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Abstract

Study Objectives—Pharyngeal muscle dilators are important in obstructive sleep apnea
pathogenesis because the failure of protective reflexes involving these muscles yields pharyngeal
collapse. Conflicting results exist in the literature regarding the responsiveness of these muscles
during stable non-rapid eye movement sleep. However, variations in posture in previous studies
may have influenced these findings. We hypothesized that tongue protruder muscles are
maximally responsive to negative pressure pulses during supine sleep, when posterior tongue
displacement yields pharyngeal occlusion.

Design—We studied all subjects in the supine and lateral postures during wakefulness and stable
non-rapid eye movement sleep by measuring genioglossus and tensor palatini electromyograms
during basal breathing and following negative pressure pulses.

Setting—Upper-airway physiology laboratory of Sleep Medicine Division, Brigham and
Women’s Hospital.

Subjects/Participants—17 normal subjects.

Measurements and Results—We observed an increase in genioglossal responsiveness to
negative pressure pulses in sleep as compared to wakefulness in supine subjects (3.9 percentage of
maximum [%max] + 1.1 vs 4.4 %max * 1.0) but a decrease in the lateral decubitus position (4.1
%max = 1.0 vs 1.5 %max + 0.4), the interaction effect being significant. Despite this augmented
reflex, collapsibility, as measured during negative pressure pulses, increased more while subjects
were in the supine position as compared with the lateral decubitus position. While the interaction
between wake-sleep state and position was also significant for the tensor palatini, the effect was
weaker than for genioglossus, although, for tensor palatini, baseline activity was markedly reduced
during non-rapid eye movement sleep as compared with wakefulness.

Conclusions—We conclude that body posture does have an important impact on genioglossal
responsiveness to negative pressure pulses during non-rapid eye movement sleep. We speculate
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that this mechanism works to prevent pharyngeal occlusion when the upper airway is most
vulnerable to collapse eg, during supine sleep.
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INTRODUCTION

THE MECHANISMS GOVERNING PHARYNGEAL PATENCY ARE CLEARLY
IMPORTANT, AS THEIR FAILURE LEADS TO PHARYNGEAL COLLAPSE
MANIFESTING AS OBSTRUCTIVE SLEEP APNEA (OSA).l‘3 OSA is a common
disease with important neurocognitive and cardiovascular sequelae.* One of the major
factors contributing to the loss of pharyngeal patency during sleep is thought to be the
failure of upper-airway reflexes.”® One such reflex, the negative pressure reflex (NPR),
describes a robust activation of the pharyngeal dilator muscles (primarily the genioglossus
muscle) in response to negative pharyngeal pressure.®-10 Most, but not all, data suggest that
this reflex is largely attenuated at sleep onset leaving the pharyngeal airway vulnerable to
collapse in those anatomically predisposed.

Pharyngeal dilator muscles have been broadly classified into tonic (constant activity
throughout the respiratory cycle eg, tensor palatini) and phasic (bursts of activity with
inspiration eg, genioglossus). The tensor palatini is thought to stiffen the palate and lower
velopharyngeal resistance, whereas the genioglossus is a tongue protruder that prevents
pharyngeal collapse when the tongue is moving in a posterior direction.11:12 Multiple factors
may modulate the activity of these muscles including cortical (behavioral) activity, the
wakefulness drive to breathe, medullary respiratory central pattern generator activity, local
mechanoreceptive influences, chemoreceptive reflexes, respiratory premotor inputs, and
several different neurochemicals in the brain stem.13-17 However, the role of each of these
factors on pharyngeal motor control in sleeping humans remains unclear.

The available literature regarding the responsiveness of pharyngeal muscles during sleep is
inconsistent.18-21 During physiologic experiments, the majority of studies have shown
minimal responsiveness of these muscles to various mechanoreceptive and chemoreceptive
stimuli during non-rapid eye movement (NREM) sleep.”8:22 On the other hand, when the
natural behavior of these muscles is studied, important increases in muscle activity are
observed in normal subjects between the onset of sleep and stable NREM sleep and, in
patients with OSA, during obstructive apneas.2-23 Both are situations in which
intrapharyngeal negative pressure is increasing with the muscles seemingly responding to
the incrementing pressure. Why the muscle responds in one situation and not the other is
unclear. However, most of the physiologic studies described above were conducted in the
lateral decubitus posture, whereas the natural behavior was tested in supine subjects. These
apparently discordant data led us to speculate that differences in body position might be
important in modulating negative pressure responsiveness. In theory, the NPR should be
most active when the airway is most vulnerable to collapse (eg, supine posture) and less
active when the airway is relatively protected from collapse (eg, lateral decubitus posture).
In particular, the genioglossus muscle may be more sensitive to relevant stimuli when the
sleeper is in a body position that facilitates airway obstruction by the tongue (supine
position). On the other hand, the tensor palatini, which serves to stiffen the palate, may be
equally important in preserving pharyngeal patency in all positions. We therefore elected to
test this hypothesis.
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The responsiveness of the genioglossus (in contrast to the tensor palatini) to negative
pressure stimulation during stable NREM sleep will be greater in the supine as compared to
the lateral decubitus posture.

Seventeen normal subjects (Table 1) underwent recordings during wakefulness and NREM
sleep. Each subject underwent a thorough history and physical examination by an attending
physician and was found to be completely healthy and on no medications. All
premenopausal women studied were in the follicular phase of the menstrual cycle (by
history). Informed consent was obtained from each participant, with the protocol having the
prior approval of the Human Subjects Committee of the Brigham and Women’s Hospital.

Instrumentation and Techniques

Using the standard techniques of our laboratory,24-26 the following signals were recorded:
wakefulness and sleep with electroencephalography, electrooculography, and submental
electromyography (EMG); mask pressure via nasal mask (Healthdyne Technologies,
Marietta, GA) and a differential pressure transducer (Validyne Corp); choanal (PCHO) and
epiglottic (PEPI) pressures (MPC-500, Millar catheters, Houston, Tex); genioglossus
(GGEMG) and tensor palatini (TPEMG) intramuscular EMGs (using paired unipolar
electrodes, referenced to a common ground electrode placed on the forehead, quantified as
percentage of maximum [%max]); and inspiratory flow with a pneumotachometer (Fleisch,
Inc., Lausanne, Switzerland) and a differential pressure transducer (Validyne Corp.,
Northridge, Calif.).

Subjects’ lips were taped shut, and they were instructed to breathe exclusively through the
nose. Further, they were carefully monitored to ensure that the mouth remained closed.
Mask leak was detected by CO, sampling, as previously described.28

Each negative pressure pulse (NPP) was rapid and generated — 8 to —12 cmH,0 pressure at
the choanae, with a goal of =10 cmH,O. All recordings were signal averaged to generate a
representative stimulus (PCHO) and response (GGEMG or TPEMG) for analysis.
Collapsibility was quantified as the pressure difference between the choanae and the
epiglottis during the NPP.27 In theory, a perfectly rigid airway would transmit all of the
pressure from the choanae to the epiglottis during a NPP applied nasally. On the other hand,
a highly collapsible airway would transmit essentially none of the pressure from the choanae
to the epiglottis during a nasally applied pulse. This technique ignores the resistive pressure
drop related to airflow, which is small during a rapid pulse that induces airway occlusion.
We have previously validated this technique and shown that the spectrum of pharyngeal
collapsibilities can be quantified as a function of this pressure difference (PCHO minus
PEPI). To equate stimulus magnitude, we normalized this measure of collapsibility for the
level of applied negative pressure:

Collap51b1hty=[(PCHO—PEPI)/PCHO] X 100’ as previous|y reported_27

As the genioglossus is a phasic muscle (bursts with inspiration), 3 levels of activity are
reported during basal breathing: tonic (during expiration), peak phasic (peak inspiration),
and phasic (peak phasic minus tonic). The tonic activity is the expiratory EMG activity and
is thought to be critical in preventing pharyngeal collapse at end expiration, while the phasic
activity represents respiratory premotor plus NPR-mediated neural input to the genioglossus
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muscle. The peak phasic activity represents the aggregate of all inputs to genioglossus
activation and is likely to be important in preventing collapse at midinspiration. As the
tensor palatini is a tonic muscle, 1 measure, indicating average level of activity throughout
the respiratory cycle, is reported. During the NPPs, both muscles show an increase in
activity that we characterize as a “AGG or ATP” and as a percentage increase in GGEMG
or TPEMG. These values characterize the magnitude of the neural reflex response.

Study Protocol

RESULTS

Subjects reported in the evening and then were fully instrumented. During wakefulness,
basal breathing (5 minutes) followed by NPPs in the lateral decubitus and supine postures
were recorded (20 to 30 pulses in each position). Subjects were then allowed to fall asleep,
and the basal breathing and NPPs were again quantified during stable NREM sleep. During
sleep, once the recording was completed in 1 posture, the subject was awoken, the posture
was changed, and the recording resumed once stable NREM sleep was achieved. The order
of the postures both awake and asleep was randomly assigned.

Each variable, both from the baseline and NPP response data, were analyzed ina 2 x 2
analysis of variance (ANOVA) with repeated measures on each factor, the 2 factors being
Body Position (supine and lateral) and Sleep-Wake State (awake and asleep). Thus the 2 x 2
ANOVASs provided testing of significance for state effects (ie, wake vs sleep), posture
effects (ie, supine vs lateral), and their interaction (ie, state/posture). Nonnormally
distributed variables were log transformed for analysis. For 4 subjects, missing data points
occurred during sleep, requiring us to censor the data points and to reduce the degrees of
freedom accordingly. For analysis purposes, missing values were interpolated using the
cross-product of the subject’s wake values and the group trend during sleep. This statistical
approach to missing data points has been validated and accepted in the statistical literature.2
However, we did also run paired #tests on the values obtained during sleep with very similar
results. Only the ANOVA results are presented in the manuscript. Results are presented as
mean + SD, with £< .05 being considered statistically significant.

Baseline Measurements

Ventilation and airflow were lower during baseline sleep, compared to baseline wakefulness
(see Table 2). The lower ventilation was associated with higher airway resistance in the
nasal and pharyngeal airways. However, sleep-wake state did not affect respiratory timing.
While body position had somewnhat less of an effect, airflow, nasal negative pressure, and
duty cycle were significantly greater in the lateral position, while PMASK was less negative
(data not shown). Only ventilation showed a significant interaction between sleep-wake state
and body position, with the sleep-related reduction in ventilation being greater in the supine
position. Thus, in general, ventilation and airway patency were the same in the 2 body
positions but were reduced by sleep.

Baseline peak phasic, phasic, and tonic GGEMG activity were influenced by body position,
with the muscle being more active in the supine position both awake and during NREM
sleep. Further, there was a tendency for this difference to be greater during sleep than during
wakefulness, the interaction effect being significant for the phasic component of the muscle
(see Table 2). Finally, baseline TPEMG fell markedly during sleep but was not influenced
by body position.
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Responses to NPP

The effect of the NPP stimulus on the upper airway was complex (Table 3, Figure 1). The
pharyngeal airway was more collapsible in response to the negative pressure stimulus when
subjects were in the supine as compared to the lateral position and during sleep as compared
to wakefulness. There was also a significant interaction between sleep-wake state and
position, with sleep having a greater effect on collapsibility in the supine position. Further,
the main effects remained significant when collapsibility was normalized for stimulus
strength (collapsibility as a percentage of applied PCHO), although the interaction effect
was no longer significant.

Administration of the NPP stimulus produced a transient increase in activity for both
GGEMG activity (AGGEMG) and TPEMG activity (ATPEMG). We did not observe
inhibition of either muscle in response to the NPP stimulus. For the GGEMG, the response
was of the same magnitude in the 2 body positions when subjects were awake. However,
during sleep, the response increased in the supine, and decreased in the lateral position,
resulting in significant interaction and position effects (see Table 3 and Figure 2, Panel B).
In anticipation of the possibility that the GGEMG response during sleep might be a function
of a variable baseline level, AGGEMG was expressed as a percentage of the baseline level
(%increase). This statistic also showed a significant interaction effect (see Table 3 and
Figure 2, Panel C). Indeed, inspection of the data indicates that both baseline GGEMG
activity and the response to the NPP were greatest in the supine sleep condition. Thus, the
greater responsiveness of GGEMG when subjects were asleep in the supine position was not
likely to be due to differences in baseline activity levels.

TPEMG did not show significant body position, or sleep-wake state, effects in response to
the NPP, although there was a significant interaction effect, with TPEMG response to NPP
falling to a greater extent during sleep in the lateral position (see Figure 3, Panel B).

DISCUSSION

The major finding of this study was the greater responsiveness of GGEMG to negative
pressure during sleep when subjects were in the supine position. Despite the augmentation
of this protective reflex, pharyngeal collapsibility was significantly increased during supine
sleep. Tensor palatini activity fell substantially from wakefulness to sleep but showed
relatively minor positional effects from the standpoint of reflex activity. The observations of
this study are important as they may explain some of the discordance in the existing
literature regarding the responsiveness of pharyngeal dilator muscles during NREM sleep. In
addition, the observed posture effects lead to interesting speculation regarding mechanism.

While some previous papers have suggested a marked attenuation of the reflexes important
in controlling the pharyngeal dilator muscle during stable NREM sleep, others have implied
the opposite. Following the original description of the NPR in humans, both Horner’ and
Wheatley?? independently found minimal responsiveness of upper-airway muscles to NPPs
during NREM sleep. Subsequently, Malhotra et al® reported a markedly reduced
responsiveness of these muscles to the negative pressures generated during inspiratory
resistive loading compared to a robust response observed during wakefulness. Similarly,
Pillar et al'# investigated the chemoreceptor sensitivity of upper-airway muscles, and despite
an augmentation of ventilation, there was no important increase in pharyngeal dilator muscle
activation with increased inspired CO, during stable NREM sleep. All of these studies were
done in the lateral posture. On the other hand, Basner et al30 observed increased GGEMG in
5 normal subjects during slow-wave sleep, compared with stages 1 and 2 NREM sleep in the
supine posture, although the stimulus for this increase was unclear. Similarly, Worsnop et
al?3 observed increased GGEMG within 3 to 7 breaths of the alpha-theta transition in supine
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healthy men, although the mechanism mediating this recovery in activity was again not
defined. In patients with OSA who were in the supine position, Berry and colleagues? have
reported locally mediated increases in muscle activity during apneic events prior to arousal.
Finally, Stanchina et al3! have recently reported responsiveness of the genioglossus muscle
to the combination of mechanoreceptive and chemoreceptive stimuli during stable NREM
sleep in the lateral position. However, the muscle responded to neither stimulus alone.

The data of the present study bring some clarity to this literature as they demonstrate an
important effect of body position on the responsiveness of upper-airway reflexes. Thus,
some confusion in the existing literature can be resolved as a result of this new information.
In addition, the responsiveness of the upper-airway muscles during supine sleep in normal
subjects needs to the integrated into the working models on the pathogenesis of pharyngeal
collapse.

One potential interpretation of the above studies is that upper-airway muscles become
responsive to stimuli when the pharynx is vulnerable to collapse. For example, during supine
NREM sleep, when the upper airway is most dependent on upper-airway muscles for the
maintenance of pharyngeal patency, muscle responsiveness to protective reflexes is
maximal. Similarly, when multiple challenges are presented to the upper airway (eg, CO»
plus negative pressure in normals or anatomic compromise plus negative pressure in patients
with OSA), the muscles again become responsive. However, the mechanisms underlying
these observations are unclear. There is teleologic appeal to the concept that upper-airway
reflexes are relatively quiescent in normal subjects in the lateral posture, since the
propensity for upper-airway collapse is minimal. Conversely, when the pharynx is
vulnerable to collapse during supine NREM sleep, the protective reflexes are maximally
active. Another way of interpreting these data would be that the genioglossus reflexes are
maximal when tongue protrusion is critical to preventing pharyngeal collapse (supine
posture). On the other hand, tongue protrusion is unlikely to be an effective method of
maintaining pharyngeal patency in the lateral position. Recent research has shown that
motor units tend to recruit maximally when a muscle is mechanically advantaged, as would
be the case for the genioglossus in the supine posture.32 During wakefulness, when there are
behavioral demands such as speech and swallowing that may require a more complex
control system, such distinctions may become less relevant.

There are several mechanisms by which body or head position could be perceived. These
include local receptors within the upper airway (eg, muscle spindles) or, potentially, the
vestibular nervous system that is involved in postural perception.33 Because we observed no
significant difference in the pharyngeal resistance or level of negative pressure within the
upper airway as a function of position, we doubt that local upper-airway phenomena were
important in mediating the positional effect. However, we have no direct proof of this
vestibular hypothesis. Animal experiments indicate that stimulation of the vestibular nerve
leads to a substantial increase in genioglossal activation.3* Along these lines, manipulations
in head position led to important changes in genioglossus responsiveness in the cat.3° Thus,
the vestibular system can interact with the upper-airway control mechanisms.3> However, in
the present study, pharyngeal collapsibility remains higher in the supine posture despite this
augmented reflex, suggesting that this posture-related adaptation is incomplete, although
present. Despite the fact that the loss of the NPR during sleep is thought to be a major
mechanism involved in OSA pathogenesis,! the concept of reflex augmentation as a new
therapeutic target remains untested.

Given the findings of the present study, the fall in GGEMG activity that has previously been
reported in both patients with OSA and normal individuals during the wake-sleep (alpha-
theta) transition becomes somewhat difficult to explain. We and others36 have previously
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speculated that the large fall in GGEMG activity observed at the alpha-theta transition is a
result of the loss of this protective reflex. Several possible explanations for these apparently
discordant findings exist. First, several authors37-38 have reported impairment in upper-
airway sensation in patients with OSA compared to controls. This would imply that the
behavior of these reflexes may be different in patients with OSA as compared to healthy
subjects. Second, some have argued that the neurochemical milieu in the brainstem of the
patient with OSA may have important differences from that of healthy subjects (eg, with
respect to serotonin).3? Thus upper-airway reflexes mediated via the brainstem could behave
differently in these 2 different populations (patients versus controls). Third, because our
observations are limited to stable NREM sleep, we can only speculate about the wake-sleep
transition. Because many of the neurochemical events that occur during sleep have a gradual
time course, there is ample reason to believe that the wake-sleep transition and stable NREM
sleep may be very different neurobiologic states. Fourth and finally, there are many factors
contributing to muscle activity during wakefulness, including the wakefulness drive to
breathe, respiratory premotor neurons, the NPR, and chemoreceptive inputs among
others.28:40 In theory, the fall in GGEMG that occurs in patients with OSA and normal
subjects may reflect the loss of 1 or all of these inputs rather than the NPR alone. Indeed, the
pattern reported by Worsnop et al,2% in which GGEMG activity fell at the alpha-theta
transition and then rose several breaths later, suggests an initial loss of wakefulness drive,
with subsequent recruitment through the NPR. Further work is clearly needed to define the
relevance of our findings to the patient with OSA.

This study has a number of limitations. First, as our ultimate goal is to understand the
disease, OSA syndrome, one could argue that the investigation of healthy control subjects
has little relevance. However, by definition patients with OSA do not achieve stable NREM
sleep, limiting the feasibility of the present study in populations with this disease. In
addition, we believe that an improved understanding of normal pharyngeal motor control
will ultimately advance our understanding of the pathogenesis of OSA. Second, the
measurement of EMG as a percentage of maximum activity is potentially problematic due to
variability of effort during maximal maneuvers and inconsistent electrode placement. To
overcome this, we have analyzed the NPR data both as a percentage of maximum activity as
well as normalized to baseline during wakefulness. In addition, because our primary
hypotheses involved within-subject comparisons, these results were unaffected by the use of
percentage of maximum values. Third, one could argue that suction pressure applied nasally
is not a physiologic stimulus and that the upper-airway muscles could behave differently if
the pressure were generated diaphragmatically. Although we acknowledge this limitation,
we believe, based on prior work, that nasal or laryngeal mechanoreceptors will likely
respond to negative pressure similarly, regardless of the source of the pressure. In addition,
diaphragmatically generated negative pressure has a potentially confounding effect because
increased output from the central respiratory pattern generator affects both the phrenic nerve
and the hypoglossal nerve. However, we do plan to conduct future experiments using an
iron-lung model of passive ventilation to extend our current findings. Thus, despite these
limitations, we believe that the findings of our study are robust and importantly contribute to
our existing knowledge in this area.

CONCLUSIONS

The responsiveness of the pharyngeal dilator muscles to negative pressure stimulation is
augmented in the supine as compared to the lateral decubitus posture and in the supine
posture is largely maintained during stable NREM sleep. Although a number of
interpretations are possible, we believe that this reflex may alter responsiveness depending
on pharyngeal mechanics and the potential effectiveness of tongue protrusion. Further work
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necessary to determine whether the vestibular nervous system has any role in mediating

these findings.
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Figure 1.

Example of raw data showing the negative pressure reflex. The figure shows data from an
individual illustrating a pulse of negative pressure delivered during early inspiration in
stable non-rapid eye movement sleep. The choanal pressure reflects the magnitude of the
stimulus, while the epiglottic pressure reflects the extent to which the pressure pulse is
transmitted through the pharynx (measure of collapsibility). The reflex activity of the
genioglossus (GG) and tensor palatini (TP) is greater in the supine posture than in the lateral
decubitus position. As well, the pharynx is more collapsible supine since less of the choanal
pressure is transmitted in this position as compared with the lateral decubitus.
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Figure 2.

Genioglossus Group Data. This figure illustrates group data for genioglossus
electromyogram (GGEMG) activity during basal breathing (2A) and following negative
pressure pulses (NPP) expressed both as an absolute change (A, 2B) and as a percentage
increase (%increase) (2C). w refers to wakefulness; s, stable non-rapid eye movement sleep;
%maximum, percentage of maximum.
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3A: TPEMG during basal breathing
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Figure3.

Tensor Palatini Group Data. This figure illustrates group data for tensor palatini
electromyogram (TPEMG) activity during basal breathing (3A) and following negative
pressure pulses expressed both as an absolute change (A, 3B) and as a percentage increase
(%increase) (2C). w refers to wakefulness; s, stable non-rapid eye movement sleep;
%maximum, percentage of maximum.
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Subject Demographics

Table 1

Subject

© 00 N O O b~ W N P
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Age,y Sex BMI,kg/m?

36
33
35
25
25
22
57
25
29
30
24
28
25
26
23
26
31

F

L £ £ L L L L ETm MM oo

21.7
19.9
23.2
20.1
25.6
21.2
22.6
21.0
24.4
25.7
22.0
22.9
24.0
23.7
26.1
22.8
25.9

Mean + SD 29.4 + 8.2 23.1 + 2.0 F refers to female; M refers to male.
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