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Abstract
This study fills in the current knowledge gaps in statistical analysis of longitudinal zero-inflated count
data by providing a comprehensive review and comparison of the hurdle and zero-inflated Poisson
models in terms of the conceptual framework, computational advantage, and performance under
different real data situations. The design of simulations represents the special features of a well-
known longitudinal study of alcoholism so that the results can be generalizable to the substance abuse
field. When the hurdle model is more natural under the conceptual framework of the data, the zero-
inflated Poisson model tends to produce inaccurate estimates. Model performance improves with
larger sample sizes, lower proportions of missing data, and lower correlations between covariates.
The simulation also shows that the computational strength of the hurdle model disappears when
random effects are included.
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1. Introduction
Measuring symptomatology of a target disease longitudinally can provide useful data for
assessing disease progression or evaluating long-term effects of treatment or intervention.
Substance use disorders are relapsing–remitting in nature [1]. The disease course manifests
itself clinically by nondeterministic fluctuations between periods of worsening symptoms and
periods of improvement. Such longitudinal trajectories can hardly be delineated by the popular
growth curve modeling that employs polynomial functions of time because (i) they have all
orders of derivatives everywhere, (ii) polynomial degree cannot be controlled continuously,
and (iii) further individual observations can have a large influence on remote parts of the curve
[2]. Another common feature of this type of data is that the symptom count measure tends to
have excess zero values beyond what would be expected by a classical Poisson model,
especially when the sample is drawn from the general population or a community [3].
Moreover, the large individual differences in developmental trajectories commonly observed
in the substance abuse field (e.g., [4]) certainly increase the difficulty level of the data analysis.
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Longitudinal zero-inflated count data frequently occur in not only the substance abuse field
but also in other fields such as healthcare utilization [5], pharmaceutical research [6], and
vaccination safety [7]. Thus, statistical models designed for this kind of data have many
practical applications. In recent years, the applications of regression splines to longitudinal
data analysis have increased dramatically because of their flexibility to different developmental
patterns and robust model assumptions. The aim of this paper is to review and compare two
competing models for zero-inflated count data, the hurdle model, and the zero-inflated Poisson
(ZIP) model, in the setting of longitudinal data analysis with regression splines for modeling
longitudinal trajectories as well as random effects for handling within-subject correlation and
between-subject heterogeneity. We demonstrate the programming in SAS [8] and conduct
simulations to evaluate the performance of the competing models based on the data features
of the Michigan Longitudinal Study (MLS), which is an ongoing multiwave prospective study
of youth at high risk for alcoholism. The alcohol use disorder (AUD) symptom counts collected
from this sample from childhood to adulthood provide a typical example of longitudinal zero-
inflated count data.

We organize this paper as follows. In Section 2, we introduce and compare the hurdle model
and the ZIP model with an emphasis on the conceptual and computational differences between
the models. We also discuss the issues of applications in the substance abuse field. In Section
3, we present a motivational example using the MLS data. In Section 4, we conduct simulation
studies to assess the performance of the statistical models under different levels of the sample
size, proportion of missing data, and correlation between covariates. We also compare the
computational time consumed by the competing models. We present discussion and concluding
remarks in Section 5. We provide a SAS program example in Appendix A.

2. The statistical models
2.1. The hurdle model

The hurdle model [9] has mostly been adopted to conduct economic analysis of healthcare
utilization. The model postulates a two-stage decision structure in the demand process: the first
stage involves the decision to seek care, and the second stage determines how much care is
demanded among the subgroup of users for whom the hurdle is crossed. One major strength
of the hurdle model is that it can simultaneously accommodate two sets of factors that contribute
to separate stages.

In a longitudinal setting, suppose that Yij is the response such as the symptom count for subject
i at time tij (i = 1, …, n, j = 1, …, mi ) and it is from a finite mixture:

The probability distribution is thus written as

Let xij be the set of factors that contribute to the severity of symptomatology for the people
who have developed some symptoms and zij be another set of factors that account for the
probability of being symptom free. The parameters can be modeled by
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(1)

(2)

where β and γ are fixed effects for covariates xij and zij, respectively; ai and bi are random
effects accounting for within-subject correlation and between-subject heterogeneity; g(tij) and
h(tij) are baseline functions for the nonlinear time effects. It is assumed that

where

We fit the functions g(·) and h(·) with the following piecewise quadratic polynomials (for the
ease of presentation, we drop ij from t):

(3)

where the + indicates the positive value from the expression inside the parentheses; t1, …, tK
are the knots that divide the range of t into segments. The number of knots controls the amount
of smoothing and can be chosen by goodness-of-fit statistics such as BIC. We can use SAS
PROC TRANSREG [8] to estimate these regression splines. We include a program example
in Appendix A.

By assuming that Yij, j = 1, …, mi are conditionally independent given the random effects (ai,
bi), the likelihood function for data from subject i can be written as

(4)

where I(·) is an indicator function; F(·) is the joint distribution function of (ai, bi). To obtain
the maximum likelihood estimators for the unknown parameters β, γ and Σ, we need to
optimize the likelihood function

that involves numerical integration. SAS PROC NLMIXED [8] is equipped with both the
numerical integration and optimization methods. Appendix A shows a program example.
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2.2. The zero-inflated Poisson model
An alternative model for zero-inflated count data, the ZIP model, was originally proposed to
model the number of defects on an item in a manufacturing process that is assumed to move
randomly back and forth between a perfect state and an imperfect state [10]. Like the hurdle
model, the ZIP model can simultaneously accommodate one set of factors that make the perfect
state more likely and another set of factors that contribute to fewer defects in the imperfect
state. The model has been applied in many fields including health science where the population
consists of the people who are at risk for a disease and others who are not at risk [7]. The
original model has also been extended to accommodate an upper-bounded count situation as
well as a repeated measures design [11].

Like the hurdle model, the ZIP model is a finite mixture model:

The probability distribution is thus written as

We can model the parameters (λij, πij) as Equations (1) and (2) in the hurdle model,
respectively. The likelihood function also has the same form as Equation (4) in the hurdle
model.

2.3. Properties of estimators and goodness-of-fit statistic
We can view both the hurdle and ZIP models with random effects as nonlinear mixed effects
models. Vonesh and Chinchilli have provided a systematic account on this class of models
[12]. The estimation procedure used in SAS PROC NLMIXED is based on the marginal
likelihood. Following the theory of maximum likelihood estimation, the resulting estimators
follow an asymptotic normal distribution. Furthermore, the standard errors of the estimates can
be computed using the inverse of Fisher information matrix.

SAS PROC NLMIXED uses twice the negative of the log likelihood to measure goodness of
fit. This is similar to the deviance used in generalized linear models. Specifically, for the ZIP
model with random effects, define

for each observation yij and
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To calculate dij, we need to have predicted values of the random variables, λ̂ij and π̂ij, which
can be estimated using the empirical Bayes method. We can then use the Chi-square test
(degrees of freedom = number of observations–number of parameters) to examine goodness
of fit. We can conduct a goodness-of-fit test for the hurdle model with random effects in a
similar way.

2.4. Applications of models in substance abuse research
Conceptually, the ZIP model is more intuitive when the population consists of a group of people
who are at risk for a disease and another group who are not at risk (e.g., women are not at risk
for prostate cancer), whereas the hurdle model is more appropriate when all people in the
population are considered at risk of an event and the realization of the event represents a hurdle
that has been crossed [7]. In substance abuse research, either way of conceptualization makes
sense. For example, the ZIP model is applicable when we divide the population into
nondrinkers who can only have zero alcohol-related symptoms and drinkers who may have
zero symptoms. For another example, the hurdle model is appropriate if every person in the
population is considered at risk for alcohol dependence but only some people meet at least one
symptom criterion. For longitudinal studies such as the one described in the next section, people
are assumed to be at different levels of risk for alcoholism-related symptoms at different ages.
People also change from nondrinkers to drinkers or the other way around across time. The
hurdle model tends to have reasonable grounds for such settings.

As shown in previous sections, the hurdle and ZIP models are both finite mixture models – the
hurdle mixes 0 and a truncated Poisson, whereas the ZIP mixes 0 and a regular Poisson. The
two models can be shown to be mathematically equivalent – one is just a reparameterization
of the other when there are no covariates involved [13]. In the case when covariates are included
in the models, it is not clear how the two models relate to each other, although it was shown
that these two models produce similar estimates and have indistinguishable goodness-of-fit
measures in empirical data analysis [7]. Simulation studies are needed to investigate the
consequences of using one model when the other model is more natural under the conceptual
framework of the data.

The major strength of the hurdle model is that it can handle not only zero-inflated data but also
zero-deflated data, whereas the ZIP model can only deal with zero-inflated data [6]. Although
this strength makes the hurdle model more applicable in general settings, it is less relevant for
substance abuse data because zero-inflated count data are typically the norm, whereas zero-
deflated count data are extremely rare in the field. Symptom count data collected from the
general population or a community sample tend to be zero-inflated because many participants
are nondrinkers or drinkers who have not yet developed symptomatology. Even when we
collect symptom count data from a treatment sample such as patients with alcohol dependence,
we are likely to observe many participants having only the minimum number of symptoms
(e.g., the DSM-IV [14] requires at least three of seven possible symptoms to meet an alcohol
dependence diagnosis). The resultant data can again be analyzed by the hurdle or ZIP model
with a shift on the location.

Another strength of the hurdle model is its computational simplicity. When there is no random
effect, it is shown that the log-likelihood function of the hurdle model can be factored into two
terms with one involving β (in Equation (1)) and another involving γ (in Equation (2)), so one
can obtain maximum likelihood estimates by separately maximizing the two terms [6]. For the
ZIP model, on the other hand, the model components must be fit simultaneously and therefore
is more complex computationally. Nevertheless, when random effects are included such as
Equations (1) and (2), this strength may disappear as the model components must be fit
simultaneously for both models because the random effects have to be integrated out in the
optimization process (Equation (4)). To the best of our knowledge, the computational time of
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the two models has never been compared systematically, especially when random effects are
involved.

In this study, we aim to extend the applications of the hurdle and ZIP models to analyze
longitudinal zero-inflated count data in the substance abuse field. We fill in the current
knowledge gaps by conducting simulations on the basis of the data features of a well-known
longitudinal study on alcoholism to (i) investigate the consequences of using one model when
the other model is more natural under the conceptual framework of the data; (ii) compare the
computational time consumed by the two models; and (iii) evaluate the performance under
different sample sizes, proportions of missing data, and correlations between covariates.

3. A motivating example: the Michigan Longitudinal Study
The MLS is an ongoing multiwave prospective study of people at high risk for substance use
disorders [15, 16]. The study recruited participant families using fathers’ drunk driving
conviction records and door-to-door community canvassing in a four-county area in mid-
Michigan. All participants received extensive in-home assessments of their psychiatric
symptoms including alcoholism-related symptoms at baseline, and thereafter at 3-year
intervals. In this study, we use longitudinal data from a sample of 635 children (71% male) for
analysis. Their mean age at the latest assessment wave was 20 years.

The following is a brief list of the 11 DSM-IV symptom criteria for AUD [14]:

Abuse symptom 1: Failure to fulfill major role obligations

Abuse symptom 2: Hazardous use

Abuse symptom 3: Legal problems

Abuse symptom 4: Social or interpersonal problems

Dependence symptom 1: Tolerance

Dependence symptom 2: Withdrawal

Dependence symptom 3: Taken in larger amounts or over a longer period

Dependence symptom 4: Persistent desire or unsuccessful efforts to cut down

Dependence symptom 5: A great deal of time spent

Dependence symptom 6: Important activities given up or reduced

Dependence symptom 7: Physical or psychological problems

The symptom count (range of 0–11) serves as an important indicator for AUD severity. The
zero values in the data from this community sample are more than what would be expected
from a classical Poisson regression model (83% across waves). Thus, statistical models for
zero-inflated data such as the hurdle and ZIP models are needed.

The substance abuse literature has shown that children of alcoholics, early onset drinkers, men,
or youth with high internalizing or externalizing behavior are at a higher risk for progression
into AUD [17, 18]. We applied both the hurdle model and the ZIP model to estimate the effects
of these risk factors on AUD symptom counts using the MLS data. Table I shows the estimated
regression coefficients, standard errors, p-values for t -tests, and goodness-of-fit test results.
Most of the estimates in the Poisson component produced by the two models are close, whereas
the ones in the zero component are very different. Given the significance level at .05, both
models identify externalizing behavior in youth as an important risk factor that contributes to
more AUD symptoms and a lower likelihood of being nondrinkers (ZIP) or symptom free
(hurdle). Early onset of drinking is found by both models to be a significant factor in the zero
component but is only significant in the Poisson component under the hurdle model. Moreover,
children of alcoholics are shown by the hurdle model to be less likely to have no AUD
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symptoms. Although there are significant individual differences (i.e., the random effect) in the
Poisson component under both models, the random effect term in the zero component is only
found to be necessary under the hurdle model. As shown on the bottom of Table I, both models
fit as well as the saturated model.

Figures 1–2 show the spline functions of time. Like the estimates of fixed effects in the Poisson
component (shown in Table I), the spline functions in the Poisson component generated by the
two models look very similar – the severity level of AUD symptomatology grows rapidly from
age 10 to 13 years and stays at the same high level throughout early adulthood (Figure 1). On
the other hand, Figure 2 shows that the two models produce very different spline functions in
the zero component during early adolescence. The ZIP model indicates that the probability of
being a nondrinker increases from age 10 to 13 years, whereas the hurdle model delineates that
the probability of being symptom free decreases rapidly during the same period. Both models
demonstrate that the corresponding probability gradually decreases year by year from age 13
to early 20s and afterwards stays relatively flat.

The developmental trajectories of AUD symptomatology under the hurdle model are more
legitimate as the youth in this high risk sample tend to start drinking earlier and thus are more
likely to develop alcohol-related symptoms quickly in early adolescence. Furthermore, for
longitudinal studies such as the MLS, people are assumed to be at different levels of risk for
alcoholism-related symptoms at different ages. People also change from nondrinkers to
drinkers or the other way around across time. The logic behind the hurdle model thus tends to
have reasonable grounds in such a setting. For these reasons, we designate the hurdle model
as the true model in the simulation study.

4. Simulation study
We adopted the fitted hurdle model in the motivating example as the true model to generate
simulated data that closely represent the structure of real data so that the results can be more
generalizable to the substance abuse field [19]. To generate the five covariates (x = z), we drew
random samples from a multivariate normal distribution N5(0, ψ), where the diagonal element
ψii = 1 and the off-diagonal element ψij = r|i−j| (i, j = 1, …, 5). We employed three levels of
correlation in this experiment: small (r = 0.00), medium (r = 0.25), and large (r = 0.50). We
also manipulated the sample size at three levels: small (N = 100), medium (N = 200), and large
(N = 400). For each subject, we randomly generated a covariate set at each of 20 predetermined
assessment waves with a random shift added to each wave so that the subjects may not follow
exactly the same assessment schedule such as real data. In addition, we varied the proportion
of missing data commonly observed in real data at three levels: small (p = 0.20), medium (p =
0.30), and large (p = 0.40). In summary, we manipulated three factors: the sample size (N), the
proportion of missing data (p), and the correlation between covariates (r), with three levels for
each factor. Thus, there were in total nine situations. For each situation, we conducted 200
replications.

In each situation, we evaluated the performance of three alternative models: the Poisson
regression model, the ZIP model, and the hurdle model. All the models involve both fixed and
random effects (i.e., mixed effects). We used the Poisson regression model as a control
model to examine the consequences of ignoring zero inflation in the data. We compared the
performance of the ZIP model with the one of the hurdle model to evaluate the consequences
of using the ZIP model when the hurdle model was more natural under the conceptual
framework of the data. For the fixed effects (β, λ) and the variance–covariance of the random
effects Σ, we used the mean squared error (MSE) summarizing the deviation of the 200
estimates from the parameter as the criterion for performance evaluation. For the nonlinear
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function of time g(t), we calculated the integrated mean squared error (IMSE) for each
replication:

We used the average of the 200 IMSEs to measure the deviation from the true function. We
applied the same computation to the other spline function h(t). To save space, we only show
those results featuring the effects of one factor holding the other two factors at their medium
values in Tables II–IV. Interested readers may request the tables for other situations from the
first author.

Table II shows the effects of varied sample sizes on performance of the three alternative models
holding the correlation between covariates and the proportion of missing data at the medium
values (r = 0.25, p = 0.30). For any model, the performance improves (i.e., smaller MSE) as
the sample size increases. When the levels of the three factors are fixed, the hurdle model
performs better than the ZIP model, especially on estimating the parameters in the zero
component. The Poisson regression model performs much worse than the other two models
because it ignores the zero inflation in the data.

In Table III, the effects of varied proportions of missing data are depicted with the correlation
between covariates and the sample size fixed at the medium values (r = 0.25, N = 200). As the
proportion of missing data increases, the performance of every model becomes worse (i.e.,
larger MSE). For any combinations of levels in the three factors, the hurdle model outperforms
the ZIP model, especially on estimating the parameters in the zero component. Both the hurdle
model and the ZIP model perform much better than the Poisson regression model that imposes
an incorrect assumption on the count data.

Table IV summarizes the simulation results with the correlation between covariates
manipulated while holding the other two factors constant (p = 0.30, N = 200). Like the results
in Tables II–III, the Poisson regression model tends to produce much larger MSE’s than the
other two models across different levels of correlation. The performance of the hurdle model
tends to decline as the correlation becomes higher. The other two models, on the other hand,
do not have a clear pattern of changes with varied correlations.

One objective of this study is to compare the two models in terms of their computational time,
particularly when random effects are involved. Our simulation shows that the average
computational time per replication is 15 min and 45 s for the ZIP model; it is 17 min and 24 s
for the hurdle model. Therefore, this confirms our hypothesis that the computational strength
of the hurdle model disappears when random effects are included in the model.

5. Discussion
This study has filled in the current knowledge gaps in statistical analysis of longitudinal zero-
inflated count data by providing a comprehensive review and comparison of the ZIP and hurdle
models in terms of the conceptual framework, computational advantage, and performance
under different real-data situations. The design of our simulation study is unique because it
represents the special features of a well-known longitudinal study on alcoholism risk so that
the results can be generalizable to the substance abuse field.

Our simulation results demonstrate the danger of using the Poisson regression model to analyze
longitudinal count data when excess zeros exist in the data: the model tends to produce much
higher MSEs than the hurdle and ZIP models. On the basis of both the simulations and empirical
analysis of real data, when the hurdle model is more natural under the conceptual framework
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of the data, the ZIP model tends to result in relatively high MSEs, particularly in the zero
component. Moreover, the performance of the models improves with a larger sample size,
lower proportion of missing data, and lower correlation between covariates. The simulation
also shows that the computational strength of the hurdle model disappears when random effects
are included in the model.

According to our comparison between the hurdle and ZIP models in Section 2.4 and the
simulation results, we would like to provide a general guideline on applications of these models
for practitioners. If there exist a group of subjects who are at risk for an event and another
group who are not at risk, the ZIP model captures the conceptual framework better than the
hurdle model that is more appropriate when all the subjects are considered at risk for an event.
Both models are designed to address the issue of zero-inflated data. However, only the hurdle
model can handle zero-deflated data. When there is no random effect (or the random effect is
ignorable), the hurdle model has computational advantage. But such advantage should play a
minimal role in choosing a model because the conceptual framework and features of the data
are more important.

In this study, we only consider the Poisson link function for both the hurdle and ZIP models
because it fits well with the real data example. In some applications where overdispersion is
common, such as analyzing vaccine adverse event count data [7], the negative binomial link
should be considered.

In our analysis, we implicitly assumed that the mechanism of missing data is missing
completely at random, so we only needed to model the response process with the use of
available observations. It would be an interesting research topic to consider other patterns of
missing data such as missing at random, where the missing process is correlated with the
response process. For the case of missing at random, to obtain consistent and unbiased estimates
of the parameters for the response process, we need to take into account the missing process
appropriately (e.g., inverse probability approach), and we should model both the missing
process and the response process. This may be a topic for future research.

As shown by the simulations, the average computational time for fitting either model is 15–17
min because it involves both numerical integration and optimization procedures. Future
methodological work is needed to improve the computational efficiency in real-life
applications.

Acknowledgments
Buu’s research was supported by a National Institutes of Health (NIH) grant, K01 AA16591; Li’s research was
supported by NIH grants, R21 DA024260 & P50 DA10075, and a National Science Foundation (NSF) grant DMS
0348869; Tan’s research was supported by an NIH grant P50 DA10075; and Zucker’s research was supported by an
NIH grant R37 AA07065. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the NIH or the NSF.

References
1. McLellan AT, Lewis DC, O’Brien CP, Kleber HD. Drug dependence, a chronic medical illness:

implications for treatment, insurance, and outcomes evaluation. Journal of The American Medical
Association. 2000; 284:1689–1695.10.1001/jama.284.13.1689 [PubMed: 11015800]

2. Fan, J.; Gijbels, I. Local Polynomial Modeling and Its Applications. Chapman and Hall; London, UK:
1996.

3. Buu A, Johnson NJ, Li R, Tan X. New variable selection methods for zero-inflated count data with
applications to the substance abuse field. Statistics in Medicine. 2011; 30:2326–2340.10.1002/sim.
4268 [PubMed: 21563207]

Buu et al. Page 9

Stat Med. Author manuscript; available in PMC 2013 December 20.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



4. Hill KG, White HR, Chung IJ, Hawkins JD, Catalano RF. Early adult outcomes of adolescent binge
drinking: person-and variable-centered analyses of binge drinking trajectories. Alcoholism: Clinical
and Experimental Research. 2000; 24:892–901.10.1111/j.1530-0277.2000.tb02071.x

5. Alfo M, Maruotti A. Two-part regression models for longitudinal zero-inflated count data. The
Canadian Journal of Statistics. 2010; 38:197–216.10.1002/cjs

6. Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count data. Statistical
Modeling. 2005; 5:1–19.10.1191/1471082X05st084oa

7. Rose CE, Martin SW, Wannemuehler KA, Plikaytis BD. On the use of zero-inflated and hurdle models
for modeling vaccine adverse event count data. Journal of Biopharmaceutical Statistics. 2006; 16:463–
481.10.1080/10543400600719384 [PubMed: 16892908]

8. SAS Institute Inc. SAS/STAT 9.2 User’s Guide. SAS Institute Inc; Cary, NC: 2008.

9. Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics.
1986; 33:341–365.10.1016/0304-4076(86)90002-3

10. Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing.
Technometrics. 1992; 34:1–13.10.2307/1269547

11. Hall DB. Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics.
2000; 56:1030–1039.10.1111/j.0006-341X.2000.01030.x [PubMed: 11129458]

12. Vonesh, E.; Chinchilli, VM. Linear and Nonlinear Models for the Analysis of Repeated
Measurements. Marcel Dekker; New York: 1997.

13. Baughman AL. Mixture model framework facilitates understanding of zero-inflated and hurdle
models for count data. Journal of Biopharmaceutical Statistics. 2007; 17:943–
946.10.1080/10543400701514098 [PubMed: 17885875]

14. American Psychiatric Association. Diagnostic and Statistical Manual. 4. American Psychiatric
Association; Washington DC: 1994.

15. Zucker RA, Ellis DA, Fitzgerald HE, Bingham CR, Sanford K. Other evidence for at least two
alcoholisms II: life course variation in antisociality and heterogeneity of alcoholic outcome.
Development and Psychopathology. 1996; 8:831–848.

16. Zucker, RA.; Fitzgerald, HE.; Refior, SK.; Puttler, LI.; Pallas, DM.; Ellis, DA. The clinical and social
ecology of childhood for children of alcoholics: description of a study and implications for a
differentiated social policy. In: Fitzgerald, HE.; Lester, BM.; Zuckerman, BS., editors. Children of
Addiction. Garland Press; New York: 2000. p. 109-141.

17. Hussong A, Bauer D, Chassin L. Telescoped trajectories from alcohol initiation to disorder in children
of alcoholic parents. Journal of Abnormal Psychology. 2008; 117:63–78.10.1037/0021-843x.
117.1.63 [PubMed: 18266486]

18. Guo J, Hawkins JD, Hill KG, Abbott RD. Childhood and adolescent predictors of alcohol abuse and
dependence in young adulthood. Journal of Studies on Alcohol. 2001; 62:754–762. [PubMed:
11838912]

19. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics.
Statistics in Medicine. 2006; 25:4279–4292.10.1002/sim.2673 [PubMed: 16947139]

20. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Springer-Verlag; New
York: 2001.

Appendix A. SAS program for hurdle and ZIP models with random effects and
regression splines

We carried out all programming in SAS version 9.2. We employed PROC TRANSREG to
construct piecewise quadratic polynomials in Equation (3) with the use of degree two B-splines
(DEGREE=2) that have nice numerical properties and are easy to manipulate [20]. We chose
five knots (NKNOTS=5) because the corresponding model fits the MLS data well. This results
in 5 + 3 terms, t_0–t_7, that were stored in the data set basis.

PROC TRANSREG DATA= mls;
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MODEL IDENTITY(y) = BSPLINE(t/DEGREE=2 NKNOTS = 5 );
OUTPUT OUT = basis PREDICTED;
RUN;

We merged the resulting transformations of t with the original data set mls, which contains the
ID number (target), the outcome (y), and the covariates (coa, earlyos, male, inttscr, exttscr).

DATA final;
MERGE mls basis;
KEEP target y coa earlyos male inttscr exttscr t_0–t_7;
RUN;

We used PROC NLMIXED to fit the hurdle model as described in Section 2.1. The variables
created in the program are defined as follows:

infprob: The probability of being symptom-free φij
linpinfl: The logit (φij) in 

Equation (2)

mu: The mean for truncated Poisson μij
sp_eff: The random effect bi in 

Equation (2)

varsp: The variance of bi
sl_eff: The random effect ai in 

Equation (1)

varsl: The variance of ai
cors: The correlation between ai and bi
ll: The log-likelihood function

PROC NLMIXED DATA=final;
varsp = exp(2*logsp);
varsl = exp(2*logsl);
linpinfl = sp_eff+a1*coa+a2*earlyos+a3*male+a4*inttscr
+a5*exttscr+a6*t_0+a7*t_1+a8*t_2+a9*t_3+a10*t_4
+a11*t_5+a12*t_6+a13*t_7;
infprob = 1/(1+exp(−linpinfl));
mu = exp(sl_eff+b1*coa+b2*earlyos+b3*male+b4*inttscr+b5*exttscr
+b6*t_0+b7*t_1+b8*t_2+b9*t_3+b10*t_4+b11*t_5
+b12*t_6+ b13*t_7);
IF y=0 THEN
ll = log(infprob);
ELSE ll = log((1−infprob)) −mu+y*log(mu) −lgamma(y+1)
−log(1−exp(−mu));
MODEL y ~ general(ll);
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RANDOM sp_eff sl_eff
~ NORMAL([0,0],
[varsp,
cors, varsl]) SUBJECT=target;
ESTIMATE ’Varsp ’ varsp;
ESTIMATE ’Varsl ’ varsl;
ESTIMATE ’cors ’ cors;
RUN;

We used PROC NLMIXED to fit the ZIP model as described in Section 2.2. All the codes are
identical to the codes for the hurdle model except for the log-likelihood function ll.

PROC NLMIXED DATA=final;
varsp = exp(2*logsp);
varsl = exp(2*logsl);
linpinfl = sp_eff+a1*coa+a2*earlyos+a3*male+a4*inttscr
+a5*exttscr+a6*t_0+a7*t_1+a8*t_2+a9*t_3+a10*t_4
+a11*t_5+a12*t_6+a13*t_7;
infprob = 1/(1+exp(−linpinfl));
mu = exp(sl_eff+b1*coa+b2*earlyos+b3*male+b4*inttscr+b5*exttscr
+b6*t_0+b7*t_1+b8*t_2+b9*t_3+b10*t_4+b11*t_5
+b12*t_6+b13*t_7);
IF y=0 THEN
ll = log(infprob+(1−infprob)*exp(−mu));
ELSE ll = log((1−infprob)) −mu + y*log(mu) −lgamma(y+1);
MODEL y ~ general(ll);
RANDOM sp_eff sl_eff
~ NORMAL([0,0],
[varsp,
cors, varsl]) SUBJECT=target;
ESTIMATE ’Varsp ’ varsp;
ESTIMATE ’Varsl ’ varsl;
ESTIMATE ’cors ’ cors;
RUN;
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Figure 1.
Regression splines: the Poisson component.
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Figure 2.
Regression splines: the zero component.
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