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Abstract

Cyclization of linear peptidyl precursors produced by nonribosomal peptide synthetases (NRPSs) 

is an important step in the biosynthesis of bioactive cyclic peptides. Whereas bacterial NRPSs use 

thioesterase (TE) domains to perform the cyclization, fungal NRPSs have apparently evolved to 

use a different enzymatic route. In verified fungal NRPSs that produce macrocyclic peptides, each 

megasynthetase terminates with a condensation-like (CT) domain that may perform the 

macrocyclization reaction. To probe the role of such a CT domain, we reconstituted the activities 

of the Penicillium aethiopicum trimodular NPRS TqaA in Saccharomyces cerevisiae and in vitro. 

Together with a reconstituted bimodular NRPS AnaPS, we dissected the cyclization steps of TqaA 

in transforming the linear anthranilate-D-tryptophan-L-alanyl tripeptide into fumiquinazoline F. 

Extensive biochemical and mutational studies confirmed the essential role of the CT domain in 

catalyzing cyclization in a thiolation domain-dependent fashion. Our work provided evidence of a 

likely universal macrocyclization strategy employed by fungal NRPSs.

Cyclic nonribosomal peptides (NRPs) from filamentous fungi represent a group of 

pharmaceutically important natural products, including the immunosuppressive cyclosporine 

A and the antifungal family of lipopeptides represented by echinocandin B1,2. Biosynthesis 

of the linear precursors of these molecules by their corresponding nonribosomal peptide 

synthetases (NRPSs) parallels that of bacterial NRPs, such as the well-studied tyrocidine A 
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and gramicidin3,4. Following the sequential addition of each amino acid catalyzed by a 

NRPS module, which consists minimally of condensation (C), adenylation (A) and 

thiolation (T) domains, cyclization and product release take place through nucleophilic 

attack on the thioester carbonyl by a free amine from either the N-terminus or side chain of 

the peptide3,5. Given the importance of cyclization to the biological activities of these 

molecules, understanding the enzymatic basis of this final step in NRPs biosynthesis is a 

significant goal from both mechanistic and biocatalytic perspectives6,7.

Whereas bacterial NRPSs use thioesterase (TE) domains to perform the cyclization, fungal 

NRPSs have apparently evolved to use a complementary strategy7–9. From the verified 

fungal NRPS gene clusters to date, none of the NRPSs associated with cyclic NRPs contain 

terminal TE domains, nor a free-standing TE-like domain encoded in the vicinity of the gene 

cluster10. Instead, TE domains have only been found to be associated with hydrolyzed 

peptide products such as the linear ACV tripeptide synthesized by the ACV synthetase5. In 

macrocyclic fungal NRPs such as cyclosporine A, aureobasidin A, apicidin and ferrichrome 

A, each corresponding NRPS terminates with a condensation-like domain (CT)11–15(Fig. 1). 

Similarly, in smaller polycyclic NRP alkaloids such as tryptoquialanine, the NRP core is 

assembled by a NRPS (TqaA) that terminates with a CT domain16 (Fig. 1). In the NRPS 

paradigm, C domains are canonically categorized to catalyze the formation of a peptide 

bond between the growing peptidyl-S-Tn and the activated aminoacyl-S-Tn+1 using an active 

site histidine as the general base17,18. The active site serves as a scaffold to bring together 

the donor and acceptor aminoacyl thiolation domains19. Therefore, it is surprising that the 

CT domain (a subset of C domains) can be recruited by fungal NRPS to perform the 

equivalent reaction of a TE domain, which relies on a serine residue for nucleophilic 

catalysis7. Understanding the role of the CT domain in fungal NRPSs will have broad 

implications, as many of the cryptic NRPSs discovered from fungal genome sequences 

terminate with a CT domain 9,10.

To investigate the role of the CT domain and the cyclization of fungal NRPs, we focused on 

the trimodular TqaA, which has been shown genetically to be involved in the biosynthesis of 

the tricyclic peptidyl alkaloid fumiquinazoline F 1 (Fig. 2) in Penicillium aethiopicum16. 

TqaA is functionally equivalent to Af12080 from the fumiquinazoline A biosynthetic 

pathway in Aspergillus fumigatus20. The three modules (C*AT1-CAT2E-CAT3-CT) of TqaA 

are proposed to activate anthranilate (Ant), L-tryptophan and L-alanine to yield the 

tripeptide Ant-D-Trp-L-Ala 3 attached to the last T domain (3-S-T3)16,21 (Fig. 2). Formation 

of the pyrazinoquinazoline ring and release of 1 require two cyclization steps, hypothesized 

to be catalyzed by the CT domain (Fig. 2). Interestingly, the domain organization and 

substrate selectivity of the first two modules of TqaA are identical to those of AnaPS 

(C*AT1-CAT2E), which is involved in the synthesis of the 3-indolylmethyl-3,4-

dihydrobenzo-1,4-diazepine-2,5-dione precursor R-2 of acetylaszonalenin in Neosartorya 

fischeri22. Intriguingly, AnaPS terminates with an epimerization (E) domain rather than a CT 

domain, although it is known that E and C domains share sequence and structural 

similarities18.

Here we present the complete in vitro reconstitution of the trimodular TqaA expressed from 

Saccharomyces cerevisiae, allowing biochemical investigation of the cyclization steps. The 
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functions of AnaPS are studied in parallel to compare and contrast the cyclization steps 

between the two NRPSs. We show that the CT domain of TqaA is indispensable for the 

cyclization of 1 and requires protein-protein interactions with the T3 domain for catalysis.

RESULTS

In vitro Reconstitution of TqaA and AnaPS Activities

To pinpoint the domains that are involved in the cyclization of linear peptides, we first 

attempted to reconstitute the activities of the NRPSs in vitro. This is particularly challenging 

for the megasynthetases such as TqaA (450 kDa) as no NRPS with more than two modules 

has been successfully expressed in an active form to date. Towards this end, Saccharomyces 

cerevisiae 2-μm episomal vectors encoding tqaA (12 kb) and anaPS (7 kb) under the control 

of the ADH2 promoter were constructed using a modified yeast-based homologous 

recombination method23 (Supplementary Results, Supplementary Fig. 1). Both N-FLAG-

tagged enzymes were expressed using the engineered S. cerevisiae BJ5464-NpgA, which 

contained multiple vacuolar protease knockouts and a chromosomally integrated copy of the 

Aspergillus nidulans npgA gene that encoded a phosphopantetheinyl transferase24. The co-

expression of NpgA in BJ5464 is required for the conversion of apo thiolation domains into 

the phophopantetheinylated holo forms25. This strain had been successfully used as a host 

for heterologous reconstitution of large fungal polyketide synthases24,26. To verify 

functional expression of the NRPSs, small molecule metabolites in the three-day growth 

media were extracted with ethyl acetate and analyzed using LC-MS. Compared to the 

untransformed yeast strain, BJ5464-NpgA expressing TqaA and AnaPS produced 1 and R-2 
at ~2 mg/L, respectively (Fig. 3a). Following this confirmation of NRPS activities, full 

length TqaA and AnaPS (264 kDa) were purified to near homogeneity by using anti-FLAG 

antibody affinity chromatography followed by gel filtration to final yields of ~ 1 mg l−1 

(Supplementary Figures 2 and 3).

After the affinity purification step, activities of the A domains of NRPSs were assessed 

using amino acid-dependent γ-32P-ATP-PPi exchange assay (Supplementary Methods and 

Fig. 3b)27. TqaA specifically activated the three building blocks Ant, L-Trp and L-Ala over 

the respective D-amino acids or aryl acids. Similarly, AnaPS A domains activated Ant and 

L-Trp. Both NRPSs also activated aryl substrates such as benzoate (by TqaA), salicylate (by 

AnaPS) and 1, 2-dihydroxylbenzoate (DHB, by AnaPS), pointing to the relaxed substrate 

specificities of the Ant-specific A domains. The preference displayed by both NRPSs toward 

L-Trp over D-Trp strongly points to an active epimerization (E) domain in the second 

module of both NRPSs.

Complete reconstitution of TqaA and AnaPS activities was then performed by adding the 

amino acid building blocks (2 mM each) and ATP (6 mM) to each of the purified enzymes 

(10 μM). The reaction mixtures were incubated at room temperature for 12 hours, extracted 

with ethyl acetate and analyzed by LC-MS (Fig. 3c). 1 (obtained from the ΔtqaH strain of P. 

aethiopicum16) and chemically synthesized R-2 were used as authentic standards 

(Supplementary Methods). In the TqaA assay, 1 was synthesized as the single peptidyl 

product; no dipeptidyl or other tripeptidyl products could be detected through LC and 

selective ion monitoring by MS. A HPLC-based time course study revealed that the reaction 
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proceeds with initial product formation rate of 0.40 ± 0.014 min−1 (Supplementary Fig. 4a). 

Similarly in the AnaPS assay, the only product detected was the 6, 7-cyclic dipeptide R-2 
with an initial product formation rate of 1.47 ± 0.047 min−1 (Supplementary Fig. 4c).

Reconstitution of the synthesis of 1 and R-2 using purified TqaA and AnaPS, respectively, 

showed that each NRPS was sufficient to construct and cyclize the linear peptide into the 

multicyclic products. The proposed cyclization mechanisms are shown in Fig. 2. In the 

simpler case of AnaPS, attack of the Ant free amine on the thioester carbonyl of Ant-D-Trp-

S-T2 (D-4-S-T2) yields R-2. However in TqaA, this reaction is apparently suppressed in 

favor of chain elongation by the third module to yield 3-S-T3. Two cyclization routes to 1 
are possible starting from 3-S-T3 (Fig. 2b). In route A, attack of the Ant amine on the 

thioester carbonyl yields a 10-membered macrocyclic intermediate, which can undergo a 

bridging amide bond cyclization and dehydration to yield 1; in route B, the D-Trp amide 

serves as the initial nucleophile in attacking the thioester 3-S-T3 to yield the 

diketopiperazine (DKP) intermediate. Subsequent intramolecular attack by the Ant amine 

and dehydration completes the pyrazinoquinazoline scaffold.

Formation of R-2 can be spontaneous

To investigate the cyclization step of AnaPS, we chemically synthesized Ant-D-Trp-S-N-

acetylcysteamine (D-4-SNAC). Under enzymatic assay conditions, D-4-SNAC was cyclized 

to yield R-2 with an initial product formation rate of 0.1 min−1 (Supplementary Fig. 5a). The 

significant rate of spontaneous cyclization suggested that product release from AnaPS could 

be uncatalyzed. The spontaneous cyclization rate, however, was at least fourteen-fold slower 

than that of D-4-S-T2, hinting that domains in AnaPS may promote a conformation of the 

dipeptide that was more favorable for formation of the seven-membered ring. Adding 

AnaPS to D-4-SNAC, however, did not increase the cyclization rate, suggesting that the 

proposed templating effect may only take place with an enzyme-tethered dipeptide 

(Supplementary Fig. 5b).

The enantiomer Ant-L-Trp-SNAC (L-4-SNAC) was also prepared synthetically, and an 

identical rate of cyclization to S-2 was observed (Supplementary Methods and 

Supplementary Fig. 5c). The availability of both R-2 and S-2 as standards allowed us to 

examine the enantiopurity of the product released by AnaPS using chiral HPLC (Fig. 4a). 

Under assay conditions, only enantiomerically pure R-2 was detected in the organic extract, 

suggesting AnaPS exerts strict product stereochemical control. To probe the importance of 

the epimerization step catalyzed by the E domain on R-2 formation, we generated a point 

mutant of AnaPS (AnaPS-E0) in which the second His in the H2059HxxxDx catalytic motif 

was mutated to Ala (Supplementary Fig. 3) 28. As expected, AnaPS-E0 no longer produces 

R-2 when Ant and L-Trp are added. Instead, we observed the appearance of S-2 at only ~1% 

of the level of R-2 produced by the wild type AnaPS (Fig. 4a, note the sizes of R-2 and S-2 

peaks in traces i and ii are not drawn to scale). Based on the very low level of S-2 production 

by AnaPS-E0, two possible control mechanisms can be proposed. In the first model, AnaPS 

could suppress the rapid cyclization of L-4-S-T2 until epimerization to D-4-S-T2 takes place. 

The chiral environment in the E domain active site may position the Ant amine away from 

the thioester carbonyl. In this model, epimerization of the Trp residue took place on the 
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dipeptidyl-S-T2, which was proposed to be favored over the epimerization of the free 

aminoacyl thioester due to stabilization of the carbanion intermediate through acylation of 

the nitrogen in the peptide bond29. In the second model, formation of L-4-S-T2 by the C2 

domain was strongly disfavored in the absence of epimerization, therefore requiring the E 

domain to function on L-Trp-S-T2 prior to condensation with Ant-S-T1. Intriguingly, D-Trp 

could be activated and transferred to the T2 domain of AnaPS (Supplementary Fig. 6). 

However, AnaPS did not produce any product in the presence of Ant and D-Trp, suggesting 

that L-Trp was required for condensation to take place and thus providing evidence against 

the second model. Further attempts to distinguish between the two models through excision 

of the E domain from AnaPS were not successful because no soluble protein was recovered.

Given that the D-4-S-T2 intermediate can rapidly cyclize spontaneously, it is intriguing how 

formation of R-2 can be effectively suppressed by TqaA following formation of this 

dipeptidyl intermediate, especially given that the first two modules of TqaA and AnaPS 

appear to be functionally equivalent. Efforts to express modules 1 and 2 of TqaA as a 

standalone enzyme, or replace them with AnaPS resulted in insoluble proteins, despite the 

high sequence similarity. An initial hypothesis was that the subsequent condensation with L-

Ala catalyzed by C3 of TqaA was sufficiently rapid to sequester the reactive dipeptide. 

However, mutation of the C3 active site general base His2658 to Ala not only abolished the 

synthesis of 1, but also failed to yield any trace of R-2. Similarly, performing the TqaA in 

vitro assay with only Ant and L-Trp also did not produce R-2 (Supplementary Fig. 7). 

Hence, it was reasonable to propose that the C3 active site, in particular through the donor 

peptidyl entrance site, can structurally protect the D-4 moiety and can prevent cyclization 

and offloading of the intermediate as R-2.

Formation of Fumiquinazoline F requires the CT domain

Having probed the formation of R-2 by AnaPS, we next examined the cyclization of 3-S-T3 

into 1 by TqaA. This was a particularly intriguing transformation as a simple linear 

tripeptide was morphed into the 6, 6, 6 pyrazinoquinazoline tricyclic ring system. First, to 

understand the stability of the tripeptidyl thioester, we synthesized 3-SNAC starting from 

the free acid 3 (Supplementary Methods). In contrast to 4-SNAC, 3-SNAC was remarkably 

stable under assay conditions, and levels of the hydrolysis product 3 only reached a 

noticeable level after approximately 8 hours. No cyclized products such as 1 can be 

observed after more than 24 hours of incubation (Supplementary Fig. 5d). Therefore, 

whereas formation of R-2 can be spontaneous, formation of 1 definitely required enzyme 

catalysis. The CT domain in TqaA was the most likely domain that could catalyze this 

reaction. Phylogenetic analysis showed that fungal CT domains group separately from the 

canonical chain-extending C domains (Supplementary Figures 8 and 9). Based on 

bioinformatic analysis, the percentage of fungal NRPSs incorporating a CT domain varied 

from 60 to 90%, depending on the genome analyzed (Supplementary Table 2).

Multiple sequence alignment of the active sites of different sequenced CT domains revealed 

variations in the first His residue of the highly conserved HHxxxDxxS motif of C domains 

(S3765HSQWDGVS3773 in TqaA)17 (Supplementary Fig. 10). The His proposed to be acting 

as the general base is conserved in all CT domains. To probe the role of the CT domain in 
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pyrazinoquinazoline formation, we constructed the following mutants of TqaA: S3765A and 

S3765H to probe the role of the nonconserved serine, and H3766A to probe the role of the 

putative active site base. Among them, TqaA H3766A was expressed and purified from 

BJ5464-NpgA for in vitro assay (Supplementary Fig. 3). Whereas the S3765 mutants 

maintained production of 1 at levels comparable to that of the wild type in S. cerevisiae, the 

H3766A mutant failed to yield any detectable peptidyl product both in S. cerevisiae and in 

vitro using the purified enzyme (Supplementary Fig. 11). To exclude the possibility that an 

inactivated CT domain may structurally prevent the cyclization of 3-S-T3, a truncated 

version of TqaA without the CT domain (TqaA-ΔCT, 400 kDa) was constructed, expressed 

and assayed. In parallel, the standalone CT domain was expressed and purified from 

Escherichia coli (Supplementary Fig. 3). When assayed in vitro, whereas TqaA-ΔCT failed 

to produce any detectable amount of 1, complementation of TqaA-ΔCT with equimolar 

amounts of CT in trans restored the synthesis of 1, albeit to a lesser extent compared to full 

length TqaA (Fig. 4b). The lower level of 1 may be a result of inefficient in trans protein-

protein interactions. Indeed, addition of twenty-fold molar excess of CT to the reaction 

mixture dramatically increased the production of 1, resulting in levels comparable to that 

observed when using intact TqaA. In contrast, in trans addition of a CT
0 mutant in which the 

catalytic His was mutated to Ala failed to restore the synthesis of 1. With all of the 

inactivated mutants described above we did not detect any hydrolyzed 3 free acid in the 

reaction mixture, suggesting that the NRPS-tethered tripeptide was remarkably resistant to 

hydrolysis compared to 3-SNAC (Supplementary Fig. 5d). Collectively, these results 

unequivocally proved the essential role of the terminal CT domain in formation of the final 

product 1.

CT cyclization activity requires T domain

Having confirmed the catalytic nature of the CT domain, we next assayed the standalone CT 

in the cyclization reaction. Cyclizing TE domains from bacterial NRPSs can cyclize small 

molecule thioester mimics of the linear precursors6,30. However, when 3-SNAC or 3-S-CoA 

was used as a substrate for TqaA CT, no cyclized 1 was detected after prolonged incubation 

(Supplementary Methods and Supplementary Fig. 12). To prepare the authentic 3-S-T3 

substrate for CT, the apo form of standalone T3 was expressed from E. coli (Supplementary 

Fig. 3) and modified in vitro in the presence of 3-S-CoA and the broadly specific 

phosphopantetheinyl transferase Sfp31. MALDI-TOF mass analysis confirmed the near 

quantitative conversion from the apo form (molecular weight 11197) to 3-S-T3 (molecular 

weight 11913) (Supplementary Fig. 13). In the absence of the CT domain, slow hydrolysis of 

this thioester to 3 was observed. When the wild type CT was combined with 3-S-T3, a new 

peak was observed during HPLC that corresponds to 1, and no hydrolysis was detected (Fig. 

4c), confirming the importance of the T domain in facilitating CT functions. Adding the 

mutant CT
0 did not yield any cyclized product, but partially suppressed the hydrolysis of 3-

S-T3 possibly due to the templating effect of the CT active site. The kinetic parameters of the 

cyclizing reaction were measured as shown in Supplementary Fig. 14. The kcat of the 

reaction was determined to be 0.82 ± 0.053 min−1 and Km of CT for 3-S-T3 was 1.1 ± 0.12 

mM. 1 can also be formed in a one-pot reaction containing apo-T3, 3-S-CoA, Sfp and CT, in 

which the phosphopantetheinyl modification took place in situ. When Ant-L-Trp-L-Ala-S-
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CoA (epi-3-S-CoA) was used to prepare epi-3-S-T3, the CT domain also efficiently cyclized 

the diastereomeric peptide into the corresponding 14-epi-fumiquinazoline F 5, indicating 

relaxed substrate specificity of the cyclization reaction towards the tripeptide (Fig. 2 and 

Fig. 4c).

To examine the T domain substrate specificity of CT, we also prepared noncognate T 

domains 3-S-TApdA and 3-S-TLovF, which correspond to the ACP domains of the fungal 

PKS-NPRS ApdA and PKS LovF, respectively26,32. Both TApdA and TLovF share low 

sequence identity/similarity (~20%/60%) with TqaA T3. TApdA naturally interacts with a 

downstream C domain in ApdA and the tethered polyketide intermediate is condensed with 

a tyrosine residue, while TlovF does not interact with any C-like domain. TqaA CT was able 

to recognize 3-S-TApdA to produce 1, albeit with <10% efficiency compared to 3-S-T3 

(Supplementary Fig. 15) and was accompanied by hydrolysis of 3-S-TApdA. Only 

background hydrolysis of 3-S-TApdA was observed when TLovF was used as the peptidyl 

carrier. Therefore, the protein-protein interactions between CT and the T domains are 

selective, and may rely on T domain sequence elements that are unique for recognition by C 

domains. Noncognate T domains such as TLovF that do not interact with downstream C-like 

domains likely do not possess these elements and are not substrates of the CT domain.

Cyclization Mechanism of CT

In an attempt to differentiate between the two alternate mechanisms of cyclization to the 

observed 6, 6, 6 tricyclic compound 1 (Fig. 2b), we examined the propensity of analogues of 

the natural Ant-Trp-Ala system to undergo CT mediated cyclization (Fig. 4d and 

Supplementary Fig. 16). Using the standalone T3 domain of TqaA and Sfp as loading 

catalyst we generated three tripeptidyl-T3 analogues specifically designed to disfavor either 

the macrocyclization (pathway A in Fig. 2b) or DKP formation (pathway B in Fig. 2b). 

From Ant-L-N-Me-Trp-L-Ala-S-T3, a released product with mass [M+H]+ of 391 (exact 

mass = 391.1765) consistent with the proposed N-methyl-10 membered macrolactam (Fig. 5 

and Supplementary Fig. 17) was observed. Further cyclization of this intermediate was 

strongly disfavored (both sterically and by the formation of a quaternary cationic product) 

by the tertiary nitrogen which would be required to act as nucleophile. Nonetheless, a mass 

consistent with this cationic product resulting from the transannular attack of the tertiary 

amine actually was observed as a very minor product. The formation of this product despite 

the steric and electronic barriers to its formation (as stated above) lends support to the 

geometry of this proposed macrocycle favoring the required orientation for transannular 

cyclization. It is worth noting that the same mass would also be consistent with the 

formation of a cation N-Me-Trp derived DKP, but such a product would likely be very 

unstable and be subject to rapid hydrolysis to form Ant-N-Me-Trp-Ala free acid, which was 

not detected. Conversely salicylate-D-Trp-L-Ala-S-T3 or benzoate-D-Trp-L-Ala-S-T3, 

which would be expected to disfavor/prevent macrocyclization (but not interfere with DKP 

formation), gave no products corresponding to the mass of the dehydrated tripeptide 

(corresponding to either DKP or macrocycle isomers) (Fig. 5). Although the mechanism of 

CT mediated cyclization remains difficult to elucidate due to the reactivity of proposed 

intermediates, taken together these data support a route where macrolactamization precedes 

DKP formation in the formation of these CT mediated 6, 6, 6 tricyclic scaffolds.
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DISCUSSION

In this work, we have reconstituted the activities of two fungal NRPSs, the trimodular TqaA 

and the bimodular AnaPS that make tricyclic and bicyclic heterocyclic scaffolds, 

respectively. The choice of the two NRPSs was based on the observation that while the first 

two modules of TqaA are identical to AnaPS, addition of the third module dramatically 

altered the structures of the resulting polycyclic NRP alkaloid products. The difference in 

the cyclization pattern is likely due to the precise control of the reactive dipeptide D-4 
intermediate, and the use of a C-like cyclization domain that regioselectively directs the 

intramolecular attack of the Ant amine nucleophile. While bimodular NRPSs from both 

bacteria and fungi have been reconstituted previously33–35, the sheer size of NRPSs such as 

TqaA complicated soluble expression and functional reconstitution. The use of S. cerevisiae 

BJ5464-NpgA allowed high-yield heterologous expression and full manifestation of TqaA 

activities. The successful use of this strain in affording intact NRPSs should open the door to 

the functional analysis of the expanding collection of fungal NRPSs available through 

different sequencing efforts.

The use of the cyclic aromatic β-amino acid anthranilate as the chain initiation building 

block by AnaPS and TaqA is key for the generation of the 6, 7 fused bicyclic R-2 (AnaPS) 

and the fused 6, 6, 6 tricyclic 1 (TqaA) scaffolds. The planar 1, 3 disposition of the amino 

group and the carbonyl in the anthranilyl unit efficiently sets up the D-4-S-T2 intermediate 

for cyclization on the second module of AnaPS. This facile cyclization, demonstrable in the 

nonenzymatic thioester model, sets the unusual 6, 7 bicyclic ring system that is subsequently 

elaborated by prenylation and acetylation in the acetylaszonalenin pathway22. Notably this 

same 6, 7-scaffold would be an unwanted derailment product in the trimodular TqaA. Such 

premature release is seemingly suppressed by the action of the C-domain that results in the 

generation of a 3-S-T3 species. Chain release at this point mediated by CT instead creates the 

tricyclic scaffold of 1. The NH2 of the anthranilyl unit is again acting as an internal 

nucleophile on a thioester but this does not happen appreciably nonezymatically. Clearly, 

the use of anthranilate as a NRPS starter unit enables construction of distinct patterns of 

nitrogen-containing bicyclic and tricyclic scaffolds at the core of related families of fungal 

peptidyl alkaloids. In the case of the fumiquinazolines, these can be further elaborated into 

highly constrained architectures with up to seven fused rings in the mature scaffold36. Thus, 

understanding how anthranilate gets activated, elongated, and cyclized on fungal NRPS 

assembly lines offers prospects for diversification of peptidyl alkaloid scaffolds.

Fungal NRPSs have several different strategies for product release following completion of 

peptide elongation7,8. TE domains have been found to be responsible for the hydrolysis of 

full length peptidyl-NRPS adducts as in the ACV synthetase that is responsible for the 

production of the ACV peptide precursor to penicillin5. NADPH-dependent reductive (R) 

domains have been found to be associated with the family of peptaibol linear peptides, in 

which the C-terminal thioester is reduced to an amino alcohol37. R and R-like domains are 

also found at the C-termini of PKS-NRPS hybrid megasynthetases which can catalyze 

reductive chain release or Dieckmann cyclization, respectively38,39. However, based on 

recent genome sequencing efforts, a majority (60–90%) of the NRPSs found in filamentous 

fungi terminate with a CT domain (Supplementary Table 2). Previous sequencing of 
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individual gene clusters has also revealed that CT domains are associated with macrocyclic 

and/or polycyclic NRPs. In this work, using the pyrazinoquinazoline 1 as an example, we 

demonstrated that the CT domain in the TqaA NRPS was responsible for the cyclization of 

the highly stable tripeptide 3-S-T3. The cyclization function of CT is likely to be general for 

other fungal NRPSs such as those shown in Fig. 1, including cyclosporine synthetase 

SimA11. Macrocyclization CT domains may also play a role in the biosynthesis of 

cyclohexadepsipeptide destruxins in the insect pathogenic fungi Metarhizium robertsii40 and 

in NRPSs from filamentous cyanobacteria, as illustrated in the apratoxin biosynthetic gene 

cluster from Lyngbya bouilloni41. CT domains have also been proposed to be involved in the 

cyclization via ester bond formation during the biosynthesis of bacterial polyketide-peptidyl 

hybrid FK520 and rapamycin42,43. However, those CT domains fall into a different group by 

phylogenetic analysis (Supplementary Fig. 9).

The use of a CT domain to heterocyclize or macrocyclize peptidyl products is a different 

strategy from the canonical TE domains found in bacterial NRPSs. The CT domains and TE 

domains have completely different folds and utilize different mechanisms to catalyze the 

same reaction. In the TE domain where a catalytic triad is present, the peptidyl intermediate 

is first transferred to the active site serine, followed by intramolecular nucleophilic attack on 

the oxyester to complete cyclization7. In contrast, as seen for canonical C domains that 

catalyze peptide bond formation, no covalent adduct with the enzyme is expected to be 

formed during CT catalyzed cyclization5. Instead, the catalytic histidine deprotonates the 

amine nucleophile, thus facilitating its attack on the thioester carbonyl to cyclize and release 

the product in one step. Another significant mechanistic difference is the requirement for a 

specific T domain partner in the CT domain catalyzed cyclization reaction. We showed here 

that only peptide substrates tethered to the natural T domain partner of the CT domain are 

efficiently recognized, while peptidyl-SNAC or peptidyl-CoA substrates are not recognized. 

This contrasts with most TE domains where small-molecule mimics of the peptidyl-thioester 

can be used to probe the cyclization functions6,30. One exception is the fengycin TE that 

involves direct interactions with the upstream T domains to mediate the cyclization44. The 

interactions between T and CT domains likely evolved from the interactions between 

upstream T and downstream C domains during peptide elongation, which facilitate the 

unidirectional delivery of the peptidyl substrate in a productive conformation to the donor 

site. This specific interaction may be advantageous to prevent spontaneous cyclization of the 

peptide from backbone amides or side chain amines. CT domains also appear to 

advantageously eliminate the competing hydrolysis reaction, which is observed in vitro with 

bacterial TE domains where hydrolysis of the oxyester intermediate can take place in 

competition with the cyclization reaction7. This is especially prevalent under in vitro 

conditions where a standalone TE is used. In contrast, the templating nature of the CT highly 

disfavors hydrolysis as illustrated in the reconstitution assay using 3-S-T3.

METHODS

Cloning, expression and purification of TqaA and AnaPS

Cloning of the intact gene into the expression vector was performed using the modified 

yeast-based homologous recombination method23. The tqaA gene was divided into 4 pieces 
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(P1 ~ P4) with a maximum size of ~4.5 kb. The only intron (577 – 661 bp) of the tqaA gene 

within P1 was removed by RT-PCR. P2 to P4 were PCR amplified from the genomic DNA 

of P. aethiopicum. Each successive piece was designed to overlap (35 – 40 bp) with the two 

flanking ones, and the 5′-end of P1 and 3′-end of P4 overlap with the expression vector. The 

vector fragment was generated by digesting pXW55 (an expression vector with an 

engineered FLAG tag on N-terminus and 6×His-tag on C-terminus) with SpeI and PmlI26. 

The individual tqaA pieces (1 μg per piece) as well as the vector (~ 0.5 μg) were co-

transformed using the EasyComp™ Transformation Kit (Invitrogen) into S. cerevisiae strain 

BJ5464-NpgA to allow assembly of the entire gene in vivo. The assembled plasmid was 

miniprepped from S. cerevisiae using yeast plasmid miniprep II kit (Zymo) and further 

verified by PCR and restriction enzyme digestion. The cloning procedure for the anaPS 

gene was the same as described for tqaA. The verified plasmid containing intact tqaA or 

anaPS gene was transformed into S. cerevisiae strain BJ5464-NpgA for protein expression. 

For 1 L of yeast culture, the cells were grown at 28 °C in YPD media with 1% dextrose for 

72 hours. For detailed protein purification procedure, refer to Supplementary Methods. 

FLAG-tagged TqaA and AnaPS proteins were purified by using ANTI-FLAG® M1 Agarose 

Affinity Gel (Sigma-Aldrich). The cleared cell lysate was directly applied onto a column 

packed with ANTI-FLAG Agarose Affinity Gel. TqaA/AnaPS protein was eluted with 

buffer containing 0.5 mg ml−1 FLAG peptide. For the cloning and expression procedures for 

other proteins mentioned in this paper, see Supplementary Methods.

Synthesis of peptidyl-SNAC, peptidyl-S-CoA and peptidyl-S-T substrates

Syntheses of peptidyl-SNACs and peptidyl-S-CoAs are described in the Supplementary 

Methods. Loading reactions of apo-T3 or other ACP domains were carried out in 50 mM 

MES buffer (pH 6.8) and initiated by addition of 5 μM Sfp. After 2 hours, 3-S-T3 was 

buffer-exchanged into MilliQ water using an Amicon Ultra 10 MWCO 10,000 Daltons, 

followed by identification with MALDI-TOF MS and used for kinetics assays.

In vitro assays

To test the in vitro activities of TqaA, AnaPS or other mutant proteins, 2 mM of each amino 

acid building block, 6 mM ATP, 4 mM MgSO4 and 10 μM of purified proteins were 

combined in 50 mM Tris-HCl buffer (pH 7.5) to a total volume of 100 μl. After 12 hours 

incubation, reactions were quenched and extracted with 1 ml of ethyl acetate. The organic 

layer was dried and re-dissolved in methanol for LC-MS analyses. For kinetic 

characterization of the CT domain towards 3-S-T3, the concentration of the CT domain was 

kept constant at 2 μM. Initial velocities were determined at various 3-S-T3 concentrations 

ranging from 20 to 1053 μM. Samples were analyzed on a Shimadzu 2010 EV liquid 

chromatography mass spectrometer using positive and negative electrospray ionization and a 

Phenomenex Luna 5 μm, 2.0 mm × 100 mm C18 reverse-phase column. Samples were 

separated on a linear gradient of 5 to 95% CH3CN in water (0.1% formic acid) for 30 min at 

a flow rate of 0.1 ml min−1 followed by isocratic 95% CH3CN in water (0.1% formic acid) 

for 15 min.

Other general materials, methods and procedures. See Supplementary Methods.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fungal nonribosomal peptide synthetases (NRPSs) that are terminated with a C-like domain. 

(a) Representative NRPSs: cyclosporine NRPS SimA, aureobasidin A NRPS Aba1, apicidin 

NRPS Aps1, ferrichrome A NRPS Fer3, tryptoquialanine NRPS TqaA, acetylaszonalenin 

NRPS AnaPS. Domain abbreviations: C: condensation domain; A: adenylation domain; T: 

thiolation domain; E: epimerization domain; C*: truncated and presumably inactive C 

domain; CT: Terminal C-like domain. (b) Representatives structures of final products 

synthesized by the clusters in part a.
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Figure 2. 
Proposed AnaPS (a) and TqaA (b) cyclization mechanisms. (Domain abbreviations: C: 

condensation domain; A: adenylation domain; T: thiolation domain; E: epimerization 

domain; C*: truncated and presumably inactive C domain; CT: Terminal C-like domain).
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Figure 3. 
Characterization of TqaA and AnaPS. (a) in vivo reconstitution of TqaA and AnaPS. Shown 

are HPLC analysis (λ = 272 nm) of metabolites extracted from 3-day cultures of i) 

untransformed BJ5464-NpgA; ii) BJ5464-NpgA expressing TqaA; iii) BJ5464-NpgA 

expressing AnaPS. (b) amino acid-dependent ATP-PPi exchange assays with AnaPS and 

TqaA. Abbreviations: benzoate (Benz); 1, 2-dihydroxybenzoate (DHB). (c) in vitro 

reconstitution of TqaA and AnaPS. Shown are HPLC analysis (λ = 272 nm) of compounds 

from extraction of reaction mixtures containing 2 mM of the amino acid building blocks and 

i) no enzyme; ii) 10μM TqaA; iii) 10 μM AnaPS; iv) standard of 1; and v) standard of R-2.
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Figure 4. 
The cyclization steps of TqaA and AnaPS. (a) chiral HPLC followed by selected mass ion 

monitoring (m/z 305) of R-2 or S-2 synthesized from AnaPS (trace ii) and AnaPS-E0 (trace 

i). Standards of R-2 (trace iv) and S-2 (trace iii) are shown for comparison. The intensities of 

peaks are not drawn to scale. (b) confirmation of TqaA CT domain function. All assays 

contained 10μM of the NRPS (TqaA or TqaA-ΔCT) and 2 mM of each amino acid. 

Standalone CT or CT
0 was added in trans. The traces shown are selected mass ion 

monitoring (m/z 358) of compounds extracted from reactions containing i) wild type TqaA; 

ii) TqaA-ΔCT; iii) TqaA-ΔCT with 10 μM CT; iv) 10 μM TqaA-ΔCT with 200 μM CT; and v) 

TqaA-ΔCT with 200 μM CT
0. (c) confirmation of CT cyclization activity using preloaded 

peptidyl thiolation domain. 3-S-T3 or epi-3-S-T3 (200 μM) was used to assay the production 

of 1 or 5, respectively. Traces shown are HPLC analyses (λ = 272 nm) of i) 3-S-T3 without 

CT; ii) standard of 1; iii) 3-S-T3 with 20 μM CT; iv) epi-3-S-T3 with 20 μM CT. (d) 

Analogues of 3 were used to probe the cyclization route of CT domain. 200 μM tripeptide 

analogueswere used to react with CT (20 μM). Traces i) and ii) are Ant-L-N-Me-Trp-L-Ala-

S-T3 without and withCT, respectively; Trace iii) and iv) are salicylate-D-Trp-L-AlaS-T3 

without and withCT, respectively; Trace v) and vi) are benzoate-D-Trp-L-Ala-S-T3 without 

and with CT, respectively.
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Figure 5. 
Probing the possible TqaA CT domain cyclization mechanisms using analogues of the 

tripeptide 3.
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