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Abstract
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction
as the defining hallmark of the disease. The past several decades have seen dramatic progress in
understanding of pancreatic cancer pathogenesis, including the identification of precursor lesions,
sequential transformation from normal pancreas to invasive pancreatic cancer and corresponding
signature genetic events, and the biological impact of those alterations on malignant behaviors.
However, the current therapeutic strategies for epithelial tumor cells, which have exhibited potent
antitumor activity in cell culture and animal models, have failed to have significant effects in the
clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about
90% of a tumor’s mass, clearly is not a passive scaffold for cancer cells but an active contributor
to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and
their stroma will be important to designing new, effective therapeutic strategies for pancreatic
cancer. This review focuses on the origination of stromal molecular and cellular components in
pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration
between these two components.
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1. INTRODUCTION
Pancreatic cancer is ranked as one of the most lethal diseases with a 5-year survival rate less
than 5% [1]. Researchers estimate that about 44,030 new cases of pancreatic cancer were
diagnosed and 37,660 pancreatic cancer related deaths occurred in the United States in 2011
[2]. Though surgical operation remains the best choice for pancreatic cancer treatment, most
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patients are diagnosed at an advanced stage, making them poor candidates for surgical
resection [2]. Lack of early alarm symptoms, rapid local or distant metastasis, highly
malignant phenotype, and innate resistance to conventional chemotherapeutics constitute the
major reasons for dismal prognosis of pancreatic cancer. Since effective systemic therapy
capable of reversing the aggressive biology of this disease is currently unavailable, there is
an urgent need for a better understanding of detailed mechanisms underlying pancreatic
cancer’s development and progression.

With the progress made in the field of molecular biology, an explosion occurred in our
understanding of pancreatic cancer genetics, leading to identification of a list of notable
genetic alterations, e.g., K-ras, p53, Smad4, and p16, etc. These signature genetic events,
combined with accompanying histopathological alterations, help us postulate a sequential
transformation roadmap of pancreatic cancer: from normal pancreatic ductal epithelium to
increasing grades of pancreatic intraepithelial neoplasia, and ultimately the invasive
pancreatic cancer [3]. Even though preclinical evaluation of toxic agents against these
signature events showed promising prospects, clinical trials denied their potential advantage
over gemcitabine, which remains the first-line choice in current chemotherapy for pancreatic
cancer.

A series of pathological and epidemiological analysis arouse great interests among
oncologists to re-evaluate current parenchyma-based pancreatic cancer study modality. For
example, hereditary mutations give rise to pancreatic cancer development and constitute
more than 10% of pancreatic cancer [4]. However, though each cell within one human body
holds the same germline mutations, tumors induced by these hereditary aberrances show
tissue and individual specificity [5]. Mucinous type of pancreatic carcinomas is commonly
associated with very little stromal reaction around the tumor, while it usually comes with
less aggressive phenotype [6]. In fact, one of the novel aspects that came into our mind and
received great attention is the pronounced desmoplastic reaction around pancreatic tumor
tissues. Take a gross overview of a pancreatic cancer pathological slide, we will find that the
cancer mass can be generally divided into two different compartments, the cancer cell
parenchyma and surrounding stroma, with the latter accounts for more than 90% of the total
cancer volume [7] (Figure 1).

A list of signaling pathways have been identified to engage in bridging interactions between
cancer cells and stroma. Since several outstanding reviews have elaborated those pathways
which help perpetuate these interactions [8, 9], our review will mainly focus on the ones that
initiate and promote the desmoplastic progress. Furthermore, based on our previous studies
concerning microRNAs in circulation, we postulate a potential role that microRNA plays in
signal transduction between cancer cells and stroma.

Identification of the pivotal role that stroma played in carcinogenesis leads to development
of various targeted therapies, some of which have shown promising prospects with
synergistic efficacy in combination with gemcitabine. In the last section of current review, a
gross overview were made, summarizing those finished and ongoing clinical trials, as well
as promising stroma-associated targets recently identified by the bench.

2. PATHOLOGICAL AND GENETIC BASIS OF PANCREATIC
CARCINOGENESIS

Extensive histopathologic studies were made to evaluate pancreatic neoplasms, and three
different precursor lesions have been identified to hold the potential evolving into the highly
malignant and invasive pancreatic cancer. These lesions are specifically termed as
pancreatic intraepithelial neoplasm (PanIN), mucinous cystic neoplasm (MCN) and
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intraductal papillary mucinous neoplasm (IPMN) [10, 11]. The most studied one among
them is PanINs, which still appears as the most common precursor pancreatic lesions [12].
Identification of these lesions in pancreatic ducts leads to the sequential transformation
modality of PDAC (pancreatic cancer) [3], which is somewhat similar to that of the
adenoma-carcinoma sequence in the development of colon cancer [13].

After decades’ of exploration in the field of molecular biology, our knowledge of pancreatic
cancer pathogenesis has advanced significantly. The majority of pancreatic cancers occurs
sporadically and has been fairly well characterized at the genetic level. A number of
molecular profiling studies have been made, trying to profoundly dissect those mechanisms
involved in the established PanIN-to-PDAC progression model, and increasing number of
gene alterations in higher grade PanINs have been documented through these studies [14,
15].

K-ras is the most notable and universal oncogene identified in pancreatic cancer. Though
occasionally occurs in normal pancreas and only detected in 30% pancreatic lesions with
earliest stage of histological disturbance [16], the frequency of K-ras activation surges with
the disease progression, and are found in nearly 100% of PDAC, making it seem to be a
virtual rite of passage for PDAC pathogenesis [17]. Identification of K-ras as the first
notable genetic alteration leads to an explosion in our understanding of pancreatic cancer
genetics, quite a large portion among which are inactivation of tumor suppressive genes,
e.g., p16/CDKN2A, TP53, and SMAD4. Most recently, one landmark study were reported
on the sequencing of 23,219 transcripts representing 20,661 protein-coding genes in 24
PDAC. In this detailed, global, genomic study, a large number of genetic alterations (an
average of 63) and a core set of 12 signaling pathways and processes were identified, which
showed altered expression pattern in 67–100% of cases of pancreatic cancer [18]

Though tremendous molecular events and aberrant activating signal transduction pathways
have been identified, there still remains a desperate need for development of early detection
methods as well as effective therapies. Decades of exploration ends up with only marginal
benefits on treatment against pancreatic cancer, whereas those therapeutic reagents by using
current in vivo/two-dimensional study modalities fail to translate their suppressive effects
against pancreatic cancer into clinical use. Accumulating evidence indicates that malignant
cells themselves should not be to blamed only for pancreatic cancer’s extreme lethality and
general resistance to chemotherapy, but rather there exists a highly “orchestrated” interplay
between the cancer cells and surrounding tumor stroma. Knowledge of these two
compartments as well as the molecules and signaling pathways mediating their crosstalk will
help us re-evaluate current therapeutic strategies and eventually lead to optimal suppressive
effect against pancreatic cancer.

3. UNIQUE ROLES OF STROMA IN PANCREATIC CANCER PATHOGENESIS
3.1. General concept regarding stroma’s functions in carcinogenesis

Most people may be taken aback by the fact that various parts of our body host tumor cells,
even in those alleged medically healthy individuals. One obvious example for this concept is
breast cancer: autopsy scanning of a group of women aged 40 to 50 with no cancer-related
disease showed that one third of them carry in situ breast cancer. But breast cancer is
diagnosed in only 1% of women in this age range. Similar observations were reported for
prostate cancer in men. As for thyroid gland, only 0.1% of individuals aged 50 to 70 were
diagnosed thyroid cancer, whereas all individuals have in situ carcinoma at autopsy during
this period of their life [19]. Though ignorance is a blessing, it may stand to reason which
factors determine the final fate of those cells, to keep silent, to senesce, or to develop into
malignant cancers.
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These questions could not be fully answered from the aspect of molecular genetic
determinants of cancer cells, studies of which failed to eliminate tumors in clinic, but rather
the microenvironment surrounding them. Take a brief observation through the light
microscope of a cancer mass, we can recognize that a “tumor” consists far more than a
collection of homogenous cancer cells, but also includes stroma-the extracellular and
cellular tissue framework that surrounds and interacts with cancer cells (Figure 1). Notably,
about one hundred years ago, oncologists began to realize the importance of
microenvironment to tumor formation, based on the fact that different types of cancer
produce metastases at preferred secondary sites, depending on the tissue susceptibility to
specific metastatic cells [20].

3.2. Current evidence supporting the involvement of stroma in pancreatic carcinogenesis
Suppression of tumor formation by normal pancreatic tissues—Each cell within
one human body holds the same DNA sequence, including those within pancreas. However,
compared with other organs, single cell differentiation shows tissue specificity and exhibits
distinct phenotype in pancreas. Splendid reciprocity between these cells and surrounding
microenvironment, via communications with each other and with the extracellular matrix
(ECM) through junctions and receptors, hormones and other soluble factors, are deeply
involved in strictly regulated programs in pancreas development.

Besides keeping tissue homeostasis, normal stroma could protect pancreatic cells from
developing into malignant cancers. Such concept can logically be deduced from histological
evaluation studies of pancreas tissues. Pancreatic ductal hyperplasia is commonly considered
as a precancerous condition or carcinoma in situ, which appears preceding pancreatic
carcinomas [21]. Astonishingly, previous autopsy scanning studies showed that, in cases
with no pancreas-associated malignancies, an incidence of 29% have pancreatic ductal
hyperplasia [21]. Subsequent studies further confirmed this observation result, with more
than 30% cases among those so-called non-malignant pancreas tissues harboring ductal
hyperplasias [22]. Fortunately, though these detected pancreas ductal hyperplasia possess
genetic alterations (some of them are even more chaotic than that of pancreatic cancer ductal
cells), most of them will not transform into malignancies. Considering the vital impact that
stroma confers to pancreas development, as well as the similarities between organ
development and carcinogenesis, it is quite reasonable to believe that alterations of stroma
are engaged in pancreatic cancer development.

Several groups’ publications support normal stroma’s suppressive impact against pancreatic
cancer. One group utilized the three-dimensional assay tissue culture system as a model to
validate this concept [23]. They found that co-culturing pancreatic cancer cells with
‘normal’ stromal cells will induce total tumor cell number reduction, indicating normal
stroma’s protection effects against pancreatic cancer development [24]. Cousin’s study used
another kind of normal stromal cells named ADSC (Adipose-derived Stromal Cells), which
are derived from adipose with regenerative properties. They found that co-culturing
pancreatic tumor cells with ADSC and ADSC-conditioned medium will inhibit cancer cell
viability and proliferation [25]. Intratumoral injection of ADSC in a model of pancreatic
adenocarcinoma induced a strong and long-lasting inhibition of tumor growth [25]. These
novel findings shed light on improvement of current pancreatic cancer treatment paradigm,
through using normal stromal cells as ‘cytotoxic agents’ targeting malignant ductal cells.

Linkage of pancreatic inflammation to pancreatic carcinogenesis—Chronic
pancreatitis is a well defined pancreatic disease induced by repetitive acute injury or a self-
perpetuating inflammatory process. Constant tissue damage in such disease leads to
excessive stroma formation and ultimate exocrine insufficiency [26]. As chronic pancreatitis
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and pancreatic cancer share similar property bearing large portions of stroma, differential
diagnosis between them is quite difficult, which implies a subtle linkage among them.
Epidemiological studies further provide strong evidence that chronic pancreatitis is a major
risk factor for pancreatic cancer [27]. One prospective study showed that there is a striking
27-fold increase in PDAC incidence in patients with chronic pancreatitis when compared
with those disease-free individuals in common population [28]. As for patients with tropical
pancreatitis, there is a 100-fold risk of PDAC, while onset of transformation in such settings
is approximately 14 years earlier than in sporadic cases [27, 29]. One most recent study
showed that disseminated pancreatic cancer cells exhibited comparable affinity to
inflammatory foci, which further enhanced the link between inflammation and pancreatic
cancer [30].

Pancreatic stroma in hereditary pancreatic cancer—As we all know, human body
is comprised of 10 trillion cells and hereditary diseases are caused by germline mutations
existing in every cells within human body. It is estimated that more than 10% of pancreatic
cancer are hereditary [4]. Most of these hereditary pancreatic cancer cases endure the
process from hereditary pancreatitis to chronic pancreatitis, and finally end up with
pancreatic cancer. Previous studies validated that an Arg-His substitution at residue 117 of
the cationic trypsinogen gene (PRSS1) is associated with the hereditary pancreatic cancer
phenotype. However, despite mutations of PRSS1 in all of more than 10 trillion cells, they
cause hereditary cancer specifically in pancreas [31]. Base on the facts not only that tumors
caused by such mutations are tissue- and individual-specific, but they are formed from just
one or a few cells of pancreatic tissue, one may logically deduce the vital impact that
aberrant stroma have on pancreatic carcinogenesis.

Promotion of pancreatic cancer progression by tumor-associated stroma
cells—Epidemiological and histological analysis showed above strongly supported the
potential promoting effects that stroma have on tumor cells, and aroused great enthusiasm
among biologists to seek direct evidence for it. Hwang et al. first isolated and identified the
immortalized primary human pancreatic stellate cells (hPSC) from fresh pancreatic
adenocarcinoma [32]. In vivo studies showed that hPSC-CM (conditioned medium)
increased pancreatic tumor cells’ proliferation, migration, invasion, and colony formation.
Furthermore, treatment with hPSC-CM rendered pancreatic cancer cells more resistant to
gemcitabine and radiation therapy. Co-injection of tumor cells with hPSCs in an orthotopic
model resulted in increased primary tumor incidence, size, and metastasis, which
corresponded with the proportion of hPSCs [32]. Such concept was further endorsed by
other groups [33]. These data indicates that stellate cells plays an important role in
supporting and promoting pancreatic cancer, from multiple aspects, e.g. proliferation,
migration, invasion, colony formation, angiogenesis, etc (Figure 2).

4. CLINICAL SIGNIFICANCE OF PANCREATIC CANCER STROMA
MARKERS
4.1. Urgent need of efficient detection methods for pancreatic cancer

Though various treatment modalities were developed and tested, surgical resection remains
the most ideal treatment selection. Lots of efforts were made to look for efficient markers to
detect such diseases before they become unresectable. However, until now, early-stage
pancreatic cancer could still keep silent in clinic. The disease will only become apparent
after the tumor invades surrounding tissues or metastases to distant organs [34]. One
previous study made a retrospective review of those patients alternatively diagnosed by
chance, and claimed that on the onset of certain subtle symptoms, pancreatic cancer is still
resectable [35]. However, as those signs in this report are too nonspecific and vague,
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opportunities of early detection will easily be missed. Referring to the significant
advancement made in breast cancer, for which early detection markedly improved patients’
survival, looking for early diagnosing methods still remains the best defense option for
pancreatic cancer management.

4.2. Overview of current detection modality for curable precusor lesions
Significance of pancreatic cancer stromal markers—It is widely acknowledged
that more than two hits are commonly needed for a tumor to transform into a malignant
cancer. These hits can be divided into two different insults: an ‘initiator’, usually frank
mutagens; and one or more tumor ‘promoters’ [36]. Since those hit cells bearing genetic or
epigenetic mutations (‘initiator’) are strictly protected by normal stroma from developing
malignant transformation, it is reasonable to postulate that aberrant tissue stroma may act as
‘promoters’ which are indispensable for the carcinogenetic process.

As surgical resection generates the best survival benefits, current screening efforts were
mainly made to individuals with an inherited predisposition for early curable disease.
Indeed, screening has identified silent pancreatic neoplasia in many individuals with strong
family histories of pancreatic cancer [37, 38]. However, such screenings solely based on
those “initiators” will definitely bring with it the risk of overtreatment. Defect of current
screening modality highlights the importance for screenings for tumor promoting factors,
i.e., those differentially expressed molecules within cancer stromal environment.

Stroma constitutes most of the sampled pancreatic tissues used for
diagnosis—Because of its ability to detect small preinvasive lesions (of about 1 cm),
endoscopic ultrasound is used widely as a screening test. Previous clinical trials
demonstrated that endoscopic ultrasound detect more pancreatic cystic lesions (93%) than
MRI (81%) and CT (27%) [39]. Focal preinvasive lesions evident by endoscopic ultrasound
(such as intraductal papillary mucinous neoplasms) are probably most readily sampled with
fine-needle aspiration (FNA). However, as pancreatic cancer is characterized by a
pronounced desmoplasia (in about 90% of the tumor mass) (Figure 1), many of the
specimens obtained through FNA are derived from the stromal compartment, making
pathologists hard to make exact diagnosis. Identification of stroma-related markers will
definitely aid in current parenchyma-based diagnostic modality.

4.3. Distinctions within tumor stroma vs. normal stroma
One may stand to argue if there are ample traits within stromal samples sufficient enough to
distinguish the malignant cancer from normal tissues. Though clinical trials are still lack in
this regard, oncologists have done a lot of work in searching for candidate stromal markers.
Based on the notion that interactions between cancer and stromal cells play a critical role in
tumor invasion, metastasis and chemoresistance, it is reasonable to hypothesize that gene
expression profile of the stromal components in pancreatic carcinoma is different from
chronic pancreatitis and reflects the interaction with the tumor. Pilarsky et al. investigated
the gene expression of eleven stromal tissues from PDAC, nine from chronic pancreatitis
and cell lines of stromal origin using the Affymetrix U133 GeneChip set [40]. Of note, 255
genes were found to be overexpressed and 61 genes to be underexpressed within the stroma
of pancreatic carcinoma when compared with the stroma of chronic pancreatitis [40].
Similar results were reached in Binkley’s report [41]. Distinct expression pattern between
tumor and normal stromas can be generalized among other cancer types, e.g., breast cancer
[42]. These studies underlie the potential application of stromal markers for pancreatic
cancer detection. Various markers validated to hold the potential in pancreatic cancer
detection and their prognostic implications are listed in Table 1.
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5. ORIGINATION OF PANCREATIC CANCER STROMA
Presence of large bulk of tumor stroma most prominently defines the histological features of
pancreatic cancer, which far exceeds its counterparts occurred in other tumor types.
Furthermore, composition of tumor stroma can vary significantly from tumor type to tumor
type, and from location to location, suggesting that stroma formation depends on a complex
set of interactions between different cells and ECM in a particular pancreatic cancer tissue.
Despite the most complexity and heterogeneity, pancreatic tumor stroma can be broken
down into following major constituent parts: mesenchymal cells, endothelial cells,
Inflammatory/immune cells (Figure 1). Though it is generally agreed that different
components coordinately support the growth and metastasis of tumor cells, the origin of
these phenotypically diverse stromal cells have been a subject for debate almost since their
identification.

Indeed, clearly defining the sources of stromal cells will potentially confer significant
benefits to current therapeutic paradigms for pancreatic cancer: First, since genetic damage
is the “match that lights the fire” of cancer, suppression or elimination of the stromal cells
from corresponding origins will possibly cut the “fuel that feeds the flames” and render
pancreatic cancer less resistant to conventional chemotherapy; second, identification of
certain stromal precursor cells, which holds the ability to migrate to tumor nests, will help
produce biological agents locally at tumor sites through gene-manipulations, avoiding
interference with other systems [43–46]. Previous publications postulated that there are four
major sources for stromal cells: 1) recruitment from pre-existing stromal cells; 2)
transdifferentiation from quiescent precursors, 3) generation via epithelial-to-mesenchymal
transition; and 4) transdifferentiation from cancer stem cells (Figure 3).

5.1. Recruitment of pre-existing stromal cells
Morphological similarities between myofibroblasts and tissue pre-existing fibroblasts made
it quite rational to assume that myofibroblasts are derived from these cells. Indeed, under
culture conditions, fibroblasts can be induced to express myofibroblast markers and to
obtain morphological properties of myofibroblasts following treatment with specific
cytokines and growth factors, e.g. TGF-β [47, 48]. Besides locally activating the quiescent
stromal cells within cancerous regions, studies also showed that tumor cells were able to
recruit stromal cells within adjacent regions and organized them into tumor vessels [49]
(Figure 3). Activating pre-existing stromal cells might be the most initial and efficient
methods for tumor cells to form an extensive stroma.

5.2. Transdifferentiation from mesenchymal stem cells
Besides resident fibroblast cells, mesenchymal stem cells (MSC) are another most
postulated sources for pancreatic cancer stromal cells [43, 50]. MSCs are a heterogeneous
population of connective tissues progenitors located in various locations, such as bone
marrow, dermis, and adipose tissue [51]. Upon secretions of those chemotactic factors by
tumors, MSCs may show an innate tropism for those issues and migrate into cancer stroma
and exert their multipotent capacity to transdifferentiate into osteocytes, adipocytes,
chondrocytes, or myocytes (Figure 3). Linage-tracing studies further confirmed MSCs’
function as a potential source for cancer stroma [43, 44].

Establishment of MSC as a major source to tumor stroma identified its natural affinity for
tumors and further suggested its potential value as a vector to produce certain biological
agents specifically in tumor nests. Studeny et al. first tested the application of MSC to
overexpress desired cytotoxic agents in certain tumor sites. They found that through
intravenous administration, MSCs were able to integrate and persist within tumor stroma of
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pre-established lung cancers and confer growth suppressive effect to the tumor cells [44].
Similar concepts were further confirmed in other tumor models [43, 52, 53]. Karnoub et al.
reported that tumor cells recruit MSCs into tumor xenografts and are addicted to chemokine
CCL5 secreted from MSC to achieve their metastatic spread [54]. The ability of MSC to
travel to solid tumors after intravenous administration further consolidates the notion that
activated PSCs could be derived from MSCs.

5.3. Generation via epithelial-to-mesenchymal transition
Myofibroblasts, are the most abundant and active part involved in the development of
pancreatic cancer stroma [47, 55–59], with mesenchymal precursor cells and pre-existing
stromal cells as two previously established major sources of myofibroblasts (see above).
However, recent discoveries that myofibroblasts can be derived from epithelial cells have
provided a new impetus for investigating the processes involved in myofibroblast formation
in the fibrotic and malignant context [59–66] (Figure 3). These findings have paralleled with
our increasing awareness of the role of EMT in the control of tissue functions in different
organ systems [67].

Several lines of evidence support the concept that epithelial cells are an important source of
myofibroblasts in fibrosis and cancer [66]. First, epithelium to myofibroblast transition can
be induced in cultured epithelial cells from a number of organ systems. For example, Human
proximal tubular epithelial cells transdifferentiated to myofibroblasts after treatment with
activated PBMC conditioned medium [63]. Whereas during pulmonary fibrogenesis in a
mouse model, mesenchymal transitioned epithelial cells constitute the major portion of
pulmonary fibrosis and contribute the most to mesenchymal expansion [65]. Second,
histopathology analysis revealed that stromal cells from different tissues shared many
characteristics with derived epithelial cells. For instance, many stromal cells within
idiopathic pulmonary fibrosis, which were defined by myobibroblast markers, expressed
lists of epithelial markers [64]. Such notion was further generalized to malignant tissues,
within which genetic tests showed that mesenchymal cells isolated with myofibroblast
characteristics were found to be derived from the epithelial tumor cells [59, 68]. In a TGF-β
induced pulmonary fibrosis genetic mouse models, all lung epithelial cells were tagged for
expression of β-galactosidase. Following histological evaluation showed that the increases
in myofibroblats were largely due to transdifferentiation from epithelial cells [65].

5.4. Trans-differentiation from cancer stem cells
Various studies showed that blood vessels played vital roles in nourishment and metastasis
of cancer cells [69]. In fact, when any tissue expands or a primary tumor develops, influx of
oxygen and nutrients and efflux of waste products must be ensured [70]. Tracing the origins
of blood vessels and dissect the possible mechanisms involved in carcinogenesis will help to
develop possible agents targeting tumor vasculature. It was previously accepted that tumor
angiogenesis is the formation of new blood vessels from existing blood vessels and new
circulating endothelial progenitor cells from bone marrow [71]. However, recent data by two
groups provide strong evidence that a proportion of the endothelial cells that contribute to
blood vessels in certain tumors were derived from the tumor itself, having differentiated
from tumor stem-like cells [72, 73] (Figure 3). Two lines of evidence was provided strongly
supporting such novel findings: The first is that both groups noted that a subset of
endothelial cells lining tumor vessels carry genetic abnormalities found in the tumor cells
themselves; the other evidence is that some tumor-vessel endothelial cells expressed the
non-endothelial, tumor marker GFAP. Subsequent studies showed that the tumor cell
population which could differentiate into endothelial cells and form blood vessels in vivo
was enriched in cells expressing CD133, which is a widely recognized marker for tumor
stem cells. Though these data expanded our current knowledge a lot regarding origins of
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tumor endothelial cells, several compelling questions arise along with them: Can this
concept be generalized to other cancer types, e.g., pancreatic cancer? What factors engage in
the tumor stem cell transdifferentiation into endothelial cells? Defining the exact answers to
these questions is an essential prelude to the design of new therapies.

6. SIGNALING PATHWAYS REGULATING STROMA FORMATION
Though the biological impact of pancreatic cancer stroma to tumor cells has long been
identified and invokes a new impetus for developing possible stroma-eliminating agents
indirectly targeting pancreatic cancer, little attention has been focused on the initiation
process of PSC activation. Indeed, there exist various autocrine loops engaged in
perpetuation of PSC activation. Numerous cytokines involved in persistence of PSC (such as
TGF-β1, activin A, and IL-1, etc) can be synthesized by PSCs themselves (Figure 2).
However, the initial exogenous signals inducing the transition of PSCs from a quiescent
state in the normal pancreas toward an activated stage has only partly been studied [74].
Based on current accepted knowledge, three signaling pathways will be discussed within this
section, TGF-β, PDGF, Hedgehog, with regard to the supportive evidence for their
contribution to cancer desmoplastic reaction initiation. Furthermore, as bioactive
microRNAs embedded within microvesicles could convey signals from tumor to stromal
cells, we will try to elucidate the possible mechanisms implicated within it (Figure 2).

TGF-β
Transforming growth factor-β (TGF-β) signaling pathway is commonly deregulated in
pancreatic cancer, alteration of which has a prominent function for cancer stroma initiation
and development. Secreted ligands by the tumor cells can activate TGF-β pathway in the
stromal cells in a paracrine manner, leading to suppression against known anti-tumor factors
and stimulation of pro-metastatic factors in cultured PSCs, which finally resulted in
considerable deposition of ECM [75]. Genetic engineered pancreatic cancer cell lines with
overexpression of TGF-β1 could generate conditioned medium with ability to promote
fibroblast proliferation [76]. Besides affecting PSC, TGF-β can also influence angiogenesis
directly or indirectly by stimulating VEGF pathway. SMAD4 mutation is the most common
event occurred in the TGF-β pathway [18]. One study indicated that SMAD4 deficiency
combined with activated K-ras mutation could accelerate the activation of PSC and
production of ECM [77], whereas restoration of SMAD4 in PDAC cell lines confers
suppression against PDAC xenografts, which is partly mediated through modulation of
ECM turnover [78, 79]. Previous studies suggested that IL-1 and IL-6 were both engaged in
the initiation of PSCs activation. However, these biological effects may be indirect, partly
through modulating TGF-β1 production [80]; anti-TGF-β1 neutralizing antibody attenuated
α-SMA expression induced by IL-1 and IL-6 [80] (Figure 2).

PDGF
The platelet-derived growth factor (PDGF) family members are the most extensively
investigated regulators of mesenchymal cell proliferation and migration during development
[81]; they are also highly expressed in tumors and are rated as one of the strongest mediators
of desmoplastic reaction [82]. Upon activation, tumor cells could secrete PDGF into
surrounding microenvironment and recruit stromal fibroblasts to facilitate the tumor growth
and migration [83]. Furthermore, PDGF is a required element in cellular division of
fibroblast and confers these cells more efficient cell cycle transition from G1 to S phase
[84]. Soluble PDGFR-IgG significantly reduced tumor growth by disrupting the paracrine
PDGFR signaling between tumor cells and stromal fibroblasts [83]. PDGF is deeply
implicated in the initiation of pancreatic demoplastic reaction and helps to perpetuate the
activated state of PSCs [82] (Figure 2).
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Hedgehog
Hedgehog (Hh) signaling pathway is one of the most fundamental actors in embryonic
development and takes part in patterning of numerous tissue structures [85]. Because of its
vital roles in managing organ development, it is not surprising to see that aberrant hedgehog
signaling pathway is involved in development of numerous cancer types [86], including
pancreatic cancer [87]. However, identification of its engagement within pancreatic cancer
was not based on any loss- or gain-of-function mutations in the core components of the Hh
pathway [86], but rather on the differential expression pattern among normal and tumor
pancreas tissues [88]. Indeed, sonic hedgehog, a secreted hedgehog ligand, begins to be
abnormally expressed as early as in pancreatic cancer’s precursor lesions: PanINs, whereas
these ligands are completely absent in normal human pancreas [87].

Although the Hedgehog signaling pathway has long been implicated in pancreatic cancer, its
role remains controversial. Previous investigations suggested a model of ligand-dependent
autocrine/juxtacrine Hh signaling supporting the growth of human pancreatic cancer, and
showed that Hh-induced-proliferation of some cell lines could be blocked by Hh signaling
inhibitors both in vitro and in vivo [87–89]. However, elucidation of the roles that Hh
signaling played within pancreatic cancer is far from being complete, and has been
challenged continuously by recent reports. One study showed in xenograft models a
paracrine requirement for the Hh pathway, where Hh ligand is produced by the tumor cells
and the pathway is activated in tumor stroma [90]. Subsequent experiments did in
autochthonous mouse pancreatic tumors by the same group further confirmed such notion,
that the pancreatic epithelium is not receptive of tumor cell-derived Hh ligands, but instead,
Hh ligands promote pancreatic cancer via a paracrine signaling mechanism received by
tumor stromal cells [91] (Figure 2).

Following studies by other groups further corroborated Hh signaling’s contribution to
pancreatic cancer stroma development. Bailey et al. expressed SHH in a transformed
primary ductal-derived epithelial cell line from human pancreas, transformed hTert-HPNE
(T-HPNE), and evaluated the effects on tumor biological behaviors. They found that
expression of SHH influences tumor growth by contributing to the formation of desmoplasia
in pancreatic cancer. Furthermore, SHH affects the differentiation and motility of human
pancreatic stellate cells and fibroblasts [92]. All these data postulated an important role of
Hg signaling pathway in development of pancreatic cancer desmoplasia. It may stand to
reason then that the opposite must be true: inhibiting Hg signaling pathway will result in the
depletion of tumor-associated stroma. A recent research presents much compelling evidence
for this notion [93]. In their study, administration of IPI-926 could profoundly deplete
tumor-associated stromal tissue by inhibiting Hedgehog cellular signaling pathway and
increase intratumoral concentration of gemcitabine [93].

microRNA
Microvesicles are a type of intraluminal vesicles derived from multivesicular bodies that can
be released into the extracellular milieu by exocytic fusion with the plasma membrane [94].
Though long be considered to shed unwanted proteins from cells undergoing terminal
differentiation [95], several recent independent studies showed that secreted microvesicles
contained biofunctional compositions, including proteins, mRNAs, and miRNAs. They
could be delivered and fuse with target cells and confer impacts to their biological behaviors
[96] (Figure 2). Previous studies demonstrated that tumor cells could release microvesicles
to modulate surrounding microenvironment and facilitate their growth and metastasis [97,
98]. Here, we will take microRNAs embedded within microvesicles as an example, to
overview the potential roles that they play in modulation of pancreatic cancer stroma.
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MicroRNAs are small, non-coding RNAs which exercise posttranscriptional repression
against target proteins by perfectly or imperfectly binding to the 3’ untranslated region of
corresponding mRNAs in mammals. As RNases in circulation were widely thought to be a
challenge to RNAs [99], biologists used to believe that miRNAs could not keep intact in
plasma/serum from pancreatic cancer patients [100]. However, our recent work
demonstrated that miRNAs could exist stably in serum from pancreatic cancer patients and
serve as potential markers for such disease [101, 102]. Identification of bioactive
microRNAs within microvesicles unraveled the mechanisms which help keep microRNAs
intact in circulation. Combined with the biological impact that microvesicles hold to target
stromal cells, it is reasonable to believe that those microRNAs, which keep intact within
microenvironment as well as in circulation, could work as a signal transmitter bridging
tumor cells and stromal cells. Though no intensive work has been reported regarding
pancreatic cancer, such concept has been well established in other tumor types [103]. For
example, a list of microRNAs embedded within microvesicles released from human renal
cancer stem cells are engaged in the angiogenesis and formation of lung premetastatic niche
[104]. By means of such signaling pathway, tumor cells could remodel surrounding
circumstance to facilitate their growth and metastasis. Accepting this concept will make our
knowledge in tumor-stroma interaction more integral and facilitates developing potential
drugs efficiently breaching the ‘orchestration’ between tumor cells and stroma.

7. DEVELOPMENT OF REGIMENS TARGETING PANCREATIC CANCER
STROMA

Only 10% of newly diagnosed patients with pancreatic cancer are suitable for surgical
resection, while the remaining is subjected to combined treatment of chemotherapies [105,
106]. Gemcitabine remains the first-line chemoagent for pancreatic cancer [107]. However,
general resistance to gemcitabine is held by a good portion of pancreatic cancers, which
signifies an urgent need to dissect the implicated mechanisms for it.

Accumulating evidence supports the essential and fundamental roles that stroma plays in the
pancreatic cancer’s innate resistance to gemcitabine. For example, in the transplanted
xenograft tumor model with less stroma formation, the intracellular metabolite of
gemcitabine was detected at a relatively high concentration and exerts optimal tumor
suppressive effect; while in tumors of KPC mice, which are characterized by a pronounced
desmoplasitic reaction, such metabolite was almost undetectable and showed little effect on
tumors [93]. Multiple components within stroma, e.g. abnormal vasculature and
myofibroblasts, contribute to chemo-resistance. In this section, we will take an overview on
stroma-associated therapeutics, including those completed, ongoing clinical trials, and recent
promising findings made by the bench (Figure 4).

7.1. Epidermal growth factor receptor (EGFR) pathway
Overexpression of EGFR and its ligands are frequently observed in pancreatic cancer and
correlates with poor prognosis and disease progression [108]. Erlotinib is an orally active
small molecule that binds to the ATP-binding site of EGFR. In a phase III trial in
combination with gemcitabine, erlotinib demonstrated a small but significant increase in the
survival of patients with advanced pancreatic cancer (Table 2) [109], resulting in its
approval by the FDA as the first targeted therapy for pancreatic cancer. However, the
precise mechanisms by which EGFR inhibitors exert their clinical activity remain uncertain.
Recent studies showed that EGFR activation is engaged in both chemoattraction and
stimulation of proliferation of pancreatic stellate cells [82], which partly elucidated the
potential involvement of stromal regulation in EGFR inhibitors’ tumor suppressive efficacy.
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Though clinical trials regarding EGFR inhibitors seems promising, its clinical relevance and
cost-effectiveness has been questioned for a long time. One recent phase III trial with
inhibitors of EGFR using monoclonal antibody cetuximab in patients with late-stage
pancreatic cancers proved to be ineffective (Table 2). Several other clinical trials regarding
EGFR tyrosine kinase inhibitors are underway (Table 3).

7.2. Angiogenesis
Angiogenesis is indispensable for tumor development and progression, and is principally
mediated by the VEGF family of proteins and receptors. VEGF is overexpressed in >90% of
pancreatic cancers, making it an appealing target for therapy. Established notion drawn from
treatment for other tumor types showed that targeted therapy against VEGF hold optimal
anti-tumor efficacies [110]. However, a phase III trial in advanced pancreatic cancer failed
to show any survival benefit for bevacizumab (a humanized monoclonal antibody that
inhibits VEGF) in combination with gemcitabine [111]. Similar results were obtained from
the AVITA (BO17706) phase III study testing the potential anti-tumor efficacy regarding
addition of bevacizumab to gemcitabine and erlotinib in patients with metastatic pancreatic
cancer [112] (Table 2). Though lists of clinical trials are underway to examine the potential
benefits of VEGF inhibitors through combination with other agents (Table 3), data in hand
seems to deny the justification of its licensing for pancreatic cancer.

The large gap between experimental data and clinical realities fuelled biologists with great
enthusiasm to pursue underlying mechanisms. Olive et al. showed in their work that
extensive desmoplastic reaction in pancreatic cancer renders blood vessels sparse and
functionally abnormal. This poorly vascularized architecture imposes a strong barrier to
drug delivery [93]. Therefore, it is reasonable to expect that excessively destroying the
vasculature would severely compromise the delivery of oxygen and therapeutics to the solid
tumor, producing hypoxia that would render many chemotherapeutics less effective. Based
on such rationale, a delicate balance between vascular normalization and excessive vascular
regression is needed, which may substantially confer benefits to patients with pancreatic
cancer (Figure 4).

7.3. Matrix metalloproteinases (MMP)
Experimental results indicate that overexpression of MMPs in pancreatic cancer plays an
important role in tumor cell migration and invasion [113], making MMP an ideal candidate
for eliminating the promotions of stroma to pancreatic cancer progression. However, clinical
trials questioned their qualification as potential targets in pancreatic cancer chemotherapy.
Marimastat is a broad-spectrum synthetic MMP inhibitor and was first tested in a large
randomized phase III trial in patients with advanced pancreatic cancer. Not consistent with
preclinical studies, neither marimastat alone nor the combination of marimastat and
gemcitabine showed any improvement in overall survival compared with gemcitabine alone
(Table 2) [114, 115]. Another phase III trial with BAY-12-9566, a specific inhibitor of
MMP-2, MMP-3, MMP-9 and MMP-13, was conducted in locally advanced or metastatic
pancreatic cancer patients. Disappointingly again, interim analysis showed that this new
substance was not superior to, but undermined the survival benefits of treatment by
gemcitabine alone (Table 2) [116].

Promising preclinical results but contradictory clinical findings indicate that the roles of
MMPs in cancer biology, is quite complex and far from being fully elucidated. Besides the
pro-tumorigenic functions, various studies showed that MMPs could act as a tumor
suppressor in certain context. Dual functions with MMPs in different settings as well as the
disappointing clinical trials, denied future applications of their inhibitors in targeted therapy
against pancreatic cancer.
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7.4. TGF-β–SMAD4 pathway
TGF-β contributes to carcinoma cells’ direction of the desmoplastic response (Figure 2)
[117]. Such concept underlies inhibitors against TGF-β as potential adjuncts to gemcitabine
by eliminating stroma-associated chemoresistance. TGF-β-based therapeutic strategies are
quite promising and are currently in development, including inhibitors of TGFBR1 and
TGFBR2 [118, 119]. LY2157299, a potent TGF-β type I receptor kinase inhibitors with the
ability to reverse TGF-β mediated biological activity, are currently being tested in a phase I–
II study of pancreatic cancer. An antisense oligonucleotide agent specific to TGF-β2, named
AP 12009, is also being tested in a phase I–II study [120].

7.5. Hedgehog signaling pathway
The hedgehog signaling pathway can be inhibited by cyclopamine, which binds to and
suppresses SMO. Recent publications identified great potential of cyclopamine in pancreatic
cancer therapy. IPI-926, a semi-synthetic derivative of cyclopamine, could dramatically
deplete the stromal components and increase intratumoral vascular density. Co-
administration of gemcitabine and IPI-926 significantly enhances intratumoral concentration
of gemcitabine metabolite, achieved transient disease stabilization and prolongation of
survival [93]. Recent work further have shown that combination treatment of cyclopamine
and EGFR inhibitor could improve antitumor activity [121]. Hedgehog inhibitors are now
being tested in a phase II clinical trial.

7.6. Other promising targets
Hepatocyte growth factor receptor (HGF) pathway—Previous studies identified that
HGF is overexpressed in 78% of pancreatic cancer [122]. Mesenchymal cells normally
constitute the major source of HGF, whereas in hypoxic conditions, activated myofibroblasts
overproduce HGF and subsequently enhance malignant phenotypes of pancreatic cancer
cells and render them resistant to conventional chemotherapy. Preclinical evaluations
suggested that targeting the HGF pathway is of potential value in pancreatic cancer
treatment. ARQ 197 is a MET receptor tyrosine kinase inhibitor that is currently being tested
in a phase II trial.

Secreted protein acid rich in cysteine (SPARC)—Abundance of pancreatic cancer
stroma and its great implications for cancer promotion inspired us if we can seek those
stromal markers as introducers to help enrich cytotoxic agents in certain tumor apartments.
SPARC is an important component in pancreatic cancer stroma with a notable
overexpression pattern [123]. Previous studies identified that albumin holds some affinity to
SPARC and such property may facilitate intratumor accumulation of albumin-bound drugs
[124]. Nab-Paclitaxel is a 130-nm albumin-bound formulation of paclitaxel particles. In vivo
experiments showed that stroma-enriched distribution pattern of nab-paclitaxel significantly
increased intratumoral concentration of gemcitabine versus those receiving gemcitabine
alone, which partly reversed cancer cells’ innate resistance against gemcitabine [125]. Nab-
Paclitaxel could further stabilize intratumoral gemcitabine levels through promoting the
oxidative degradation of cytidine deaminase, which serves as the primary enzyme
responsible for gemcitabine metabolism [126]. Combination therapy of nab-Paclitaxel with
gemcitabine is currently under investigation in a late-stage phase III clinical trial (Table 3).

microRNAs—MicroRNA expression profiling analysis indicated that more than one
hundred microRNA precursors were aberrantly expressed in pancreatic cancer or
desmoplasia, which underlies the potential value of microRNAs as targets in pancreatic
cancer treatment [127]. As have been addressed above, microvesicle-mediated microRNA
transmission is an identified mechanism bridging the tumor-stroma interaction. Indeed,
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under such notion, tumor cells could cover a short or long distance to transmit signals to
metastasis-susceptible loci and modulate the target environment, and hence facilitate their
growth and metastasis. Current therapeutic strategies regarding microRNAs include the
reconstitution of tumor-suppressive microRNAs and the knockdown of oncogenic
microRNAs by anti-miRNA oligonucleotides. These microRNA-based treatment paradigms
hold theoretical advantage as modulation of one individual microRNA could target multiple
aberrant gene networks by virtue of its post-transcriptional regulation pattern [127]. Though
certain restrictions limit microRNA-associated treatment studies to an initial stage, novel
experimental discoveries shed light on their promising prospects.

8. CONCLUSIONS AND FUTURE DIRECTIONS
Numerous lines of experimental and clinical evidence indicate that cancerous stroma is not a
passive scaffold for cancer cells, but rather an indispensable contributor to tumor
development and progression. Large portions of stroma formation within tumor mass
histologically define pancreatic cancer, making it a good model pf exploring the interplay
between cancer cells and stroma. Different cells and matrix compositions heterogeneously
compose the stroma bulk and a complex signaling network mediates the initiation and
perpetuation of desmoplastic reactions. Since malignant stroma confers such a pivotal
promotional impact on carcinogenesis, it is not surprising to detect a quite unique gene
expression profile within it. Differentially expressed molecules may be selected as candidate
markers to aid in current inefficient parenchyma-based detection mortality. Furthermore, a
good portion of those identified stroma-related markers show therapeutic implications.
Future studies of the crosstalk between pancreatic cancer cells and stroma will help better
understanding pancreatic cancer pathogenesis and lead to more preventive and therapeutic
opportunities.
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Figure 1. H&E staining of human pancreatic ductal adenocarcinoma
Shown are a prominent desmoplastic reaction (white arrow head), neoplastic ductal cells
(white arrow) tumor vasculature (black arrow head), and inflammatory cells (black arrow).
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Figure 2. Signaling pathways bridging interactions between pancreatic cancer cells and stromal
cells
1) Through different signaling pathways, including TGF-β, PDGF, IL-1, 6, 8, and etc.,
transformed tumor cells activate the quiescent stromal cells and initiate the extensive
desmoplastic reaction; Microvesicles shed from tumor cells could also convey signals to
target stromal cells through those bioactive molecules embedded within them. 2) Once
activated, pancreatic stellate cells could perpetuate the desmoplastic reaction through a list
of signaling pathways in an autocrine manner. Activated pancreatic stellate cells proliferate,
contract, migrate, modulate extracellular matrix, and finally stimulate the growth and
migration of tumor cells.
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Figure 3. Schematic diagrams of four major sources of stromal cells
1) recruitment of pre-existing stromal cells; 2) transdifferentiation from mesenchymal stem
cells; 3) Epithelial-to-mesenchymal transformation from epithelial tumor cells; and 4)
transdifferentiation from cancer stem cells.
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Figure 4. Candidate tumor stroma components for future targeted therapy
Included are abnormal blood vessels, deregulated signaling pathways, and various ECM
compositions, e.g., SPARC and MMPs.
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Table 1

Recently identified makers regarding pancreatic cancer stroma

Stroma associated
Markers

Functional description Expression
pattern vs.
normal tissue

Prognostic implications reference

syndecan-1 Transmembrane receptor;
cell-cell and cell-matrix
interactions

upregulated Lack of stromal expression
predicted a better
prognosis

[128]

SPARC Extracellular matrix
glycoprotein; cell-matrix
interactions and collagen
binding

upregulated overexpression is
associated with poor
outcome

[129] [130]

Periostin A ligand for α-V/β-3 and α-
V/β-5 integrin; support
adhesion and migration of
epithelial cells

upregulated N/A [131]

Activated stroma index (ASI) Ratio of α-smooth muscle
actin-stained area to
collagen-stained area

upregulated Upregulation was
associated with a worse
prognosis

[132]

TGFβ1 A cytokine within stroma;
initiate and perpetuate
desmoplastic reaction

upregulated a negative prognostic
factor

[130]

Type IV collagen A collagen derived from
stroma; forms a
supramolecular network in
the basement membrane that
influences cell adhesion,
migration and differentiation
of epithelial cells

upregulated Persisting high levels in
circulation after surgery
indicates a quick relapse
and poor survival

[133]

thrombospondin-1 an adhesive glycoprotein in
stroma; mediate cell-cell and
cell-matrix interactions

upregulated Strong expression
indicates poor prognosis

[134]

PINCH A cysteine-histidine-rich
integrin-associated protein;
facilitate the survival,
malignant transformation and
invasion of tumor cells

upregulated Higher expression
correlates with poor
survival

[135]

CD4+CD25+ regulatory T cells Inflammatory cells; a central
role in self-tolerance and
suppress effective antitumor
immune responses

upregulated Low prevalence correlates
with better prognosis

[136]

syndecan-2 A single transmembrane
domain protein; coreceptor
allows for interaction with a
large variety of ligands

upregulated Stromal syndecan-2 has no
influence on survival

[137]

CD10 A cell membrane-associated
metalloproteinase; a marker
for stromal stem cells

upregulated Stromal CD10 expression
is associated with poor
prognosis

[138]

GATA-3+/T-bet+ tumor-infiltrating lymphoid Inflammatory cells; regulate
immune response within
pancreatic cancer stroma

upregulated An independent predictive
marker correlates with
poor survival

[139]

CD40/CD40L co-signaling molecules Protein on antigen presenting
cells and its corresponding
ligand; reverse immune
suppression and drive
antitumor T cell response

downregulated N/A [140]

Rac1 A small signaling G protein;
required for early metaplastic
changes and eoplasia-

upregulated Deletion significantly
prolonged survival in
mouse models

[141]
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Stroma associated
Markers

Functional description Expression
pattern vs.
normal tissue

Prognostic implications reference

associated actin
rearrangements

Cxcr2 a member of the G-protein-
coupled receptor family;
combines with cxc in stromal
fibroblasts to enhance the
malignancy of pancreatic
cancer

upregulated Inhibition leads to
improved survival in
mouse models

[142]

Dendritic cells related markers A list of markers specifically
expressed in dendritic cells

downregulated Low level expression
indicates short survival

[143]

palladin a component of actin-
containing microfilaments;
control cell shape, adhesion
and contraction

upregulated N/A [144]

human macrophage metalloelastase A member of human matrix
metalloproteinase family;
critical for the degradation of
extracellular matrix proteins

upregulated Worsen the prognosis of
pancreatic cancer

[145]

PDGFRβ a cell surface tyrosine kinase
receptor; initiate and
perpetuate desmoplastic
reaction

upregulated higher expression matched
shorter prognosis

[146]

osteopontin an extracellular structural
protein; a potential marker
for tumor-infiltrating
macrophages and detectable
in serum

Upregulated N/A [147]

EGFR cell-surface receptor for
members of the epidermal
growth factor family of
extracellular protein ligands;
affect stroma formation

upregulated Correlates with poor
prognosis and disease
progression

[108]

VEGF a signal protein; stimulate
vasculogenesis and
angiogenesis

upregulated Predictor for both liver
metastasis and poor
prognosis;

[148]

N/A: not available.
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Table 3

Ongoing phase III clinical trials targeting pancreatic cancer stroma related molecules*

Stromal targets Agent in treatment Disease stage

VEGF receptor and other tyrosine
kinases

Gemcitabine, sorafenib Advanced or metastatic pancreatic cancer

EGFR Gemcitabine, erlotinib, radiation,
capecitabine, fluorouracil

Patients with pancreatic cancer that has been removed by
surgery

VEGF receptor and other tyrosine
kinases

Axitinib and gemcitabine Advanced pancreatic cancer

EGFR Erlotinib, capecitabine and gemcitabine Locally advanced or metastatic

VEGF Aflibercept and gemcitabine Locally advanced or metastatic

SPARC Nab-Paclitaxel, gemcitabine Advanced pancreatic cancer

*
base on The National Cancer Institute website)
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