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Abstract
Grid dependence in numerical reaction field energies and solvation forces is a well-known
limitation in the finite-difference Poisson-Boltzmann methods. In this study we have investigated
several numerical strategies to overcome the limitation. Specifically, we have included trimer arc
dots during analytical molecular surface generation to improve the convergence of numerical
reaction field energies and solvation forces. We have also utilized the level set function to trace
the molecular surface implicitly to simplify the numerical mapping of the grid-independent
solvent excluded surface. We have further explored to combine the weighted harmonic averaging
of boundary dielectrics with a charge-based approach to improve the convergence and stability of
numerical reaction field energies and solvation forces. Our test data show that the convergence
and stability in both numerical energies and forces can be improved significantly when the
combined strategy is applied to either the Poisson equation or the full Poisson-Boltzmann
equation.

Introduction
Biomolecules are highly complex molecular machines with thousands to millions of atoms.
What further complicates the picture is the need to realistically treat the interactions between
biomolecules and their surrounding water molecules that are ubiquitous and paramount
important for their structures, dynamics, and functions. An efficient molecular dynamics
simulation in a realistic aqueous environment is still one of the few remaining challenges in
computational chemistry.1-14

Since most particles in molecular dynamics are to represent water molecules solvating the
target biomolecules, treating these water molecules implicitly allows the simulation
efficiency to be increased greatly. Indeed, implicit solvation treatments, or implicit solvents,
offer a unique opportunity for more efficient simulations without the loss of atomic-level
resolution for biomolecules. The simplified implicit solvation treatments propose to model
water molecules and all dissolved ions as a structureless and continuous medium. In
contrast, biomolecules, i.e. the solutes, are still represented in atomic detail. One of the most
successful implicit solvents, the Poisson-Boltzmann (PB) implicit solvent,15 has become a
gold standard in implicit solvation treatments of biomolecules after years of basic research
and development.
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Adaptation of the PB solvents to molecular simulations requires a numerical solution of the
3-D partial differential equation, which has been a bottleneck, largely limiting their
application to calculations with static structures only. The difficulty lies in the numerical
procedure that involves discretization of the partial differential equation into a system of
linear or nonlinear equations that tends to be rather large: it is not uncommon to have tens of
millions of unknowns in biochemical applications. In addition, the setup of the system
before the numerical solution and post-processing to obtain energies and forces are both
nontrivial. Three major discretization methods are widely used in biomolecular applications.
The most commonly used approach is the finite-difference method.16-31 In this method, the
physical properties of the solution such as atomic charges and dielectric constants are
mapped onto a rectangular grid, and a discrete approximation to the governing partial
differential equation is produced. The second approach is the finite-element method,32-37

which approximates the potential by a superposition of a set of basis functions. A linear or
nonlinear system for the coefficients produced by the weak formulation has to be solved.
The third approach is the boundary-element method.38-51 In the boundary-element method,
the Poisson or Poisson-Boltzmann equation is solved for either the induced surface
charge38-40,42,44,45,48,51 or the normal component of the electric
displacement41,43,46,47,49,50 on the dielectric boundary between the solute and the solvent.

A crucial component of all implicit solvent models within the PB framework is the dielectric
model, i.e. the dielectric constant distribution of a given solution system. Typically, a
solution system is divided into the low dielectric interior and the high dielectric exterior by a
molecular surface. That is to say that the molecular surface is used as the dielectric interface
between the two piece-wise dielectric constants. The solvent excluded surface (SES)52-54 is
the most used surface definition.25,27 Indeed, recent comparative analyses of PB-based
solvent models and TIP3P solvent models show that the SES definition is reasonable in
calculation of reaction field energies and electrostatic potentials of mean force of hydrogen-
bonded and salt-bridged dimers with respect to the TIP3P explicit solvent.55-57 Given the
complexity of the SES, one possible approach in adapting the SES in numerical solutions is
to build the molecular surface analytically and then to map it onto a grid,58-60 though
analytical procedures can be time consuming. Rocchia et al. subsequently simplified the
algorithm to facilitate the mapping of the SES to the grid.27 The van der Waals (VDW)
surface, or the hard sphere surface, represents the low-dielectric molecular interior as a
union of atomic van der Waals spheres. This is a very efficient algorithm, though there exist
many nonphysical high (solvent) dielectric pockets inside the solute interior when the VDW
definition is used. Considering the limitation, the modified VDW definition was proposed.
The basic idea of the modified VDW definition is to use the solvent accessible surface
(SAS) definition for fully buried atoms and the VDW definition for fully exposed atoms.61

However, the method is difficult to be optimized to reproduce the more physical SES
definition. The density approaches have recently been developed and can be used for
numerical PB solutions. Either a Gaussian-like function or a smoothed step function has
been explored in previous developments.62,63 Recently it has been shown that if the
functional form is allowed to change, the density function can be explicitly optimized to
reproduce the classical SES definition at least for certain “small” solvent probe radii, though
this cannot be generalized to arbitrary probe radius values.64 In this type of approaches, a
distance-dependent density/volume exclusion function is used to define each atomic volume
or the dielectric constant directly. This is in contrast to the hard-sphere definition of atomic
volume as in the VDW or the SES definition. Therefore, all surface cusps are removed by
the use of smooth density functions.62,63

Once a molecular surface definition is chosen, it can be used to specify the dielectric
constant distribution in space. Due to the finite-difference discretization of space, the
dielectric constant distribution depends on the location and orientation of the finite-
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difference grid with respect to the molecule of interest. In general, different locations/
orientations lead to different dielectric distributions, which in the end lead to different
numerical energies and forces. This is termed as numerical uncertainty or instability below.
In addition, different grid spacings resolve the molecular surface differently, and apparently
a finer grid resolves the molecular surface better. This leads to the second difficult problem
that is how to reduce the grid dependence in the numerical energies and forces when a “not-
a-too-fine” grid spacing (i.e. ½ Å) has to be used in practical applications. Of course,
discretization of atomic point charges is yet another source of numerical uncertainty and grid
dependence in the finite-difference solutions. Several general strategies have been proposed
in the past to reduce these numerical issues. The first strategy intends to “smooth” the sharp
transition of dielectrics between the solute and solvent via the weighted harmonic averaging
method.65,66 Of course, it is also possible to change the underlining physical model, i.e. the
sharp transition at the solute/solvent interface can be changed to a distance-dependent
transition as in the density function approach, though this amounts to the development of a
different force field and is beyond the scope of this study.62 Interestingly, the weighted
harmonic averaging method was also proposed to combine with the distance-dependent
dielectric model for better numerical behavior.67 The second strategy focuses on the
treatment of point charges. In this method, the point charges are spread to the nearest grid
points as in the trilinear interpolation method.68 Of course, it can also be used along with the
dielectric smoothing method discussed above.68 The third strategy utilizes the grid-
independent molecular surface to compute numerical energies via the charge-based
method.27 The basic concept has also been extended to the computation of solvation
forces.69

Based on these pioneering efforts for more reliable numerical solutions of the PB equation
for biomolecules, we intend to overcome the numerical difficulty associated with the solvent
excluded surface definition in the following aspects: (1) simplification of the numerical
procedure and reduction in computer memory usage when mapping the grid-independent
surface definition onto the finite-difference grid and (2) exploration of strategies to
minimize the dependence of numerical energies and solvation forces upon the grid spacing
used in the finite-difference Poisson-Boltzmann methods.

Methods
Assignment of dielectric constant nearby solute interface

In biomolecular calculations the dielectric distribution often adopts a piece-wise constant
model. In such a model, the dielectric constant at the midpoint of a grid edge should be
equal to the dielectric constant in the region where the two neighboring grid points reside.
However, when the two neighboring grid points belong to different dielectric regions, the
dielectric constant is nontrivial to assign because the dielectric constant is discontinuous
across the interface. Denote the dielectric constants inside and outside as εin and εout,
respectively. The simplest treatment is to set the dielectric constant as εin if the midpoint of
the grid edge is in the solute or εout otherwise, as in the Delphi program.27 We term this
treatment as the non-harmonic averaging (NHA) method. In this study, we further revise the
NHA method as follows

(1)

where a is the fraction of a grid edge inside. This procedure gives the same dielectric
assignment as the method adopted in the Delphi program that only considers grid edge
midpoints. However, it is different from the Delphi program when the interface intersects
the same grid edge twice or more. The revised method is, arguably, more consistent with the

Wang et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



concept of the finite-difference discretization but it is apparently time-consuming. This
revision is introduced to compare NHA with other methods to be discussed below.

An alternative treatment is the use of harmonic averaging (HA) of the two dielectric
constants at the neighboring grid points of a grid edge that intersects the molecular
surface.65,66 In the simple harmonic averaging (SHA) method, the dielectric constant is
assigned as

(2)

In the weighted harmonic averaging (WHA) method, the dielectric constant is assigned as

(3)

where a, the fraction of the grid edge inside, is also used in eqn (1). It should be pointed out
that NHA gives sharp transition in dielectric constant across the interface while WHA or
SHA offers one more grid point for a smoother change in the dielectric constant across the
interface. Furthermore, WHA guarantees the flux conservation in the three orthogonal
directions at the intersection points of grid edges and the analytical interface.

When using any of these treatments, we do not need to generate the molecular surface
explicitly. In SHA, grid points need to be labeled inside or outside only. In WHA and NHA,
a more elaborate grid point labeling scheme is needed to calculate the intersection points of
grid edges and the molecular surface.

Overview of the algorithm
As mentioned above, WHA or NHA requires the computation of fractional grid edges. Our
algorithm to compute the fractional grid edges consists of three steps:

1. Determination of solvent accessible arcs. The arcs are numerically represented as
dots that are centers of solvent accessible probes tangential to at least two atoms
simultaneously. This list of dots and the list of atoms are used to label the grid
points nearby the molecular surface.

2. Grid point labeling. The grid points nearby the molecular surface are labeled as
inside or outside. Furthermore, an arc dot or an atom is assigned to a grid point
according to its position with respect to the molecular surface. These labels are
used to compute the fractional grid edges.

3. Computation of the fractional grid edges. After the grid points are labeled, the
fractional grid edges can be computed arithmetically or geometrically.

The detail of these three steps is described below. Then the dielectric constants nearby the
molecular surface can be assigned by NHA or WHA method according to eqn (1) or (3),
respectively.

Determination of solvent accessible arcs
Solvent accessible arcs were first used to generate the molecular surface in Connolly’s work,
instead of evenly-distributed surface dots.54 Using these solvent accessible arcs, You et al
suggested an analytical algorithm to differentiate the grid points inside or outside of the
molecular surface.60 Rocchia et al. subsequently simplified the algorithm to use a set of dots
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to represent the solvent accessible arcs to facilitate the reentry surface’s mapping to the
finite-difference grid.27

In this study, we follow the basic idea as outlined by You et al.60 and Rocchia et al.27

Specifically, a numerical representation of the solvent accessible arcs was used to map the
reentry surface to the finite-difference grid. A parameter termed arcres (in Å) was
introduced to represent the discretization resolution of the solvent accessible arcs. The
solvent accessible arc dots were obtained by a “successive pruning” method by exploiting
the existing data structure in the force field module of the Amber package. Specifically we
utilized the bond/angle lists, the torsion angle lists, and the nonbonded lists to successively
prune the candidate dots that were buried in the SAS of neighboring atoms.

Another feature of our algorithm of constructing the solvent accessible arcs is that we
intentionally added the trimer arc dots, which are the centers of the probes that are in contact
with three atoms. The merit of this extra effort can be appreciated in the following way.
With the same resolution of arc dots, the solvation energies and forces are both more
accurate with the trimer arc dots included, or with the same requirement of accuracy level,
the presence of trimer arc dots can reduce the necessary resolution of arc dots so as to save
the memory allocation (the memory required at this step is probably more than that required
by the PB solver if a coarse grid spacing, for example 1/2 Å, is used).

Once the solvent accessible arc dots are generated, they are used in the following grid point
labeling procedure and the intersection calculation procedure.

Grid point labeling
Different from Rocchia et al.,27 our algorithm not only labels grid points inside or outside,
but also records additional information to calculate the intersection points to utilize the NHA
or WHA method. The algorithm is illustrated in Figure 1 and can be summarized in the
following pseudo code:

1. Initialize all grid points as “1”, i.e. in the solvent region.

2. Label all grid points within the extended van der Waals volume as “2”. For each
labeled grid point, its signed distances to all the atoms’ van der Waals surface are
calculated. The atom with the smallest distance is recorded as the corresponding
“owner” of the labeled grid point.

3. Label all grid points within the van der Waals volume as “-2”. The “owner” of a
labeled grid point is determined as follows. When the projection point of the grid
point on the extended van der Waals sphere of an atom is not in the extended van
der Waals spheres of any other atoms, the atom is the corresponding “owner”.

4. Label all grid points within the reentry cones* of all pairs of neighboring atoms as
“-1”.

5. Label all “-1” grid points within the solvent probe spheres at all arc dots as “1”. For
each grid labeled as “-1” or “1”, its corresponding “owner” is updated as the closest
solvent probe.

After the grid point labeling process, grid points with positive labels are in the solvent
region and grid points with negative labels are in the solute region. We will present an
analysis below on how dense the arc points should be to achieve converged numerical
reaction field energies.

*Each pair of atoms may form two reentry cones that share the same base circle, traced out by the solvent probe center. See Figure 1.
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It should also be noted that only the “owners” of the grid points nearby the dielectric
interface will be used in the computation of the fractional grid edges as described below.
Thus the labeling algorithm documented here is only meant to guarantee that these “owners”
are assigned correctly.

Computation of fractional grid edges
Given the information provided in the grid point labeling algorithm, there may be different
strategies to compute the intersection points of the molecular surface and grid edges. A
straightforward method would be a brute-force analytical approach via geometric
information recorded in the grid point labeling algorithm. This approach is termed the
geometric approach and is discussed in detail in the Supplementary Material. Here we
explore a more straightforward algorithm via the level set method.70,71 This algorithm relies
on algebraic manipulations of the level set function, so it is termed the algebraic approach.

In the level set method a scalar function, the level set function, is used to represent the
surface implicitly. Here we define the level set function as the following:

(4)

where dg–c is the distance between the grid point and the corresponding owner center, Rvdw
is the atomic van der Waals radius, and Rprob is the probe radius. Note that the definition in
eqn (4) has incorporated the sign notation that grid points on the solvent side have positive
values and grid points on the solute side have negative values. In doing so the SES is located
where the level set function is zero (d=0), i.e. the zero level set. This is consistent with the
original definition of the SES.52

With these preparations, we are ready to compute the intersection point of a boundary grid
edge and the molecular surface as follows. Without loss of generality, suppose that this is an
x-edge flanked by two grid points (x1, y1, z1) and (x1 + h, y1, z1), where h is the grid
spacing. The level set function values are d1 and d2, respectively. Apparently, we have d1 ×
d2 < 0 since the sign of the level set function defined by eqn (4) and changes when crossing
the molecular surface, and the intersection point is between (x1, y1, z1) and (x1 + h, y1, z1).
Next we choose a third grid point, (x1 + 2h, y1, z1). Given the three grid points and
corresponding level set functions as d1 , d2 , d3 , respectively, a quadratic function d = a2x2

+ a1x + a0 can be determined to pass through three points (x1, d1), (x1 + h, d2), and (x1 + 2h,
d3). Thus, the intersection point is simply the root of the quadratic equation a2x2 + a1x + a0
= 0 within [x1,x1+h].

Although the algebraic method proposed here is in principle different from a brute-force
utilization of the molecular surface in the geometric algorithm to find the intersection points,
it has been shown that the error in the calculated intersection point scales as O(h2) when the
level set method is used.70,71

It should be pointed out that the level set method was used to compute the molecular surface
by Can et al.72 Their aim is to generate and visualize a molecular surface efficiently, so they
calculate the level set function with the error in the order of grid spacing h. By contrast our
method calculates the level set function analytically to guarantee the accuracy error in the
calculated intersection point scales as O(h2).

Computation of reaction field energy
To compute the reaction field energy, the field-based method is often used, i.e., the reaction
field energy is calculated as
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(5)

where qi is the charge of atom i and  is the reaction field potential at the position of atom
i, which can be calculated from the grid potential by the tri-linear interpolation method.
Direct computation of the reaction field potential is made possible by the so-called charge
singularity free formulation of the Poisson-Boltzmann equation.31 It has been pointed out
that the reaction field energy may converge better when the so-called charge-based method

is used.27 In this method,  , the polarization charge at boundary grid point j, is first
calculated according to the Gauss’s law. Then all polarization charges are projected onto the
solvent/solute interface as described in Figure 2. Finally the reaction field energy is
calculated as

(6)

Where Nbnd is the number of polarization charges and rij is the distance between atom i and
projected polarization charge j.

Computation of electrostatic solvation forces
It is well known that the electrostatic force density (g) can be derived through the divergence
of the Maxwell stress tensor (P) as69,73

(7)

where is the fixed charge desnity, E is the electric field, ε is the dielectric constant, and ΔΠ
is the excess osmotic pressure, λ is the Stern layer defined so that it is 1 in regions
accessible to the mobile ions and 0 elsewhere. This is consistent with the formulation of
Gilson et al.74 An important point is that eqn (7) requires a differentiable dielectric constant
distribution.

Eqn (7) shows that there are three components in the total electrostatic forces: (1) the
Coulombic and reaction field forces (gQEF) acting on the atomic charges, ρf E; (2) the

dielectric boundary forces (gDBF), or pressure acting on the dielectric boundary, ;
and (3) the ionic boundary forces, or pressure on the ionic boundary. Since the Coulombic
forces can be computed analytically by a pairwise summation of Coulombic interactions
among atomic charges, only the rest of the force components were computed numerically.

Similar to the treatment of the reaction field energy, dielectric polarization charges can be
used to improve the convergence of reaction field forces with respect to the grid spacing.
Specifically, the reaction field forces were calculated by the pairwise summation of the
Coulombic interactions between polarizarion charges and atomic charges.27 Briefly, it has
been shown that the dielectric boundary forces can be recast into the following form,69

(8)
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where ρpol is the polarization charge density at the dielectric boundary, D = εE , and Dn =
εEn. Eqn (8) does not require a differentiable dielectric constant distribution and makes it
explicit that the direction of gDBF follows the gradient of the dielectric constant, i.e. the
normal direction of the surface (n̂).

Due to the fact that the SES is not differentiable, the dielectric boundary force elements are
distributed to nearby atoms in an ad hoc manner as follows. For the contact portion of the
SES, the surface force elements are distributed to the closest atom sphere. For the reentry
portion of the SES, the dielectric boundary force elements are distributed to the two or three
nearest atom spheres (if trimer arc dots are present) by the singular value decomposition
method (SVD). 69

Finally the ionic boundary forces are ~O(10−2) smaller than the reaction field forces and
dielectric boundary forces in water74 so that we only focus on the reaction field forces and
dielectric boundary forces in the performance analyses of the dielectric treatments below. In
addition, their performance is more closely related to how the Stern layer is defined, which
is beyond the scope of this development.

Other computational details
The dielectric constant of the solvent was set to 80, i.e. for water, while that of the solute
was set to 1. Both WHA and SHA were analyzed and compared with NHA. The numerical
surface algorithm was validated with a solvent probe radius of 1.4 Å. The modified Bondi
radius set75,76 was tested. The ion concentration was set to zero. No electrostatic focusing
was used. The finite-difference grid dimension was set to be 2.5 times of the dimension of a
solute. The convergence criterion was set to be 10−6 for the finite-difference solver. All
other parameters are either explicitly analyzed or set to be default as in the PBSA program
of AMBER 10.26,61,75,76 To analyze the numerical uncertainty of different methods, a total
of 96 different finite-difference grid origins and orientations were used to sample the relative
locations of the finite-difference grid with respect to the molecular surface and charge
distribution. All the reaction field energies were computed with the charge-view method
unless otherwise stated.

Two groups of molecules are studied in this work. The first group includes a hydrogen-
bonding base pair GC and a small alanine-based peptide (ALA6) forming an α helix.56

These molecules were built in the XLEAP program of AMBER10. The second group was
taken from the Amber benchmark suite includes a diversified test set of 579 peptides and
proteins.75,76

Results and Discussion
Abrupt two dielectrics treatment: Consistency between PBSA and Delphi programs

Our numerical mapping algorithm of the SES onto the finite-difference grid certainly
resembles the mapping algorithm implemented in the Delphi program. Both programs intend
to use the atomic positions and a numerical representation of solvent accessible arcs to map
the SES onto the finite-difference grid. Since Delphi uses the NHA method, the dielectric
map from the Delphi program should be very similar to that from the PBSA program with
the NHA method. However, difference does exist between the two programs: the grid
labeling procedure in PBSA focuses on grid points while the procedure in Delphi focuses on
grid edge midpoints. This leads to different handling of certain grid edges nearby the
molecular surface. For example, if a grid edge is flanked by two interior grid points, PBSA
will treat the edge as solute interior. In contrast Delphi would treat the grid edge as interior
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only when the edge midpoint is also interior. Otherwise, the grid edge is assigned as
exterior.

Nevertheless, such boundary grid edges are only a very small fraction of boundary grid
edges when (1) the grid spacing is small (i.e. ½ Å) with respect to atom and probe radii and
(2) the SES definition is used. Indeed, we calculated the reaction field free energies of 579
biomolecules by PBSA and Delphi and plotted their correlation in Figure 3. The correlation
plot shows a very high correlation between the two different algorithms. The Pearson
correlation coefficient between the two sets of data is 1.0000, the linear regression slope is
0.9991 (with a fixed offset of zero), and the RMS relative deviation is 0.0012 between the
two sets of data. Furthermore, the difference between the two programs also reduces with
decreasing grid spacings.

Harmonic averaging dielectrics treatment: Consistency between algebraic and geometric
methods

As discussed in the method section, our proposed algebraic method utilizes the concept of
the level set function to trace the molecular surface implicitly. Thus the intersection points
of the molecular surface and the grid edges are computed via the solution of an algebraic
equation within the framework of the level set function. This is clearly different from
traditional geometry-based methods where we have to compute the intersection points based
on the geometric relations between relevant van der Waals spheres and solvent probe
spheres that are located on the solvent accessible arcs.

Here we first demonstrate their high-level consistency in the diversified test set of 579
biomolecules used above. Figure 4 plots the correlation of reaction field energies for these
molecules with the algebraic and geometric surfaces, respectively. Overall, the two kinds of
surfaces agree excellently, with a linear regression slope of 1.0004 (the offset is fixed at
zero) and the Pearson correlation coefficient of 1.0000.

Our observed high-level consistency, in part, demonstrates the robustness in the implicit
representation of surface with the level set method. Of course, the advantage of the algebraic
method lies in its simplicity and the algebraic method is straightforward to be incorporated
into the finite-difference methods. In contrast, the geometric method relies on the
thoroughness of the rules or logics to enumerate all possibilities, leading to very complicated
computer programs.

Convergence with respect to numerical resolution in solvent accessible arcs
Given the above consistency check and validation of different numerical algorithms, we now
address the more important issue of convergence and stability of the numerical reaction field
energies in the finite-difference methods. A high resolution in the numerical arc
representation leads to a more accurate dielectric constant assignment, and thus more
accurate reaction field energies, but it also requires more memory. The probe arcs used to
build the solvent excluded surface increase quadratically with the atom number Natom. As a
consequence, finer resolution of discretized arcs leads to the computational complexity

growth and run-time memory growth of . However, we also need to bear in mind
that the final accuracy of the reaction field energies also depends on the grid spacing. Thus it
is necessary to identify which resolution, grid spacing or arc resolution, plays a more
important role in the convergence accuracy of the numerical reaction field energies.

Figure 5 plots the relative convergence errors in the reaction field energies for the GC base
pair with respect to the reference value computed at the grid spacing of 1/16 Å and a very
high arc resolution of 1/256 Å. To explicitly show the benefit of the trimer arc points, we
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conducted the same calculation with the trimer arc dots and without the trimer arc dots. This
analysis shows that both grid spacing and arc resolution influence the accuracy of the final
computed reaction field energy. However, when the arc resolution reaches certain threshold,
the grid spacing becomes the dominant factor, as indicated by the virtually horizontal
contour lines in relative errors on the right part of the plot. For example, without the trimer
arc dots, the threshold is 1/16 Å, while inclusion of the trimer arc dots lowers the threshold
from 1/16 Å to 1/8 Å. In reality, we recommend setting the arc resolution to be max(h/2, 1/8
Å) with the trimer arc dots included and max(h/4, 1/16 Å) without the trimer arc dots.

Table 1 supports our claim that inclusion of trimer dots can reduce run-time memory
allocation by about half and the efficiency is little changed. The tests were performed with
trimer arc dots and without trimer arc dots, respectively. Given the conclusion from the
previous test and the grid spacing of 1/2 Å, we set the arc resolution to 1/4 Å if trimer arc
dots are present and to 1/8 Å if there are no trimer arc dots to reach similar accuracy in the
reaction field energy. Only the allocated memory during the arc dot calculation is shown
here. The timing shown here has two portions, one from the arc dot generation and the other
from gird point labeling, both of which are affected by the number of arc dots. Because the
search for trimer arc dots of one atom need to consider all nearby three-atom groups with
this atom as a member, the timing of calculating arc dots for this case is probably longer.
However, it decreases the work load at the step of grid point labeling because fewer arc dots
are looped over to determine the solute/solvent property of each grid point.

We also studied the quality of numerical force calculation with respect to the use of trimer
arc dots. Figure 6 compares the accuracy in the total force on G of the GC dimer with and
without the trimer arc dots. Note that the calculations were conducted at the typical coarse
grid spacing of 1/2 Å. Apparently the numerical force is much more consistent with the
virtual work force when trimer arc dots are present when the arc dot resolution is set to be
1/4 Å.

Table 2 further shows the uncertainties in numerical reaction field energies for both the GC
base pair and the alanine-based helical hexamer. It is interesting to note that the uncertainties
are mostly related to the grid spacing used. That is to say that given the same grid spacing,
the standard deviations are mostly in the same order of magnitude no matter how fine the arc
dot resolution is. Given that fine arc resolution does not help reduce the uncertainty in the
numerical reaction field energy as shown in Table 2 and the analysis in Figure 5, our
recommendation is to set the arc resolution to max(h/2, 1/8 Å) for typical grid spacings used
in biomolecular applications. Of course this is with the trimer arc dots included. When the
trimer arc dots are not included, the arc dot resolution should be reduced to max(h/4, 1/16
Å) to achieve similar accuracy level.

Convergence improvement with harmonic averaging of boundary dielectrics
It has been pointed out that the use of surface polarization charges can lead to much reduced
grid dependence in numerical reaction field energies.27 In this study, we further explored to
combine harmonic averaging in boundary dielectrics with the “charge-based” approach to
improve the convergence and to reduce the uncertainty of numerical reaction field energies
and solvation forces.

It is often the case that reaction field energies converge in O(h2). Interestingly, only the
convergence rate of the charge-based approach with WHA (both the geometric and algebraic
implementations) is quadratic (Figure 7 top). The reaction field energy with the NHA
scheme is linearly dependent on the grid spacing, and the reaction field energy with the SHA
scheme follows a strange trend, i.e., at the coarsest grid spacing tested, the result is closer to
the converged value than those at 1/4 Å and 1/8 Å. Accordingly, the SHA scheme performs
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the best at the 1/2 Å. Note that all of the three schemes converges to the consistent values as
the grid spacing approaches zero.

The standard deviations of the reaction field energies by different combinations of numerical
methods are summarized in Table 3. Either the charge-view method or the WHA strategy
alone can significantly reduce the grid dependence compared to the conventional field-view
method and the NHA strategy. The total effect is a factor of three to five, depending on the
grid spacing, and the most dramatic improvement happens at the coarsest grid spacing, i.e.,
1/2 Å. Plus, the coarse-grid convergence of the combined strategy is better than that of any
other numerical method, i.e., the numerical result at 1/2 Å is closest to the corresponding
value at 1/16 Å.

It is also interesting that the solvation forces converge faster than the reaction field energies
(Figure 7 middle), but the standard deviations of the solvation forces are always notably
larger than those of the reaction field energies. For the reaction field forces, all of the three
schemes converge super-quadratically and to the almost identical values (Table 4). Speaking
of the dielectric boundary forces, both WHA and NHA can converge to reasonable values.
Specifically, the relative difference between the two types of forces, the reaction field force
and the dielectric boundary force, which are supposed to be virtually identical (the ionic
boundary force is ~O(10/2) smaller), is 1.3% for WHA and 4.8% for NHA. In contrast, SHA
converges to a much lower value than the reaction field force, implying poor self-
consistency with this scheme. In summary, the WHA method leads to the smallest
uncertainties in both energies and forces of the tested molecule.

Finally Figure 8 illustrates the consistency of electrostatic solvation forces calculated by
different boundary dielectric constant assignments at the finest grid spacing tested (1/16 Å).
Overall, there is a high-level consistency between the algebraic method and the geometric
method in both reaction field forces and dielectric boundary forces. Furthermore, the WHA
approach leads to the lowest numerical uncertainties in computed forces, especially the
dielectric boundary forces (about ten times smaller).

Timing analysis
In the charge-view method, extra time is needed on the computation of polarizable charges
on the interface. It is important to know the timing expense of the charge-view method,
compared to the total FDPB timing. Figure 9 shows that the ratio of the charge-view timing
and the total timing grows substantially with the grid size at the beginning, and later
becomes stable at around 23% with small fluctuations. Thus the benefit still outweighs the
cost for most tested molecules given that the same accuracy level can only be achieved with
a smaller grid spacing. For example, a grid spacing of 1/3 Å is necessary for the classical
method to achieve comparable results with the charge-view method at the grid spacing of
1/2 Å. The finer grid clearly leads to a linear system about four times larger, and roughly
four times more CPU time is needed to solve the linear system because the bottleneck of the
new method is still the linear system solver (at least 75% for the largest linear system).

Possible extension to full PB systems
It is expected that the charge-view method will become more complicated when applied to
the full PB equation. There would be much more pair-wise additions after the mobile
charges are included. Although we can use fast Fourier transform to speed up the
calculations, there is actually no need to do so.

The total electrostatic energy in the presence of mobile charges can be computed with the
following field-view formula:77
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(9)

The first term is the energy associated with the fixed charges, the second term is the energy
associated with the mobile charges, and the last term is the entropic term due to the osmotic
excess pressure. Here ρf is the fixed charge density, ρm is the mobile charge density, φ the
total potential, which can be decomposed into three parts as follows

(10)

where  is the potential due to the fixed charges,  is the potential due to the mobile
charges, φRF is the reaction field potential in the full PB system. The third term in eqn (9) is
the entropic term due to the excess osmotic pressure, apparently not due to charge-charge
interactions so that no further treatment will be attempted.. The second term in eqn (9) can
be computed as present in the current form because the potential is weak due to solvent
screening. Thus our focus is on how to compute the first term in eqn (9) more accurately in
the current effort.

According to eqn (10), the first term can be further split into three parts, the interactions
between atomic charges, the interactions between atomic charges and mobile charges, and
the interactions between atomic charges and polarization charges, i.e.,

(11)

The motivation in replacing the field-view method with the charge-view method is to reduce
the finite difference error, especially the error in the potential nearby the atomic charges.
Thus the best improvement in applying the charge-view method is to charges that are close
to each other, typically within a cutoff distance of Rcut. For charges that are far away from
each other, apparently the field-view method still works well. This particle-particle particle-
mesh (P3M) strategy would greatly simplify the full charge-view method without much
sacrifice in accuracy.78 Thus eqn (11) is modified to

(12)

where  is the short-range interactions between atomic charges,

 is the short-range interactions between atomic charges and polarizable
charges. These two field-view terms are computed by Luty et al’s approach79 and then
subtracted from Gf because they are the least accurate and substituted by the pair-wise
charge-charge interactions, i.e.,

(13)

where qi, qj are the atomic charges, rij are the distances between atomic charges i and j, 
are the distances between atomic charges and polarizable charges. The integral interval in
eqn (12) and summation terms in eqn (13) are determined by the short-range cutoff distance
Rcut.
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The above P3M strategy was compared with the field-view method on the computation of
the total electrostatic energies of small molecules. The convergence behaviors of the two
methods are shown in Figure 10. The charge-view result is also plotted as a reference.
Because the energies were computed from the solutions of a linearized PB equation, only the
first term in eqn (9) remains. As expected, the P3M strategy has less convergence error at
coarse grid spacings and half-reduced uncertainties in the reaction field energies for both
tested small molecules. The high consistency between the charge-view method and the P3M
indicates that the particle mesh method to compute the interactions between charges at a
distance remains to be a good approximation.

Limitations and future directions
As reviewed in the Introduction the solvent excluded surface has been widely adopted for
numerical PB methods in biomolecular applications involving static structures. However it
still requires more development to adopt the SES definition for molecular dynamics
simulations.61 Indeed, difficulty was also observed in the pair-wise generalized Born (GB)
method when the SES definition was used for biomolecular dynamics simulations.80 A
major limitation of the SES definition is the reentry volume: it is found that large reentry
volume generated by non-bonded atoms comes and goes as often as every femtosecond
when the nearby atoms undergo vibrational motion in simulations of proteins at room
temperature.61 Thus extremely large surface derivatives with respect to atomic coordinates
may occur in the SES definition. In addition, surface cusp may also exist given certain
combinations of atom and probe radii and arrangements of atoms. Finally, partition of
dielectric boundary force elements on the solvent/surface interface to nearby atoms is also
crucially important when the numerical PB methods can be applied to routine energy
minimization and molecular dynamics simulations. These limitations require us to redefine
the molecular surface that is both smooth and differentiable with respect to the atomic
positions. Thus how to preserve the good physical properties of the SES definition in the
development of a smooth and differentiable surface definition is clearly an important future
direction. It should be pointed out that several recent developments were also reported to
smooth the SES surface,81-85 which should also be investigated in the future.

Conclusions
In this study we have discussed our strategies to overcome the numerical difficulties
associated with the solvent excluded surface definition in the finite-difference Poisson-
Boltzmann methods. Specifically we have developed new numerical procedures and
explored strategies to minimize the dependence in the numerical energies and forces upon
grid resolution.

To map the grid-independent solvent excluded surface to the finite-difference grid, we have
proposed an algebraic method that utilizes the concept of the level set function to trace the
molecular surface implicitly. The advantage of the algebraic approach lies in its simple
logics leading to efficient implementation. Of course a high level of consistency does exist
between the algebraic method and the classical method as has been demonstrated with a
diversified test set of biomolecules.

Next we have addressed the more important issue of convergence and stability of the
numerical reaction field energies and solvation forces when the solvent excluded surface is
used in the finite-difference methods. We found that both grid spacing and solvent
accessible arc resolution influence the accuracy of the final computed reaction field energy
for a tested molecular system, and inclusion of trimer arc dots during surface generation is
beneficial to the convergence of both reaction field energies and solvation forces given the
same arc resolution. In addition, the uncertainties in the numerical reaction field energies for
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tested molecules are mostly related to the grid spacing used even when the arc resolution is
comparable to the grid spacing.

We have further explored to combine harmonic averaging in boundary dielectrics with the
“charge-based” approach to improve the convergence of numerical reaction field energies
and solvation forces and to reduce their uncertainties. Interestingly, the use of surface
polarization charges changes the convergence behaviors of the reaction field energies and
solvation forces. In addition, the weighted harmonic averaging method leads to the smallest
numerical uncertainty in both energy and force calculation. The combined strategy can also
be extended to the full PB equation. The P3M method has been proved to be able to improve
the efficiency with negligible loss of accuracy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Grid point labeling scheme in the numerical molecular surface procedure.
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Figure 2.
Projection procedures of boundary grid points. A “±2” point is projected onto the nearest
atom sphere and a “±1” point is projected onto the nearest probe sphere. Note that surface
polarizable charges are only located on boundary grid points with non-uniform dielectric
constants on its six neighboring grid edges.
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Figure 3.
Top: correlation of reaction field energies by PBSA and Delphi for the 579 biomolecules in
the Amber training set. The Pearson correlation coefficient is 1.0000 and the linear
regression slope is 0.9991 (with zero offset). Bottom: absolute differences (DΔG) between
calculated reaction field energies by two programs versus calculated reaction field energies
by Delphi. Here both PBSA and Delphi uses the NHA method for the dielectric constant
assignment on the molecular surface.
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Figure 4.
Correlation of reaction field energies by the geometric and algebraic methods for the 579
biomolecules in the Amber training set. Here the geometric and algebraic methods were
used, respectively, to compute the intersection points of the molecular surface and finite-
difference grid edges. The WHA method was used for the dielectric constant assignment on
the molecular surface.
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Figure 5.
The relative errors in the reaction field energies of the GC base pair calculated by the
algebraic method with different combinations of grid spacings and arc resolutions. (top:
without the trimer arc dots; bottom: with the trimer arc dots) The unit of in-plot label is
percent and the interval of the contour levels is 2%. Here the WHA method was used for the
dielectric constant assignment on the molecular surface.
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Figure 6.
Total force on G of the GC dimer at different intra-molecular distances between G and C
(the distance between N-1 of guanine and N-3 of cytosine). The grid spacing is 1/2 Å and
the arc resolution is 1/4 Å. The forces computed with the virtual work principle are shown as
a reference.
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Figure 7.
Effect of boundary dielectric constant assignments upon the convergence of reaction field
energy (top), total reaction field force (middle), and total dielectric boundary force (bottom)
for the GC base pair. Overall, the use of WHA offers the best convergence in the reaction
field energies and solvation forces. Both algebraic and geometric methods were tested for
the WHA approach. Their trends virtually overlap with each other. In all plots, standard
deviations are plotted as error bars.
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Figure 8.
Consistency of electrostatic solvation forces calculated by different boundary dielectric
constant assignments at the finest tested grid spacing of 1/16 Å. Top: atomic reaction field
forces and their standard deviations. Bottom: atomic dielectric boundary forces and their
standard deviations.

Wang et al. Page 24

J Chem Theory Comput. Author manuscript; available in PMC 2013 August 14.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 9.
The ratio of the charge-view time and the total PBSA time versus the total PBSA time.
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Figure 10.
Reaction field energies of two small molecules in a water environment with continuum ions.
Linearized PB equations were solved before the reaction field energy calculation. The ion
strength is 0.15 M. Three different methods were applied and shown in the figure for
comparison (all with the WHA scheme). Top: GC dimer; Bottom: A6α.
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Table 1

Comparison of memory and timing usage between finite difference SES definitions with and without trimer
arc dots. The tested molecule is 1tsr, which has 3010 atoms. The timings were obtained from an average of
three runs. The memory amounts were obtained from allocation requests in the code.

With trimer arc dots Without trimer arc dots

Memory (MB) 611 1123

Timing (s) Arc dots calculations 0.76 0.63

Grid point labeling 1.60 1.84

Total 2.36 2.47
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Table 2

Standard deviations in computed reaction field energies (σ, kcal/mol) versus grid spacings (h, Å) and arc
resolutions (arc, Å).

Molecule 1/h 1/arc σ (×10−3)

GC

2

2 205.263

4 206.637

8 206.666

16 206.773

4

2 61.760

4 61.774

8 61.792

16 61.713

8

2 15.683

4 15.722

8 15.698

16 15.708

A6α

2

2 103.671

4 104.039

8 103.782

16 103.891

4

2 29.457

4 29.417

8 29.367

16 29.342

8

2 6.488

4 6.397

8 6.432

16 6.413
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