-
lying deficit in mitochondrial function because
of its strong association with seizures (Kudin
et al. 2009; Waldbaum and Patel 2010; Fol-
bergrová and Kunz 2012). The mitochondrial
genome, by virtue of the fact that it lacks pro-
tective chromatin and resides in close proximi-
ty to the electron transport chain complexes,
is subject to significant levels of ROS-mediated
DNA damage. Consequently, the mitochon-
dria contain several dedicated members of the
BER-SSBR network to preserve the integrity of
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Figure 2. PNKP, its substrates and structure. (A) PNKP functions to clean up damaged termini at single-strand
breaks to reconstitute the 30-OH and 50-phosphate (P) ends required for ligation. Some of the typical damaged
termini requiring processing are shown here in red. The 30-P, 50-OH and phosphoglycolate termini are a
consequence of ROS-induced DNA damage. The 30-deoxyribose phosphates are produced by AP endonuclease
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bound Topo I from DNA to repair the underlying strand nick. (B) Schematic representation of PNKP showing
the juxtaposition of the phosphatase and kinase domains. The FHA domain is an important phosphoprotein-
binding domain implicated in binding to CK2 phosphorylation sites on XRCC1 and XRCC4. MCSZ-patient
mutations are shown in red.
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mitochondrial DNA (mtDNA) (de Souza-Pin-
to et al. 2008). For example, mitochondria con-
tain several glycosylases (Nei and Nth family
members), a truncated AP-endonuclease-1, a
mitochondrial DNA ligase III, and mitochon-
drial-specific Topo I. See Alexeyev et al. (2013)
for details of mitochondrial DNA repair mech-
anisms. Recently, PNKP has been found to pos-
sess a cryptic mitochondrial targeting motif
that targets a proportion of nuclear PNKP to
mitochondria where it associates with mito-
filin, an inner-mitochondrial membrane com-
ponent, and mediates repair of H2O2-induced
mtDNA breaks (Tahbaz et al. 2012). It will
be fascinating to ascertain whether impaired
mtDNA repair and consequent mitochondrial
dysfunction are features of MCSZ neurons.

NOVEL DISORDERS OF NER

NER is arguably one of the best characterized
DNA repair pathways; essentially a “cut and
paste” mechanism for the removal of helix dis-
torting lesions from DNA, such as the cyclobu-
tane pyrimidine dimers and 6-4 photoproducts
formed following UV irradiation (Cleaver et al.
2009; see Scharer 2013 for details). NER sub-
pathways include global genome NER (GGR)
whereby helix distortion is recognized by XPC-
HR23B and DDB and transcription-coupled
NER (TCR), whereby RNA polymerase II block-
ing lesions are preferentially repaired from ac-
tively transcribing strands. TCR requires CSA/
ERCC8 and CSB/ERCC6 (see Fousteri 2013
for details of TCR). Downstream from DNA
damage recognition both GGR and TCR use
the same machinery to locally unwind the helix
around the lesion, site-specifically cleave the
DNA either side of the lesion-containing strand,
then filling in and ligating the resultant repair
patch.

Congenital deficiency in GGR results in XP,
which is caused by several distinct molecular
defects including XPA, XPB(ERCC3), XPC,
XPD (ERCC2), XPE (DDB2), XPF (ERCC4),
XPG (ERCC5), and XPV (POLH), or tricho-
thiodystrophy (TTD-A, but also specific defects
in ERCC2 and ERCC3) (Cleaver et al. 2009).
Defects in TCR cause Cockayne syndrome

(CSA/ERCC8 and CSB/ERCC6). XP is charac-
terized by severe photosensitivity, dramatically
elevated skin cancer risk, and in severe instances,
neurodegeneration. Cockayne syndrome (CS)
is also characterized by photosensitivity but
not elevated skin cancer risk. CS is a cachectic
dwarfism associated with microcephaly, pro-
found neurodegeneration, and progressive pro-
geria (Nance and Berry 1992). TTD presents as
an attenuated form of CS, again without elevat-
ed cancer risk but with ichthyosis and brittle
hair and nails (Price et al. 1980; Yong et al.
1984; Stefanini et al. 1986). Several NER path-
way components are also subunits of the multi-
subunit transcription factor TFIIH (e.g., TTDA,
XPB, XPD), and it is thought that many of the
developmental features observed in CS and
TTD are attributed to reduced transcriptional
capacity rather than defective DNA repair (Ver-
meulen et al. 2000; van der Pluijm et al. 2006;
Gregg et al. 2011).

XFE (XPF-ERCC1) Progeria

The XPF-ERCC1 complex is the structure-spe-
cific endonuclease that makes the incision 50 to
the lesion during NER. XPF is the catalytic com-
ponent, whereas ERCC1 is important for DNA
binding. Cells defective in XPF-ERCC1 func-
tion are additionally hypersensitive to killing
by ICL agents such as mitomycin C, thought
to be a consequence of a role outside of core
NER (Gregg et al. 2011). Mutations in XPF
usually result in a mild form of XP including
modest sun sensitivity (freckling) with a much
delayed eventual appearance of skin cancer,
generally from the second decade (Sijbers et
al. 1996). This is somewhat at odds with a trans-
genic XPF-deficient mouse modeling human
XPF mutations. The XPF patient XP23OS had
a mild form of XP without evidence of skin
cancer or neurodegeneration by the fourth dec-
ade of life (Zelle et al. 1980). In contrast, the
transgenic Xpf-mutant mouse (Xpfm/m) of this
patient showed overt postnatal growth delay and
premature death by 3 wk of age associated with
hepatocellular polyploidy typical of progeria
(Tian et al. 2004). This extreme phenotype is also
observed in mouse models of Ercc1 deficiency,
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which display evidence of accelerated aging cou-
pled with progressive ataxia and dystonia sug-
gestive of neurodegeneration (McWhir et al.
1993; Gregg et al. 2011).

Using whole genome-transcriptome analy-
sis of Ercc12/2 mouse liver cells, Niedernhofer
and colleagues identified a remarkable suppres-
sion of the somatotroph, lactotroph, and thyro-
troph hormonal axes similar to what is observed
in aged normal mice (Niedernhofer et al. 2006).
These features potentially explain some of the
phenotypes of the Xpf and Ercc1 mouse models
and suggest a causal link between unrepaired
DNA damage and aging. Furthermore, Nie-
dernhofer and colleagues described an individ-
ual with marked growth retardation, microceph-
aly, photosensitivity, ataxia, and a profound
rapidly progressive progeroid syndrome with a
prepubescent onset eventually leading to pre-
mature death at the age of 16 yr (Niedernhofer
et al. 2006). Cells from this patient were sensitive
to killing by UV and showed severe defects in
GGR (unscheduled DNA synthesis [UDS])
and TCR (impaired recovery of transcription
following UV irradiation). Unexpectedly, this
patient was found to harbor a homozygous mis-
sense mutation in XPF. Identification of this de-
fect expanded the phenotype of XPF deficiency
in humans from XP to a novel severe progeroid
syndrome with overlapping features to CS.

ERCC1 and Cerebro-Oculo-Facial-Skeletal
Syndrome

Subsequently, Jaspers and colleagues identified
pathogenic defects in ERCC1 in a patient with a
clinical diagnosis of cerebro-oculo-facio-skele-
tal (COFS) syndrome, a severe disorder char-
acterized by growth retardation, microcepha-
ly, congenital cataracts, facial dysmorphism,
neurogenic artrogryposis ( joint contractures),
kyphoscoliosis, osteoporosis, and marked psy-
chomotor disability (Jaspers et al. 2007). In-
terestingly, mutations in CSB/ERCC6, XPG/
ERCC5, and XPD/ERCC2 had previously been
identified in COFS patients (Hamel et al. 1996;
Meira et al. 2000; Graham et al. 2001). Here, the
ERCC1 defect was suggested following careful
analysis of UDS, RNA synthesis, and the tem-

poral recruitment of various NER components
on UV irradiation of patient fibroblasts. Micro-
injection of recombinant XPF-ERCC1 reversed
the severe UDS defect in the patient cells directly
implicating this complex. Cells from this patient
also showed marked hypersensitivity to killing
by ICLs (Jaspers et al. 2007). A second patient
presenting with progressive cortical atrophy, de-
mentia, and premature death (37 yr) has also
been briefly described (Imoto et al. 2007).

The severe clinical outcome of compro-
mised XPF-ERCC1 function in humans appears
distinct to core defects in NER components as-
sociated with XP. Because of the uniquely
marked hypersensitivity to ICL agents of XPF-
ERCC1-deficient cells compared with NER de-
fects, it is tempting to speculate that these pa-
tients are particularly sensitive to some form of
endogenously generated ICLs, as has been sug-
gested for disorders such as Fanconi anemia
(see section Endogenous DNA Damage and
Its Implications for FA). Furthermore, ROS-in-
duced ICL (e.g., Gua[8-5me]Thy) and cyclo-
purines such as the 8, 50-cyclopurine-20-deoxy-
nucleosides have been shown to accumulate in
Ercc1-defective mouse tissues, including brain,
potentially representing an important endoge-
nously generated DNA lesion in this context
(Wang et al. 2012a,b).

UV-Sensitive Scaffold Protein A
and UV-Sensitive Syndrome

No clear genotype-phenotype relationship be-
tween mutation site in CSA/ERCC8 and CSB/
ERCC6 and clinical presentation has emerged
(Cleaver et al. 2009). Mutations in each of these
genes results in CS, but in stark contrast, they
are also found in a few individuals with mild
photosensitivity as their sole clinical feature
(UV-sensitive syndrome [UVs]). Furthermore,
other individuals presenting with photosensi-
tivity alone were found not to harbor variants
in either CSA/ERCC8 or CSB/ERCC6, along
with defective TCR (Fujiwara et al. 1981; Itoh
et al. 1994, 1995; Spivak 2005).

Recently, the causative genetic defect for this
UVs syndrome was identified by several groups
as a novel component of RNA polymerase II
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(RNA Pol II), termed UV-sensitive scaffold pro-
tein A (UVSSA, formerly known as KIAA1530)
(Nakazawa et al. 2012; Schwertman et al. 2012;
Zhang et al. 2012). Each group identified
UVSSA using a different approach. Zhang and
colleagues used microcell-mediated chromo-
some transfer into UVs syndrome patient fibro-
blasts to select for stable UV-resistant clones
with normal TCR (Zhang et al. 2012). Com-
parative genomic hybridization array analysis
refined the minimal complementing region,
and candidate gene-containing BAC clones
were used in a second set of complementation
experiments, ultimately identifying KIAA1530.
Schwertman and colleagues were using a SI-
LAC-base proteomic approach to identify and
characterize NER factors regulated by ubiquiti-
nation and identified KIAA1530 as a novel gene
that impaired TCR on siRNA silencing, along
with also implicating the deubiquitinating iso-
peptidase ubiquitin-specific protease 7 (USP7)
in this process (Schwertman et al. 2012). Finally,
Nakazawa and colleagues took the more direct
route of applying exome sequencing to identify
mutations in KIAA1530 in UVs syndrome indi-
viduals (Nakazawa et al. 2012).

UV photoproducts are potent blocks to
RNA Pol II-mediated transcription and TCR is
dedicated to rapidly and efficiently removing
these lesions enabling transcription resumption.
UVSSA is thought to play some role in enabling
stalled RNA Pol II to backtrack from the DNA
lesion, thereby allowing access to the TCR ma-
chinery (Fig. 3). UVSSA interacts with TFIIH,
CSB/ERCC6, and RNA Pol IIo (the elongating
form of RNA Pol II) but also forms a complex
with USP7; the latter interaction apparently be-
ing important for regulating the level of CSB/
ERCC6. In UVSSA-defective cells, CSB/ERCC6
appears to be ubiquitinated and degraded after
UV, likely potentiating RNA Pol II stalling and
impairing recovery (Fig. 3) (Nakazawa et al.
2012; Schwertman et al. 2012; Zhang et al. 2012).

Implications for Interpreting Genotype–
Phenotype Relationships

So, if defective CSA/ERCC8, CSB/ERCC6, and
UVSSA function all impair TCR and RNA Pol II

recovery following UV, how can we rationalize
the stark clinical differences between CS and
UVs syndrome? Endogenously generated oxi-
dative DNA damage may play a role here. CS
patient-derived cells are sensitive to killing by
ROS-generating agents such as H2O2, unlike
UVSSA-defective UVs syndrome cells (Spivak
and Hanawalt 2006; D’Errico et al. 2007; Nardo
et al. 2009; Pascucci et al. 2012). Furthermore,
CSA/ERCC8 and CSB/ERCC6 have been iden-
tified in mitochondria where they are thought
to play a role in the repair of mtDNA, deficits of
which may contribute to impaired neurogenesis
and/or neurodegeneration, as discussed above
for MCSZ (Kamenisch et al. 2010). It is not
known yet whether UVSSA plays any role in
mtDNA repair. An additional model to help
explain the clinical differences between CS and
UVs syndrome has been proposed by Nakazawa
and colleagues (Nakazawa et al. 2012). Stalled
RNA Pol II is stably ubiquitinated and back-
tracked in a CSA/ERCC8, CSB/ERCC6, and
UVSSA-dependent process enabling TCR (Fig.
3). But, in UVSSA-UVs cells RNA Pol II can
still be ubiquitinated in a CSA/ERCC8 and
CSB/ERCC6-dependent manner, independent
of UVSSA, leading to proteasomal degradation,
thereby preventing transcription resumption
(Fig. 3). In CS, both ubiquitin-dependent back-
tracking and degradation of RNA Pol II are
impaired perhaps leading to a more deleterious
prolonged arrest ultimately signaling to apo-
ptosis (Fig. 3). Of course the possibility of ad-
ditional as-yet-unknown roles of CSA/ERCC6
and CSB/ERCC8 cannot be ruled out.

DISORDERS OF HR AND ICL REPAIR:
FANCONI ANAEMIA, FAMILIAL BREAST AND
OVARIAN CANCER, AND KARYOMEGALIC
INTERSTITAL NEPHRITIS

Fanconi anemia (FA) is the most frequent in-
herited cause of bone marrow failure (Shima-
mura and Alter 2010). This well-characterized
devastating disorder follows a typical pattern of
bone marrow failure in childhood–early teens
before development of acute myeloid leukemia
(AML) by late teens–early adulthood, with a
median survival of 20 yr (Kutler et al. 2003;
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Rosenberg et al. 2003; Auerbach 2009; Shima-
mura and Alter 2010). The risk of developing
solid tumors, particularly head and neck, is also
elevated in FA adults. The hematopoetic system
in FA is unstable showing frequent genetic re-
version, mosaicism, and clonal expansion. Of-
ten, although not always, FA is associated with

a combination of congenital abnormalities,
including short stature, hyperpigmentation
(café-au-lait spots), microphthalmia, and the
archetypal radial-ray defects that range from
hypoplasia to complete absence of the radius.

FA is multigenic and several new genetic de-
fects have been described in FA patients since
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                  generates a strong
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Figure 3. TCR under specific contexts. UV photoproducts (red) create a localized distortion in the DNA helix
prompting recognition and removal by nucleotide excision repair (NER). In actively transcribing regions of the
genome, UV lesions create a block to RNA polymerase II (RNA Pol II [gray]), temporarily inhibiting RNA
synthesis (blue) prompting engagement of transcription-coupled repair (TCR). In normal cells, stalled RNA Pol
II is ubiquitinated in an ERCC6/ERCC8-dependent manner. The combined action of the ERCC6/ERCC8 and
UVSSA/USP7 complexes somehow coordinate to enable stalled ubiquitinated RNA Pol II to be repositioned,
thereby allowing access to the lesion for the NER machinery to remove the lesion. In the UVSSA-UVs situation,
both ERCC6 and the stalled RNA Pol II remain ubiquitinated, likely prompting their degradation by the
proteasome. Therefore, no repair occurs by rapid TCR and the lesion is left to be dealt with by global genome
NER (GGR). In the context of Cockayne syndrome, ubiquitination of the stalled RNA Pol II does not occur and
the polymerase remains stalled at the lesion, likely generating a very strong apoptotic signal owing to the failure
to recover transcription.
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2005, reinforcing the functional connection be-
tween the FA pathway and HR (Moldovan and
D’Andrea 2009; Kim and D’Andrea 2012). No-
table examples include defects in RAD51C
(now FANCO), the BRCA2 interactor PALB2
(FANCN), and SLX4 (FANCP) (Reid et al.
2007; Xia et al. 2007; Meindl et al. 2010; Vaz
et al. 2010; Crossan et al. 2011; Kim et al. 2011;
Stoepker et al. 2011). SLX4-SLX1 endonuclease
can resolve Holliday junctions in vitro (Ander-
sen et al. 2009; Fekairi et al. 2009; Svendsen
et al. 2009; Svendsen and Harper 2010). Howev-
er, the physiological relevance of this has not
been shown. More recently, a truncating non-
sense mutation in RAD51 paralogue XRCC2
(p.Arg215�) was identified in a single Saudi Ara-
bian patient of consanguineous parents showing
typical FA phenotypes such as bilateral absent
thumbs and cellular sensitivity to diepoxybutane
(DEB), the standard diagnostic ICL sensitivity
assay for FA (Shamseldin et al. 2012). The patient
was 2.5 years old at the time of diagnosis without
evidence of bone marrow failure or AML, yet.

To date, 15 FA complementation groups/
genes have been described; FANCA, FANCB,
FANCC, FANCD1/BRCA2, FANCD2, FANCE,
FANCF, FANCG, FANCI, FANCJ/BRIP1,
FANCL, FANCM, FANCN/PALB2, FANCO/
RAD51C, and FANCP/SLX4. The FA pathway
repairs ICLs in DNA, a highly toxic lesion (Fig.
4). The key molecular event in the FA pathway
is the monoubiquitination of FANCD2 and
FANCI by the FA core complex, an E3 ubiquitin
ligase formed of FANCA, FANCB, FANCC,
FANCE, FANCF, FANCG, FANCL, and
FANCM. Monoubiquitinated FANCD2 and
FANCI then functionally interact with the
remaining downstream FA proteins and factors
such as BRCA1 and the recently described FAN-
1 (FA-associated nuclease-1) nuclease (Kratz
et al. 2010; Liu et al. 2010; MacKay et al. 2010;
Smogorzewska et al. 2010). The mechanisms
underlying the repair of ICLs are complex and
only now starting to emerge (Kim and D’An-
drea 2012). They involve functional interplay
between the FA pathway, HR, and translesion
synthesis (TLS) (Fig. 4). The reader is referred
to Niedernhofer (2013) for a detailed review of
DNA cross-link repair.

Several structure-specific endonucleases,
aside from FAN-1, are implicated in ICL repair.
The full context-specific extent of their redun-
dancy and/or functional hierarchy is as yet un-
clear. For example, epistasis analysis using a re-
cently described chicken DT40 B-cell model for
FAN1 deficiency suggested FAN1 operates inde-
pendently of FANCC and FANCJ in response to
ICL agents (Yoshikiyo et al. 2010). SLX4 is a
scaffold protein that interacts with several en-
donucleases including MUS81-EME1 and XPF-
ERCC1. It is thought that SLX4 is important for
the recruitment of these alternate structure-spe-
cific endonucleases during ICL repair (Crossan
and Patel 2012).

Endogenous DNA Damage and Its
Implications for FA

Because of the stochastic nature of the develop-
mental and hematological abnormalities in FA,
it seems likely that these features are the conse-
quence of impaired repair of some form of en-
dogenous DNA damage (Crossan and Patel
2012). By-products and intermediates of nor-
mal oxidative metabolism, including reactive al-
dehydes (acetaldehyde, formaldehyde) and lipid
peroxidation products, are capable of forming
inter- and intrastrand DNA cross-links and
DNA-protein cross-links, which may be relevant
in this context. In support of this, cotarget-
ing Aldh2 (aldehyde dehydrogenase 2, a reactive
aldehyde catabolic enzyme) and Fancd2, po-
tentiated leukemia development in mice, and
knockout of ADH5 (alcohol dehydrogenase 5,
a formaldehyde catabolic enzyme) is synthetic
lethal with FANCL2/2 in chicken DT40 cells
(Langevin et al. 2011; Rosado et al. 2011).

Familial Breast and Ovarian Cancer

Other novel germline defects in HR-pathway
components have also been described recently.
Multiple mutations in RAD51C and RAD51D
have been found in breast and ovarian can-
cercohorts prompting some to call for screening
for these genes in breast and ovarian can-
cer (Meindl et al. 2010; Loveday et al. 2011;
Osorio et al. 2012). The difficulty in assigning
pathogenicity for some missense variants, in
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the absence of functional evaluation has, howev-
er, led to some debate here (Loveday et al. 2012).

FAN1 and Karyomegalic Interstitial Nephritis

The identification of FAN1 as an ICL repair
factor prompted suggestions that it likely repre-

sents a novel (as yet undescribed) FA causative
defect, because a minority of FA patients exist
that are not associated with defects in the
known FANC genes (Kratz et al. 2010; Liu
et al. 2010; MacKay et al. 2010; Smogorzewska
et al. 2010). Recent evidence-based studies us-
ing patient-derived cells have challenged this,

Combined action of NER
(to excise the lesion) and HR
(to repair the breaks)

TLS

D2

Ubq

Ubq

D2

Figure 4. ICL repair. An interstrand cross-link (ICL) poses a serious problem for replication and transcription.
Here, two replication forks converge on an ICL (red). One of the forks is extended toward the ICL, whereas the
other remains stalled and stabilized. The FA pathway is engaged and monoubiquitylated-FANC-D2 (D2-Ubq) is
localized to the ICL. Excision of one strand occurs (gray), likely involving ERCC1-XPF and/or SLX4, depending
on the context, generating a monoadducted lesion. Translesion synthesis (TLS) is engaged to allow bypass of the
adducted base in the template strand (black). The resultant DNA double-strand break is thought to be repaired
by homologous recombination, whereas the monoadduct is removed by NER.
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however. Trujillo and colleagues described four
patients with 15q13.3 microdeletion involving
seven genes but causing biallelic deletion of
FAN1 associated with undetectable levels of
FAN1 protein (Trujillo et al. 2012). These pa-
tients did not have FA or hematological prob-
lems but rather a complex developmental dis-
order; a likely consequence of the multigenic
nature of the microdeletion typical of multiple
genomic disorders (Colnaghi et al. 2011). Fur-
thermore, despite these patient cells having a
profound defect in FAN1 expression, they did
not fall within the FA range in the standard DEB
diagnostic assay or show pronounced G2 arrest
typical of FA cells treated with ICL agents, only
showing modest sensitivity to killing by ICL-
forming agents compared with other FA cells
(Trujillo et al. 2012). These findings are sugges-
tive of a backup and/or alternate role for FAN1
in FANC pathway-mediated ICL repair in def-
erence to other nucleases.

Using a combination of homozygosity map-
ping and exome sequencing in an attempt to
identify novel nephronophthisis (NPHP)-relat-
ed ciliopathy genes, multiple congenital defects
in FAN1 were unexpectedly identified recently
in several families showing karyomegalic inter-
stitial nephritis (KIN) (Zhou et al. 2012). KIN is
a rare NPHP-like chronic kidney disease caused
by renal tubular degeneration and fibrosis, but
specifically also associated with renal cell kar-
yomegaly (enlarged nuclei) (Burry 1974; Mi-
hatsch et al. 1979). Interestingly, polyploidy is
not restricted to renal tissue in KIN patients
but is often also observed in the lung, liver,
and brain (Spoendlin et al. 1995; Monga et al.
2006). Lymphoblast and fibroblast cell lines
from FAN1-mutated KIN patients showed hy-
persensitivity to killing and elevated chromo-
some aberration formation in response to ICL-
forming agents, although quantitatively less so
than cells from FANCA and FANCD2 patients
(Zhou et al. 2012). Why impaired FAN1 func-
tion results in a chronic kidney disease in hu-
mans rather than FA is unclear but may have
some origin in the relatively distinct/nonover-
lapping tissue-specific expression of FA genes
such as FANCD2, compared with FAN1 (Zhou
et al. 2012). Of note, other defects in genes with

known (MRE11, CEP164) or proposed roles in
the DNA damage response (DDR) and/or cell
cycle (ZNF423) have also recently been suggest-
ed to underlie NPHP (Chaki et al. 2012). The
precise pathomechanism associating these de-
fects specifically with chronic kidney disease in
humans is currently unclear.

NOVEL DISORDERS OF IMPAIRED DDRs

The repair of DNA damage is intimately coor-
dinated with complex interconnected signal
transduction pathways enabling fundamental
processes such as DNA damage detection and
localized chromatin remodeling to facilitate
cell-cycle checkpoint activation, DNA repair,
and apoptosis induction. See the accompanying
article on DNA repair in the context of chro-
matin by Genevieve Almouzni. Over the last
decade, SUMOylation and ubiquitination have
joined phosphorylation as essential posttrans-
lational modifications of the DDR network
(Cohn and D’Andrea 2008; Bekker-Jensen and
Mailand 2010; Zlatanou and Stewart 2010; Xu
and Price 2011). Subsequently, several disorders
have emerged with congenital defects in key
players in some of these events. The reader is
referred to Marechal and Zou (2013) and Sirbu
and Cortez (2013) for detailed descriptions
of the signal transduction mechanisms involved
in DNA damage detection and processing in
mammals.

Microcephalic Primordial Dwarfisms and the
DDR: Seckel Syndrome and Microcephalic
Osteodysplastic Primordial Dwarfism Type II

Microcephalic primordial dwarfism (MPD) is
the collective term for a family of clinically over-
lapping conditions typified by profound intra-
uterine and postnatal growth delay, severe mi-
crocephaly, and variable skeletal abnormalities
from the subtle (clinodactyly, brachydactyly)
to the overt (kyphosis, absent patellae). Two
notable examples include Seckel syndrome
(SS) and microcephalic osteodysplastic primor-
dial dwarfism type II (MOPDii) (Seckel 1960;
Majewski et al. 1982; Hall et al. 2004).
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ATR-ATRIP SS

SS is an MPD usually presenting with symmet-
ric dwarfism with disproportionate microceph-
aly. The first genetic defect identified in SS
was a nonsynonymous missense mutation in
ATR, the gene encoding aaxia telangiectasia
and Rad3-related protein, the apical protein ki-
nase of the DDR (O’Driscoll and Jeggo 2003;
O’Driscoll et al. 2003; Cimprich and Cortez
2008). This mutation, identified by a homozy-
gosity mapping approach, was found in five
individuals from two related families (Goodship
et al. 2000; O’Driscoll et al. 2003). The mutation
caused variable missplicing of exon 9. This splic-
ing mutation was modeled in the mouse germ-
line creating an animal that recapitulated all of
the SS clinical features observed in the index
case, and more (e.g., pancytopenia) (Murga et
al. 2009). This Atr-SS mouse model also pro-
vided clear evidence for the role of ATR during
embryonic development, intrauterine program-
ming, and the preservation of stem cell niches
(O’Driscoll 2009b, 2009a). Recently, two more
ATR-mutated SS individuals have been de-
scribed, each with the same compound hetero-
zygous mutations in ATR (Ogi et al. 2012). These
defects were identified on a candidate-based ap-
proach following careful analysis of multiple
ATR-dependent DDR end points. These ad-
ditional patients further help define the clinical
spectrum of ATR deficiency in humans, the most
consistent feature being a severe disproportion-
ate microcephaly, even relative to the markedly
reduced body size.

ATR stably interacts with ATR-interacting
protein (ATRIP) as part of the DDR, and gene
knockdown approaches have shown that ATRIP
deficiency phenocopies ATR deficiency (Cortez
et al. 2001). The first example of congenital
deficiency of ATRIP has also been described re-
cently in a SS individual (Ogi et al. 2012). This
defect was identified by a candidate-based ap-
proach. ATRIP-SS cells show defective ATR-de-
pendent DNA damage signaling (e.g., gH2AX,
pCHK1) and impaired G2-M cell-cycle check-
point activation. In contrast to ATR-mutated
individuals, the skeletal system was not dispro-
portionately impacted here. Interestingly, MRI

imaging did catalog an abnormal pituitary,
which could be relevant to the severe growth
delay.

PCNT and Microcephalic Osteodysplastic
Primordial Dwarfism Type II

MOPDii as a clinical diagnosis is usually distin-
guished from other MPDs such as SS by virtue
of its presentation as an asymmetric dwarfism
and disproportionate short limbs with a more
marked skeletal involvement (Hall et al. 2004).
Nevertheless, this distinction is often not obvi-
ous as it can be very much age dependent. The
first, and as yet to date, only genetic defect iden-
tified for MOPDii is that of PCNT, the gene
encoding pericentrin, a large centrosomal pro-
tein, likely with a structural role therein (Griffith
et al. 2008; Rauch et al. 2008). PCNT-mutated
patient cells show altered microtubule spindles
and supernumerary centrosomes. Homozygos-
ity mapping of consanguineous families again
played a vital role in gene identification here.
Interestingly, these cells were also shown to
be impaired in ATR and CHK1-dependent hy-
droxyurea (HU)-induced 53BP1 foci forma-
tion as well as defective ATR-dependent G2-M
checkpoint activation, cellular features of ATR/
ATRIP-SS (Griffith et al. 2008). It has been sug-
gested that these defects have their origin at the
level of CHK1 recruitment to and CDK1-Cyclin
B activation at the centrosome (Griffith et al.
2008; Tibelius et al. 2009).

Congenital defects in multiple genes encod-
ing proteins that localize to or function at the
centrosome and microtubule spindles have
been described in SS and primary microcepha-
ly individuals (Bond et al. 2002; Trimborn
et al. 2004; Bond et al. 2005; Al-Dosari et al.
2010; Barr et al. 2010; Bilguvar et al. 2010;
Guernsey et al. 2010; Nicholas et al. 2010; Yu
et al. 2010; Kalay et al. 2011; Sir et al. 2011;
Hussain et al. 2012; Vulprecht et al. 2012). In-
terestingly, some of these defects have also been
shown to be associated with impaired ATR-de-
pendent DDR (Alderton et al. 2006; Smith et al.
2009).

Qvist and colleagues recently described nov-
el defects in RBBP8, the gene encoding CtIP, in
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two families, one with SS and the other with a
diagnosis of Jawad syndrome (microcephaly,
mental retardation, digital abnormalities) (Kel-
ly et al. 1993; Qvist et al. 2011). CtIP mediates
resection of DNA DSBs to facilitate repair. See
Rothstein (2013) and Jasin (in press) on the
repair of strand breaks by HR. The dominant
CtIP defects described here result in a failure to
generate single-stranded DNA (ssDNA) follow-
ing damage resulting in an acquired functional
defect in ATR-signaling, because replication
protein A (RPA)-coated ssDNA is the means
through which ATR is recruited to DNA (Zou
and Elledge 2003; Qvist et al. 2011). These find-
ings are consistent with the previous descrip-
tion of an ATR-dependent checkpoint defect
in cells from this SS family, further reinforcing
the pathophysiological link between a compro-
mised ATR-dependent DDR and MPD (Alder-
ton et al. 2004).

Interestingly, PCNT-mutated MOPDii has
been found to result in a severe insulin-resistant
form of diabetes (Huang-Doran et al. 2011).
This has implications for understanding the
clinical presentation of this condition as well
as patient management. It is unclear whether
this is also a general feature of ATR/ATRIP-SS,
although the Atr-SS mouse model did show a
depressed somatotroph axis (Murga et al. 2009).
Whether these features have an origin in im-
paired DDR or repair, similar to that described
above for XFE progeria, ERCC1-COFS, and
even CS, is certainly a possibility.

ATR and Autosomal Dominant
Oropharyngeal Cancer Syndrome

Tanaka and colleagues recently described an un-
usual disorder comprising oropharyngeal can-
cer, pronounced dermal telangiectasias, and
dental caries in 24 individuals from a large
five-generation Caucasian pedigree originating
from Indiana, United States (Tanaka et al. 2012).
Homozygosity mapping identified the causal
gene, unexpectedly, as ATR. Patients were het-
erozygous for a missense mutation in a highly
conserved residue (p.Gln2144Arg) in the FAT
domain of ATR. In contrast to ATR-SS, this mu-
tation did not affect ATR expression, although

patient fibroblasts showed mildly attenuated
ATR-dependent phosphorylation of CHK1 and
H2AX as well as reduced p53 accumulation fol-
lowing treatment with HU. Interestingly, loss of
heterozygosity for the ATR locus was observed in
the oropharyngeal tumor tissue. This syndrome
represents the first example of germline muta-
tion in ATR associated with a cancer syndrome
representing a novel clinical outcome of im-
paired ATR function (Tanaka et al. 2012).

How ATR dysfunction in this context con-
tributes to these clinical features is unclear. No
malignancies have been reported in ATR/AT-
RIP-SS, although there are still too few cases
to allow any conclusions to be drawn. But, the
Atr-SS mouse model shows a conspicuous ab-
sence of tumors (Murga et al. 2009). In fact,
crossing this strain into a p532/2 background
revealed an unexpected synthetic lethality
(Murga et al. 2009). This serendipitous finding,
with its origin in modeling the human syn-
drome in mouse, is now being pursued from
the perspective of ATR small molecule kinase
inhibitors and their potential selective effica-
cy against p53-defective cancers (Toledo et al.
2011a,b).

RAD50 and Nimegen Breakage
Syndromelike Disorder

The MRE11/RAD50/NBS1 (M/R/N) complex
functions to tether DSBs and plays a role in
optimal ATM activation at the site of the
break. Defective ATM causes ataxia telangiecta-
sia (A-T), a progressive neurodegenerative con-
dition associated with immune dysfunction and
elevated cancer incidence, specifically for lym-
phoma and leukemia (Lavin 2008). Pathogenic
mutations in MRE11A, encoding MRE11, result
in A-T-like disorder (A-T-LD), an attenuated
form of A-T with mild ataxia and generally
no evidence of malignancy (Taylor et al. 2004).
Pathogenic mutations in NBN (previously
termed NBS1), encoding NBS1, cause Nijme-
gen breakage syndrome (NBS). This disorder
is characterized by growth retardation, micro-
cephaly, combined immunodeficiency, and ele-
vated lymphoma predisposition (Digweed and
Sperling 2004). Cells from A-T, A-T-LD, and
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NBS all show sensitivity to killing by ionizing
radiation, compromised DSB repair—specif-
ically at heterochromatin, attenuated ATM-de-
pendent phosphorylation of key substrates
including p53, CHK2, SMC1, and KAP1 as-
sociated with impaired checkpoint activation
following DSB formation. Recently, Waltes and
colleagues described the first and as yet to date,
only case of congenital deficiency in RAD50 in a
single individual with a working clinical diag-
nosis of an NBS-like disorder (Waltes et al.
2009). The patient displayed growth retardation
and microcephaly typical of NBS as well as the
characteristic chromosome 7-14 translocation.
But, no evidence of lymphoid malignancy or
immune dysfunction was obvious up to 23 years
of age. Cells from the RAD50-mutated patient
were ionizing radiation sensitive, failed to form
M/R/N foci following DSBs, showed impaired
checkpoint activation, reduced ATM-depen-
dent substrate phosphorylation (e.g., pSer15-
p53, pSer957-SMC1, and pSer343-NBS1), and
extremely low levels of RAD50 (Waltes et al.
2009).

RNF168-Deficiency Syndrome

In recent years, ubiquitination and SUMOyla-
tion have emerged as fundamental posttrans-
lation modifications orchestrating DSB repair.
The RING finger E3-ubiquitin ligases RNF8
and RNF168, together with the HECT-do-

main-containing HERC2 ubiquitin ligase, se-
quentially ubiquitinate histones at DSBs, en-
abling the localized recruitment of factors
such as 53BP1 and BRCA1 (Bekker-Jensen and
Mailand 2010). Stewart and colleagues identi-
fied an individual with two truncating muta-
tions in RNF168 associated with a disorder of
hypogammaglobulinemia, short stature, mild
motor impairment, and intellectual disability
that they termed RIDDLE syndrome: radio-
sensitivity, immunodeficiency, dysmorphic fea-
tures, and learning difficulties (Fig. 5) (Stewart
et al. 2007, 2009). The inability of these patient
cells to form IR-induced 53BP1foci led direct-
ly to the identification of the genetic defect in
RNF168, based on candidates identified in a pre-
viously published siRNA screen (Kolas et al.
2007; Stewart 2009). A subsequent Rnf1682/2

mouse model has provided evidence for a role of
RNF168 in V(D)J and CSR (Bohgaki et al. 2011).

Devgan and colleagues recently identified
the second known individual with a genetic de-
fect in RNF168 (Devgan et al. 2011). In contrast
to the RIDDLE syndrome case, this patient pre-
sented with complex condition associated with
ataxia, ocular, and bronchial telangiectasia, but
also with microcephaly, short stature, low IgA,
and normal intelligence. This individual was
homozygous for a primary truncating muta-
tion downstream from the RING domain but
upstream of the two MIU domains (motif in-
teracting with ubiquitin) of RNF168 (Fig. 5).
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Because at least one of the MIU domains is pre-
served in the RIDDLE syndrome individual,
Devgan and colleagues have proposed this as
a potential mechanism to explain the clinical
distinctions between these two RNF168-mutat-
ed individuals (Devgan et al. 2011). Collectively,
these cases indicate that impaired RNF168
function impacts not only the immune system,
where programmed DSB formation is a prereq-
uisite for normal development, but also neuro-
genesis (microcephaly) and neuronal function
(ataxia).

CONCLUDING REMARKS

The identification of congenital disorders of
DNA repair and the DDR provides irrefutable
evidence that the networks governing genomic
stability are fundamentally important not only
to prevent malignant transformation and neu-
rodegeneration, but also, depending on context,
for normal growth, development, neurogenesis,
and immune system development.

In this overview, I have briefly reviewed only
some of the key disorders described within the
last decade, giving a flavor of the progress in this
important area of the DNA repair field. But,
there have been other exciting developments
concerning congenital human disorders that I
have not covered here. For example, growing
evidence suggests that impaired genomic stabil-
ity is associated with certain genomic disorders
caused by gene copy number variation (CNV)
(Colnaghi et al. 2011; Harvard et al. 2011; Out-
win et al. 2011; Kerzendorfer et al. 2012). CNVs
are a major cause of human congenital disor-
ders (Lupski 2007; Hastings et al. 2009; Stankie-
wicz and Lupski 2010). The implications for
DNA repair and DDR pathways in this context
merits closer attention. There already exists tan-
talizing evidence to suggest that these pathways
are sensitive to gene dosage (O’Driscoll 2008;
Cabelof 2012; Depienne et al. 2012).

Congenital defects in the DNA replication
licensing machinery have recently been identi-
fied in Meier-Gorlin syndrome (MGS), a MPD
often associated with marked skeletal involve-
ment (Gorlin et al. 1975; Ahmad and Teebi
1997; Bongers et al. 2001a,b, 2005; Bicknell

et al. 2011a,b; Guernsey et al. 2011; de Munnik
et al. 2012). Interestingly, mutations in MCM4
have been described in a clinically distinct syn-
drome of adrenal insufficiency growth retarda-
tion and selective natural killer cell deficiency
(Casey et al. 2012; Gineau et al. 2012; Hughes
et al. 2012). These human phenotypes are quite
distinct to the mouse Mcm4Chaos3 allele (Shima
et al. 2007). How can we explain these distinc-
tions? What are the implications for these and
MGS patients concerning cancer predisposi-
tion, or if cancer were to develop in this context,
how would it be best treated? As our knowledge
of the mechanics of these pathways grows, we
will undoubtedly uncover more and more dis-
orders. It is hoped that with the promising ex-
citing potential of exome sequencing and geno-
mic medicine we will be in a position to better
diagnose and manage these conditions. Cur-
rently, congenital defects in DNA damage-in-
duced ubiquitination and SUMOylation path-
ways appear to be underrepresented. It will be
very interesting to observe how such conditions
present clinically, and how this presentation will
hopefully also inform on pathway function.
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