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Abstract
Functional neuroimaging studies have converged to suggest that cortico-striatal-thalamo-cortical
(CSTC) circuit dysfunction is a core pathophysiolologic feature of obsessive-compulsive disorder
(OCD). Now, complementary approaches examining regional neurochemistry are beginning to
yield additional insights regarding the neurobiology of aberrant CSTC circuitry in OCD. In
particular, proton magnetic resonance spectroscopy (1H-MRS), which allows for the in vivo
quantification of various neurochemicals in the CSTC circuit and other brain regions, has recently
been used extensively in studies of OCD patients. In this review, we summarize the diverse and
often seemingly inconsistent findings of these studies, consider methodological factors that may
help to explain these inconsistencies, and discuss several convergent findings that tentatively
appear to be emerging. We conclude with suggestions for possible future 1H-MRS studies in
OCD.
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INTRODUCTION
Obsessive-compulsive disorder (OCD) is an often-debilitating psychiatric illness with an
estimated lifetime prevalence of 2.3% in the United States (1). First-line treatments such as
selective serotonin reuptake inhibitors (SSRIs), cognitive-behavioral therapy (CBT), or their
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combination may benefit OCD, but many patients remain partially or completely refractory
to treatment (2). Notably, 30-50% of patients develop OCD starting in childhood (3), and
early-onset OCD may represent a more severe developmental subtype of the disorder (4).
Thus, it is critical to better elucidate the neurobiology of OCD, characterize its subtypes, and
improve treatment strategies.

Functional neuroimaging studies have converged to suggest that cortico-striatal-thalamo-
cortical (CSTC) circuit dysfunction is a core pathophysiolologic feature of OCD (5). In
OCD patients, the key nodes of this circuit, including orbitofrontal cortex (OFC), anterior
cingulate cortex (ACC), and striatum, exhibit apparent hyperactivity during neutral or
resting states (6–8), which is accentuated during symptom provocation (9–11) and
attenuated following successful treatment (12–15). Although some emerging data implicate
other brain regions in OCD (e.g., amygdala (16), hippocampus (17), etc.), the CSTC circuit
remains the prime focus of research.

Complementary approaches examining regional neurochemistry now promise additional
insights into the neurobiology of OCD. In particular, proton magnetic resonance
spectroscopy (1H-MRS) permits in vivo quantification of specific neurochemicals in various
brain regions. Using a magnetic field and a brief, tuned radio-frequency pulse, 1H-MRS
generates resonance signals from hydrogen nuclei (protons) in neurochemical molecules,
yielding a magnetic resonance spectrum with peaks unique to each molecule (Figure 1), and
where the strength of each resonance reflects the molecule's concentration.

The most commonly reported resonances in the 1H-MRS spectrum are N-acetylaspartate
(NAA); N-acetylaspartylglutamate (NAAG); creatine + phosphocreatine (total Cr or “tCr”);
choline-containing compounds including choline, phosphorylcholine, and
glycerophosphorylcholine (total Cho or “tCho”); myo-inositol (mI); glutathione (GSH);
lactate (Lac); and the amino acids glutamate (Glu), glutamine (Gln), and γ-aminobutyric
acid (GABA) (Figure 1). NAA, the most prominent 1H-MRS signal, is widely considered a
marker of neuronal integrity (18). NAAG appears to be involved in excitatory
neurotransmission and in glutamate synthesis (19). Due to their overlapping peaks, NAA
and NAAG are commonly expressed as a combined measure (total NAA or “tNAA”).
Creatine and phosphocreatine are high-energy compounds reflecting cerebral bioenergetics
(20). Choline-containing compounds, constituents of cellular membranes, may reflect
abnormal membrane turnover (20). Myo-inositol has been used most commonly as a glial
marker (20), but its exact significance remains unclear. Glutathione, an antioxidant,
preserves hemoglobin in the ferrous state and supports amino acid transport (20). Lactate
reflects mitochondrial function (20), but is still unexplored in OCD. Glu, Gln, and GABA
are critical regulators of neuronal excitation and inhibition and are integral to neuronal and
glial metabolism (21). The complex and overlapping multiplet structures of Glu and Gln
(and, to some extent, GABA) have been difficult to separately and reliably quantify. Thus,
until recently, Glu and Gln have been reported as a composite measure (termed “Glx”)
comprised primarily of Glu + Gln with minor contributions from GABA and
macromolecular resonances.

Below, we summarize available 1H-MRS studies measuring these neurochemicals in various
brain regions in OCD, discuss methodological factors that may explain inconsistencies
among studies, and suggest possible future 1H-MRS study strategies.

METHODS AND MATERIALS
Using the key words “magnetic resonance spectroscopy,” “obsessive-compulsive disorder,”
and “OCD,” we searched PubMed (http://www.ncbi.nlm.nih.gov/pubmed) for studies in
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English utilizing 1H-MRS to compare levels of various neurochemicals in OCD patients
versus healthy individuals or to examine changes following pharmacologic or psychosocial
treatment. We accepted both pediatric and adult OCD studies regardless of sample size or
brain regions studied, although we address these important factors below.

RESULTS
Twenty-eight studies met our criteria above; 20 compared neurochemical levels in OCD
patients vs. healthy individuals (see Table S1 in Supplement 1) and eight examined changes
in levels in patients following treatment with SSRIs or CBT (see Table S2 in Supplement 1).
Five of these eight studies also included a healthy comparison group to assess baseline
differences in levels.

Thirteen (46%) of the 28 studies examined pediatric OCD patients (see Tables S1 and S2).
Samples were often small; only eight studies (29%) evaluated more than 20 patients. All
studies excluded individuals with psychotic and substance-use disorders, but only nine
(32%) excluded all comorbid axis I disorders. Of 25 studies comparing OCD patients and
healthy individuals, 15 (60%) evaluated patients taking no psychiatric medications and 10
(40%) evaluated entirely medication-naïve patients.

Looking at 1H-MRS techniques, only four (14%) of 28 studies used field strengths ≥ 3 Tesla
(3T). Twenty-six (93%) examined regions within the CSTC circuit (basal ganglia, ACC,
OFC, thalamus). Twenty-one (75%) used single-voxel 1H-MRS with voxel sizes ≤ 8 cm3.
All studies examined tNAA, tCr, and tCho, but only 16 (57%) examined glutamate-related
neurochemicals (14 Glx only; 1 Glx and Glu; 1 Glu and Gln). Eleven (39%) used internal
references to tCr or tCho as the main quantification method.

N-acetylaspartate + N-acetylaspartylglutamate (tNAA)
Among 25 studies using healthy comparison individuals, 10 (nine adult, one pediatric)
reported significantly decreased tNAA within one or more brain regions in OCD patients (or
patient subgroups) vs. comparison individuals (Figure 2) (22–30). Of studies specifically
looking at ACC or caudate, 5/12 and 4/12, respectively, reported reduced tNAA in OCD.
One additional study (31) reported decreased tNAA in ACC approaching statistical
significance (p = .09). Five studies found increased tNAA levels in certain brain regions (27,
32–35), but only one of these (33) found increased tNAA in a CSTC region (left rostral
ACC), which then decreased significantly following 12 weeks of CBT. In contrast, another
study found significantly increased left caudate tNAA after CBT (36), and three studies
found tNAA unchanged after treatment with the SSRI paroxetine (37, 38) or CBT (39).

Glutamate-Related Neurochemicals (Glu, Gln, Glx)
Among 14 studies comparing Glx in OCD vs. healthy individuals, 2/8 reported significantly
decreased Glx in ACC (31, 40) and 1/3 reported increased Glx in OFC (35) (Figure 3). One
additional study (41), which lacked a healthy comparison group and was therefore not
included in our primary analysis, reported decreased ACC Glx in a genetically distinct OCD
subgroup (discussed below). Among seven studies examining caudate, one investigation of
11 pediatric OCD patients (42) found increased Glx in the head of the left caudate, which
decreased significantly following 12 weeks of paroxetine treatment, with Glx decreases
significantly correlated with decreases in OCD symptomatology—replicating an earlier case
report from the same laboratory (37). One of the 11 patients showed persistently decreased
Glx and OCD symptoms on three-month follow-up after paroxetine discontinuation (38).
Another laboratory found caudate Glu and Glx levels positively correlated with symptom
severity within OCD patients (43), but no significant overall Glx or Glu differences between
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patients and healthy individuals in brain regions studied. Finally, four longitudinal studies
found no Glx changes in various regions following 12 weeks of CBT (33, 36, 39) or six
months of combined SSRI + CBT (44). The one remaining glutamate-related study (23)
separately quantified Glu and Gln, and found no differences between OCD patients and
healthy individuals in left corpus striatum.

Choline-Containing Compounds (tCho)
Five of 24 comparison studies found increased tCho in OCD vs. healthy individuals (three in
thalamus (24, 45, 46), one in parietal white matter (47), and one in hippocampus (30); see
Figure 4), but surprisingly, one (44) found decreased left striatal tCho in OCD and one (33)
of eight treatment studies reported increased thalamic tCho in pediatric OCD patients
following response to CBT.

Creatine + Phosphocreatine (tCr)
All 28 studies measured tCr levels, but since tCr frequently serves as an internal reference,
only 16 compared absolute tCr in OCD patients vs. healthy individuals. Of these, two (27,
48) reported increased tCr in OCD (one in ACC (27) and one in thalamus (48)) and one (42)
found a trend (p = .09) in the same direction. Conversely, one study found decreased tCr in
right OFC in OCD (36). Seven studies analyzed change in tCr following treatment (33, 36–
39, 42, 44), with only one (33) reporting a significant decrease in left rostral ACC after
CBT.

Myo-inositol (mI)
Of 11 studies assessing mI in OCD patients vs. healthy individuals, one (31) found
significantly increased levels in right rostral and dorsal ACC in OCD, while one (35) found
significantly decreased levels in caudate. None of seven treatment studies found significant
mI changes following SSRIs or CBT.

DISCUSSION
Many of the above-cited studies are compromised by sample heterogeneity, insufficient
statistical power, and the lower “assay sensitivity” of older MRS technologies—problems all
likely to inhibit detection of differences when differences actually exist. These issues cannot
be resolved by meta-analysis, because disparities in study sample selection and technical
methodology render combining information across studies inappropriate. Nevertheless,
despite these factors mitigating against detection of differences, several findings are possibly
converging: 1) reduced tNAA in ACC and caudate; 2) reduced Glx in ACC; 3) increased
Glx in caudate; and 4) increased tCho in thalamus, parietal white matter, and hippocampus.
Though it is premature to conceptualize these "points of convergence" as results clearly
emerging from the literature, they nevertheless suggest preliminary hypotheses for future
testing, which we discuss below.

Reduced tNAA in ACC and Caudate
Reduced tNAA may reflect neuronal loss or atrophy (49). Thus 1H-MRS findings of reduced
ACC tNAA in OCD appear consistent with structural MRI findings of decreased ACC
volume in OCD, as reported in three meta-analyses (50–52). However, 1H-MRS also
suggests reduced tNAA in caudate—yet these same meta-analyses found caudate volume
equal (51) or increased (50, 52) in OCD across studies collectively—though some individual
studies reported reduced caudate volume in OCD (53, 54). Moreover, one meta-analysis
demonstrated increased thalamic volumes in OCD (52), whereas all but one 1H-MRS study
(29) found no differences in thalamic tNAA between OCD patients and controls. Also
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weighing against a hypothesis of neuronal loss, several above-cited studies found increased
tNAA levels in certain brain regions in OCD (27, 32-35). These inconsistencies make it
difficult to relate reduced tNAA to neuronal loss in OCD.

Alternatively, reduced tNAA levels in OCD might not reflect permanent neuronal loss, but
rather potentially reversible abnormalities, as suggested by two studies reporting
normalization of tNAA levels after treatment with citalopram (28) or CBT (36). NAA is
likely involved in numerous biological processes, including neuronal mitochondrial
metabolism, myelin lipid synthesis in oligodendrocytes, NAAG synthesis, and neuronal
osmoregulation (18). Thus, reduced tNAA in OCD might reflect dysfunction in processes
such as these, rather than outright neuronal atrophy. Further investigations using recent
advanced 1H-MRS techniques, which can separately quantify the overlapping NAA and
NAAG signals (55), may better elucidate the neurochemical pathology of the NAA-NAAG-
Glu system.

Reduced Glx in ACC
Cortico-striatal neuronal pathways are primarily glutamatergic, and growing evidence
implicates glutamatergic dysfunction in OCD (56). Given recent evidence that glutamatergic
neurotransmitter activity is coupled with neuronal glucose metabolism (57), together with
evidence of hypermetabolism in ACC from prior 18FDG-PET studies (6–8), one might
predict increased ACC glutamatergic activity in OCD. However, the meaning of Glu and
Gln levels in 1H-MRS is debated. Glutamate exists both intra- and extracellularly,
influencing neuronal metabolism and neurotransmission, respectively. Therefore, Glu levels
do not reflect one specific function (21). The combined measure, Glx, may be even less
specific. As detailed below, newer advanced 1H-MRS techniques can now quantify Glu and
Gln separately, which in turn may help to reconcile 1H-MRS observations with
prior 18FDG-PET findings.

Although several studies (22, 25, 43, 58) found no ACC Glx abnormalities in adult OCD
patients overall, the possibility remains that Glx is reduced only in certain subgroups
defined, for example, by mutations in genes affecting glutamatergic neurotransmission (41),
or perhaps simply by gender. Specifically, one study (31) found significantly reduced ACC
Glx levels, correlated with OCD symptom severity, in women but not men with OCD.

Increased Glx in Caudate
Although OCD patients may show reduced Glx in ACC, they may show increased Glx in
caudate (42), which may decline following response to paroxetine (37, 38, 42). These
findings must be interpreted cautiously, however, given other studies failing to find such
differences between OCD patients and comparison individuals (22, 33, 35, 36, 43, 44), or
declines in caudate Glx following CBT (33, 39). To explain the possible inverse relationship
between ACC and caudate Glx levels, Rosenberg and colleagues (40) propose that reduced
tonic glutamatergic tone in the ACC might predispose to increased phasic stress-related
glutamate release in the caudate.

Further evidence for striatal glutamatergic dysfunction in OCD comes from genetically
engineered mice lacking the gene encoding for the anchoring/signaling complex protein
SAP90/PSD-95-associated protein-3 (SAPAP3). These mice exhibit increased anxiety and
compulsive self-grooming, which declines following chronic treatment with the SSRI
fluoxetine (59). Notably, SAPAP3 plays a key role in glutamatergic synaptic signaling and
is strongly expressed in the striatum (60). Although some studies have implicated the
SAPAP3 gene in human OCD-related disorders, it has not been clearly linked to OCD per se
(56).
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Increased tCho in Thalamus, Parietal White Matter and Hippocampus
Choline-containing compounds are components of cell membranes (61), and increased tCho
levels thus suggest increased membrane turnover from membrane breakdown or synthesis
(62). Increased tCho levels have been identified in neurodegenerative disorders such as
Alzheimer’s (63) and Huntington’s diseases (64)—perhaps reflecting membrane breakdown
associated with neuronal loss. Also, patients with multiple sclerosis show increased tCho
levels in and around active plaques (65), suggesting an association between increased tCho
and demyelination. Thus the occasional findings of increased tCho in OCD (24, 30, 45–47)
might indicate myelin breakdown. This interpretation is strengthened by findings of white
matter abnormalities in OCD patients (66–68), and the potential association between OCD
and genes involved in myelination (69). Conversely, tCho levels appear normal in other
CSTC circuit regions in OCD (22, 23, 25–28, 31, 35, 40, 42, 58, 70), weighing against a
demyelination hypothesis.

Limitations
Despite the areas of convergence discussed above, the existing 1H-MRS literature in OCD
remains cloudy, likely due to small and heterogeneous study samples, together with widely
varying imaging methodology (as reviewed elsewhere (71) in the case of mood disorders).
Specifically, the median patient sample size in the above-cited studies was 13—which,
assuming equal numbers of healthy controls, yields 90% power to detect only a very large
effect size of approximately 1.3. Moreover, samples differed widely in age, illness duration,
illness severity, comorbidity, and concomitant medications, which could all influence
neurochemical levels. For instance, 45% of reviewed studies examined pediatric patients
who, compared with adults, showed shorter illness duration, and likely higher proportions of
early-onset OCD—a disorder possibly neurobiologically distinct from later-onset illness.
Also, nearly 70% of studies included OCD patients with comorbid depressive or anxiety
disorders—conditions themselves associated with neurochemical abnormalities in 1H-MRS
studies (72, 73)—and over half of all studies examined patients taking concomitant
psychiatric medications.

Looking next at limitations related to 1H-MRS methodology, most studies (86%) employed
magnetic field-strengths below 3T, limiting spectral resolution and hence accurate
quantification of metabolites, especially for overlapping resonances such as Glu and Gln.
Second, 75% of studies used single-voxel 1H-MRS to examine metabolites in restricted
brain regions, precluding simultaneous assessment of metabolites across the large neuronal
networks implicated in OCD. Third, 39% of studies quantified metabolite concentrations as
ratios using tCr or tCho as internal standards—an approach that assumes no inherent
differences in tCr or tCho levels between OCD patients and healthy individuals. But tCho
may be increased in OCD, as discussed above, and tCr, though still largely unexplored in
OCD, appears altered in other psychiatric disorders (74, 75), rendering it also suspect as an
internal standard. Fourth, differences in metabolite concentrations between white and gray
matter require studies using absolute concentrations (rather than ratios) to account for
differences in tissue content and cerebrospinal fluid within voxels. Of the 18 studies using
absolute concentrations, only nine used tissue-segmentation techniques to control for voxel
tissue composition. This is a concern, especially for metabolites such as tCr, tCho, and
glutamate-related measures, which have been shown to differ between white and gray matter
(76).

Future Directions
Addressing Clinical Heterogeneity—To address these limitations, one important step
is to study more homogeneous patient samples. Sample homogeneity might be improved not
only on demographic measures (e.g., age, sex, illness duration, and concomitant
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medications), but also by applying symptom dimensions to define OCD subgroups (77), as
already successfully performed in studies using other neuroimaging modalities (78–81).
Existing research findings might suggest further ways to improve homogeneity. For
example, the SLC1A1 gene, which encodes the neuronal glutamate transporter EAAC1,
appears associated with OCD, but only in males with early-onset illness (82–87)—thus
encouraging future 1H-MRS studies examining glutamatergic dysfunction in this
subpopulation. To offer another example, future 1H-MRS studies could examine
neurochemical differences between OCD patients who exhibit CSTC hyperactivation during
symptom provocation vs. those who do not. Indeed, 1H-MRS studies using all of these
strategies might elucidate endophenotypes within OCD, ultimately leading to more
individualized treatments.

Higher Field Strength/Advanced Spectral Editing Techniques—Glutamatergic
abnormalities are probably important in OCD, but technically difficult to assess with 1H-
MRS, because the resonance signatures of Glu and Gln overlap substantially with each other
and with more dominant resonances, making it difficult to quantify these metabolites
separately. However, with higher-field magnets (≥ 3T) and new spectral editing techniques
such as two-dimensional J-resolved 1H-MRS (88), one can now accurately differentiate Glu
and Gln levels. Still, interpretation of these levels remains complicated. In the so-called
glutamate-glutamine (Glu-Gln) cycle, neuronal Glu is released into the synapse, taken up by
glial cells and converted to Gln, which is then shuttled back to neurons and reconverted to
Glu (21). Additionally, Glu is synthesized in mitochondria through the tricarboxylic acid
cycle. Therefore, static Glu and Gln levels do not precisely measure glutamatergic
neurotransmitter activity. An aggregate index, the Gln/Glu ratio, may better gauge
glutamatergic neurotransmission (albeit still imperfectly) because it reflects Glu release and
the reciprocity of Glu and Gln. Increased Gln/Glu ratios likely indicate intensified flux
through the Glu-Gln cycle and increased overall glutamatergic neurotransmitter activity
(89), making Gln/Glu perhaps the most useful measure for future 1H-MRS studies in OCD.
These issues might be clarified by future animal studies coupling 1H-MRS with in vivo
microdialysis to localize Glu signals to synapse, glia, or neuron—an approach already
employed using nuclear magnetic resonance spectroscopy (90). Advanced editing
techniques also permit measurement of other neurochemicals that are not easily quantified
due to overlap with other resonances or low brain concentration, such as NAAG (55) and
GSH (91). NAAG is both an N-methyl-D-aspartate (NMDA) receptor antagonist and an
mGluR3 receptor agonist (19). Thus abnormal NAAG metabolism may cause glutamatergic
dysfunction, which in turn may contribute to the pathophysiology of OCD (33). In the 1H-
MRS spectrum, 15–25% of the NAA peak derives from NAAG (92), making it valuable to
quantify these neurochemicals separately. GSH is a key antioxidant in the central nervous
system, and oxidative stress may contribute to the pathophysiology of OCD (93–95). Also,
as previously discussed, genetic findings in OCD involve the SLC1A1 gene (82–87), which
modulates glutamate neurotransmission and GSH production (96) (e.g., mice lacking
EAAC1 exhibit reduced GSH levels (97)).

Multiple-Voxel 1H-MRS Techniques—To date, most 1H-MRS studies in OCD have
employed single-voxel 1H-MRS due to its simplicity and resultant high-quality spectra.
However, with newer high field-strength magnets, multiple-voxel 1H-MRS techniques (also
known as proton magnetic resonance spectroscopy imaging or 1H-MRSI) are increasingly
feasible, including even two-dimensional 1H-MRSI using advanced editing techniques in
time frames suitable for human subjects (98). This technique can partition individual brain
slices into voxels and thus measure neurochemical levels across an entire network of brain
regions. Also, 1H-MRSI can measure differences in neurochemical levels between gray and
white matter within brain regions (98), thus assessing whether neurochemical abnormalities
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in OCD are specific to tissue type. For example, given preliminary evidence of both white
matter abnormalities and abnormal tCho levels (a possible marker of demyelination) in
OCD, this technology could assess white matter tCho levels in OCD patients relative to
comparison groups. Additionally, 1H-MRSI could be used with and without symptom
provocation to examine acute fluctuations in CSTC neurochemical markers relative to
illness expression.

Multimodal Imaging—With increasingly efficient modern 1H-MRS protocols, one can
add other neuroimaging techniques (e.g., functional MRI (fMRI), diffusion tensor imaging
(DTI), or structural MRI) during the same scanning session to assess functional or structural
abnormalities simultaneously with neurochemical dysfunction. The only study (25), to our
knowledge, to use this approach in OCD combined 1H-MRS with fMRI and found 1)
reduced tNAA in the dorsal ACC in OCD versus healthy individuals, and 2) a negative
correlation between tNAA and blood oxygen-level dependent (BOLD) activation during an
activation task. This demonstration of linked neurochemical and functional abnormalities
supports the role of ACC neuronal dysfunction in OCD, and encourages further 1H-MRS/
fMRI studies correlating neurochemical abnormalities and aberrant BOLD activation in
other CSTC regions. Similarly, combined 1H-MRS/resting state fMRI might reveal the
neurochemical substrates underlying connectivity abnormalities within the CSTC network,
and combined 1H-MRS/DTI approaches could investigate the association of specific
metabolites, such as tNAA or tCho, with white matter integrity in OCD—a topic of great
recent interest (66–68).

Genetics/1H-MRS—With growing evidence regarding the genetic underpinnings of
OCD, 1H-MRS can also assess the impact of specific genes on brain biochemistry. For
example, one preliminary study (41) demonstrated an association between the G/G genotype
of the rs1019385 polymorphism of the GRIN2B gene, which encodes the NR2B subunit of
the NMDA receptor, and decreased Glx levels in the rostral ACC of pediatric OCD patients.
Despite its limitations (small sample, lack of a comparison group, and use of a low field-
strength magnet, thus precluding separate quantification of Glu and Gln), this study
illustrates the value of this approach for understanding the contributions of genes to
pathophysiology. One can easily envisage other opportunities for 1H-MRS to investigate
associations between Gln/Glu ratios or tNAA levels and the growing list of genes potentially
associated with OCD and/or encoding proteins involved in glutamatergic neurotransmission,
such as the GluR6 subunit of the kainate receptor (GRIK2) (99), and the aforementioned
GRIN2B (100), SLC1A1 (82–87), and SAPAP3 genes (60). Similarly, 1H-MRS could
assess the impact of different polymorphisms of the OLIG2 gene (69), which encodes a
regulator of oligodendrocyte development, on tNAA and tCho levels in OCD.

Longitudinal Studies—Naturalistic longitudinal studies might explore the early
evolution of OCD, for example by assessing whether OCD patients and healthy participants
exhibit developmental differences in neurochemical markers. In OCD patients receiving
treatment, shorter-term longitudinal studies may also elucidate treatment-associated
neurochemical changes. For example, 1H-MRS studies in pediatric OCD have hinted that
SSRIs might act by modulating cortico-striatal glutamatergic activity (37, 38, 42). This
hypothesis should be pursued using advanced spectral editing to investigate SSRI effects on
Glu and Gln separately, as well as the Gln/Glu ratio. Using 1H-MRSI, these effects could be
further assessed longitudinally in multiple brain regions across the CSTC network—an
important topic, given that SSRIs may differentially affect glutamatergic activity in different
regions (40). Second, longitudinal treatment studies may identify baseline metabolite
abnormalities or early biochemical changes that could predict treatment response—a major
potential advance. Third, longitudinal 1H-MRS studies could use pharmacological probes to
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assess the role of specific neurochemical systems in OCD, possibly leading to improved
treatments working through novel mechanisms. For example, 1H-MRS measures of
glutamate-related metabolites immediately following treatment with glutamate-modulating
medications such as riluzole or memantine—treatments showing possible benefit in OCD
(56)—may enhance understanding of glutamatergic dysfunction in OCD, and identify acute
neurochemical changes that herald clinical improvement.

Conclusions
Although current findings remain tentative and somewhat inconsistent, 1H-MRS has opened
a new window for understanding the pathophysiology of OCD and its treatment. Existing
limitations of this research can likely be overcome with larger and more homogeneous
subject samples and also, particularly, with recent improvements in 1H-MRS technology.
Advances in this domain would be further enhanced by complementary basic neuroscience
research designed to better understand the roles of these MRS-measurable neurochemicals at
the molecular, cellular, systems, and behavioral levels.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
In vivo brain 1H-MRS spectrum acquired with 30 ms-TE PRESS acquisition at 4 Tesla.
Spectrum is from a 2.5 × 2.5 × 2.5 cm voxel in the parieto-occipital cortex of a healthy
adult. Spectral regions denoted with brackets indicate multiplet resonance structures for each
featured neurochemical. Spectrum is displayed without any filtering. Cho, choline; Cr,
creatine; GABA, γ-aminobutyric acid; Gln, glutamine; Glu, glutamate; GSH, glutathione;
Lac, lactate; mI, myo-inositol; NAA, N-acetylaspartate; NAAG, N-acetylaspartylglutamate;
PCho, phosphorylcholine; PCr, phosphocreatine.
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Figure 2.
Proton Magnetic Resonance Studies of Patients with Obsessive-Compulsive Disorder
Assessing Total N-Acetylaspartate by Brain Region. The width of each study block is
proportional to the square root of the total sample size (number of OCD subjects plus
number of healthy control subjects). ACC, anterior cingulate cortex; HC, healthy controls;
OCD, obsessive-compulsive disorder; OFC, orbitofrontal cortex; tNAA, total N-
acetylaspartate.
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Figure 3.
Proton Magnetic Resonance Studies of Patients with Obsessive-Compulsive Disorder
Assessing Glx by Brain Region. The width of each study block is proportional to the square
root of the total sample size (number of OCD subjects plus number of healthy control
subjects). ACC, anterior cingulate cortex; HC, healthy controls; OCD, obsessive-compulsive
disorder; OFC, orbitofrontal cortex.
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Figure 4.
Proton Magnetic Resonance Studies of Patients with Obsessive-Compulsive Disorder
Assessing Total Choline by Brain Region. The width of each study block is proportional to
the square root of the total sample size (number of OCD subjects plus number of healthy
control subjects). ACC, anterior cingulate cortex; HC, healthy controls; OCD, obsessive-
compulsive disorder; OFC, orbitofrontal cortex; tCho, total choline.
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