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Abstract
Several thousand metagenomes have already been sequenced, and this number is set to grow rapidly in the forth-
coming years as the uptake of high-throughput sequencing technologies continues. Hand-in-hand with this data bon-
anza comes the computationally overwhelming task of analysis. Herein, we describe some of the bioinformatic
approaches currently used by metagenomics researchers to analyze their data, the issues they face and the steps
that could be taken to help overcome these challenges.

Keywords: metagenomics; next-generation sequencing (NGS); high-throughput sequencing (HTS); functional analysis; envir-
onmental bioinformatics

METAGENOMICS: A BROAD FIELD
The discipline of metagenomics is the study of the

genetic material present in a given environment (for

a detailed review of the field, see [1, 2]). However,

the term ‘metagenomics’ applies to a very broad

range of technical activities, including the collection

of environmental samples [3], the extraction of de-

oxyribonucleic acid/ribonucleic acid (RNA)/protein

from those samples, the ever-increasing variety of

technologies used for sequencing [4] and the subse-

quent analysis and interpretation of the resulting

data. In this article, we briefly review the current

practices in metagenomic sequence analysis and

describe potential future developments that may

impact on them.

TAXONOMICANALYSISAND
METAGENOMICS
The taxonomic classification of living things has long

been a central theme in biology; this is particularly

true of metagenomics. Amplicon-based taxonomic

studies currently dominate the field, and, at the

time of writing, more than 80% of the publicly avail-

able data sets within the MG-RAST service [5] are

taxonomic analyses of the 16S RNA marker gene.
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Other phylogenetic classification approaches, such as

those offered by Phymm [6] and PhyloPythia [7], are

also being used more extensively.

Such analyses are highly valuable, as particular

phylogenetic groupings can be associated with im-

portant functions, and the diversity of a microbial

community is thought to provide an indication of

the resilience of the system (i.e. its ability to carry

on functioning when conditions change). However,

taxonomic studies may not necessarily reflect the

complex biological processes that exist in an envir-

onment, as microbial genes can move horizontally

between unrelated species. Consequently, the same

functional gene can be present in a variety of back-

grounds. Furthermore, these approaches do not take

account of intra-species diversity (where organisms

may gain or lose function as they adapt to a specific

environment) or situations where organisms may be

actively engaged in only a subset of their functional

repertoire.

FUNCTIONALANALYSIS OF
METAGENOMIC SAMPLES
A complementary approach is to analyze the putative

functional entities (such as protein coding sequences)

within the genomic and/or transcriptomic sequences

from an environmental sample. This has become

an increasingly realistic proposition with the increas-

ing power and reducing cost of high-throughput

sequencing; it is now feasible to sequence a repre-

sentative proportion of an entire metagenome at rea-

sonable price. The remaining challenge is to process

the massive volumes of data produced by such

approaches.

Analysis of putative protein coding sequences typ-

ically begins with the identification and translation of

open reading frames within nucleotide sequences.

A minimum size constraint is usually applied, as

prediction of function for very short sequences is

not reliable. Frequently, pairwise sequence align-

ment methods, such as BLAST [8], are then used

to infer function by searching for similarity to

other sequences in a reference database.

One of the original design specifications for

BLAST was to provide a tool for fast comparison

of sequences. Despite having been developed over

20 years ago, it is still one of the fastest sequence

comparison algorithms available. Nevertheless, the

sheer volume of sequence data produced during

metagenomic studies means that BLAST-based

analyses represent significant bottlenecks, which are

unlikely to be addressed simply by scaling up com-

putational resources [9].

PROTEIN SIGNATURE-BASED
ANALYSES
An alternative protein sequence analysis approach is

to use computational models, known as protein sig-

natures, of the type housed in the InterPro [10] con-

sortium of databases, such as Pfam [11], PROSITE

[12], PRINTS [13], CATH-Gene3D [14] and

TIGRFAMs [15]. These signatures draw on multiple

sequence alignments of protein families, domains and

functionally important sites. By using such align-

ments, protein signatures are able to model the

(often few) amino acid residues that are conserved

in distantly related proteins that are essential for sta-

bility and function. Identifying such residues is not

possible with pairwise alignment techniques, and

consequently protein signatures are usually more

sensitive at detecting divergent homologs [16, 17].

Protein signature-based sequence analysis methods

offer two further important advantages over their

pairwise alignment-based counterparts. As they are

built to recognize specific functional entities, such

as individual protein families or particular functional

domains, matches to signatures are highly accurate

predictors of function. This is in contrast to pairwise

alignment approaches, where the only significant

matches are often to other uncharacterized

sequences, meaning that no functional information

can be inferred. Furthermore, recent techno-

logical advances, such as the development of the

HMMER3 algorithm [18], have led to substantial

performance increases in a number of protein

signature-based analysis techniques, so that they can

now offer fast, as well as accurate and sensitive,

alternatives to BLAST.

A number of metagenomic analysis pipelines

already use protein signatures to predict the func-

tional characteristics of metagenomics data sets. For

example, both CAMERA [19] and WebMGA [20]

use Pfam and TIGRFAMs alongside BLAST-based

approaches for functional sequence analysis.

CARMA [21] and CoMet [22] also draw on Pfam

for their analyses.

EMBL-EBIs recently launched resource (http://

www.ebi.ac.uk/metagenomics) uses InterPro

for functional characterization of metagenomic

sequences. InterPro combines different types of
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protein signature from multiple diverse databases,

providing extensive sequence coverage and fine-

grained functional analyses. It also provides add-

itional benefits, such as the association of Gene

Ontology terms [23] with signatures and inference

of potential involvement in biological pathways, fur-

ther augmenting the annotation of protein

sequences. InterPro’s utility is expected to grow in

the future as investigations into over-represented

amino acid sequences in metagenomic data lead to

the in silico identification of novel protein families

and domains, which will in turn be modeled and

incorporated into the InterPro Consortium’s

member databases.

COMPUTATIONALADVANCES IN
METAGENOMICANALYSISç THE
NEED FORSPEED
Even if protein signature-based methods are used,

the time taken to analyze metagenomic data cur-

rently far outweighs the length of time taken to pro-

duce the sequences in the first place. It is anticipated

that new paradigms, such as the use of graphical pro-

cessing unit (GPU) computing and cloud comput-

ing, may help to mitigate this bottleneck in the

future.

Promising work has already begun in this area.

For example, the developers of Parallel-META

[24] have reported a 10–15-fold increase in ana-

lysis speeds using GPU over central processing unit.

CloVR [25], meanwhile, provides a virtualized

machine containing multiple microbial sequence

analysis pipelines, including one for metagenomics.

It gives the user the option to run their analysis

locally or using a commercial or academic cloud.

The use of GPUs and other hardware-based

approaches is limited by the specialist programming

required to adapt software to run on these architec-

tures. Indeed, the number of general bioinformatics

applications that can be run on GPUs is still restricted

because of this. Cloud computing facilities should

eventually revolutionize the way metagenomics

researchers work, potentially allowing even small

laboratories access to vast amounts of compute

power. However, there remain some drawbacks

with this approach, including the relative expense

of the compute (running a fully utilized compute

farm is cheaper than purchasing time on a commer-

cial cloud [26]) and potential security issues related to

transferring data into the cloud environment.

METADATA PROVIDES CONTEXT
TOANALYSIS
Speed is not the only important consideration in

metagenomics analysis. Critical to any metagenomic

study is the extent and quality of the associated meta-

data, as this provides context to the experiments and

allows meaningful comparisons to be made between

studies.

This is exemplified by the Western English

Channel study [27], where multiple samples have

been meaningfully compared across a large time

series. The collection of detailed metadata for each

sample allowed the researchers to hypothesize which

factors affected the species and functional variety at

that site the most.

In recognition of its importance, there has recently

been a community-driven shift toward a greater

degree of sample contextual metadata being archived

with study data, which has been largely facilitated by

the Genomic Standards Consortium (GSC) [28].

The mission statement of the GSC is to work toward

the implementation of new genomic standards for

metadata and methods of capturing and exchanging

that metadata. It is immensely valuable to store

standards-compliant metadata and the raw sequence

data they describe in public repositories, as it allows

future reuse and reinterpretation of these data

by other scientists. For this reason, researchers are

encouraged to submit metadata and raw sequence

reads to the INSDC Nucleotide Archives

either directly or by the EMBL-EBI metagenomics

portal.

CONCLUSION:THE NEED FOR A
CONSOLIDATEDAPPROACH TO
METAGENOMICS
Multiple public resources already exist that allow

users to view and analyze metagenomics data; how-

ever, the field still faces several challenges. It is vital

that the metagenomics service providers adopt con-

sistent policy toward metadata, metadata standards

and user access to associated raw data, so that

metagenomes can be interpreted appropriately by

researchers. Despite improvements to functional ana-

lysis methods (including the adoption of protein

signatures for increased search performance and the

optimization of algorithms such as HMMER),

the expense of compute remains a barrier to the

full realization of metagenomics’ potential. It is

hoped that collaboration between analysis providers
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will lead to better exploitation of new computing

paradigms to solve some of these issues.

Key Points

� Metagenomicshas historicallybeendominatedby the taxonomic
diversity approach, but next generation sequencing is changing
this, with more people beginning to investigate the functional
potential of an environmental sample.

� Protein signatures are a sensitiveway to identify protein families,
domains and functionally important sites within protein se-
quence fragments.

� High-quality contextual data are essential to allow meaningful
comparisons to bemade between environmental samples.

� The EMBL-EBI metagenomics portal has recently been launched
in beta. It facilitates InterPro-driven functional analysis of meta-
genome sequences and combines thiswith ametadata-rich arch-
ive ofmetagenomics experiments.
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