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ABSTRACT A theoretical analysis of natural selection is
presented in which fitnesses depend on population density and
randomly varying environmental processes. The theory is based
on a general, heuristic analysis of a air of coupled, nonlinear,
stochastic difference equations that describe the joint dynamics
of allele frequencies and population size. Four main conclusions
emerge from the investigation of a particular class of models:
(i) growth rates at low population densities tend to increase; (if)
individual selection, given sufficient genetic flexibility, will
mold growth rates at higher densities'so that in spite of 'i, stable
deterministic population dynamics are maintained; (iii) "more
fit" genotypes cannot be simply characterized-in particular,
the mean population size need not be increased; and (iv) genetic
polymorphisms can be maintained in both haploid and diploid
organisms.

The connection between population dynamics and natural se-
lection was central to Darwin's theory of evolution. Yet it is only
within the past 20 years that a theory of selection has been de-
veloped in which fitnesses depend on population density (1-7).
Because unpredictable environmental variation is an intrinsic
part of nature, another important recent development is the
incorporation of random fluctuations into relative fitnesses and
population growth rates (see refs. 8 and 9 for reviews). This
paper explores models that merge these two lines of investiga-
tion by letting fitnesses depend on both population density and
random processes. One model of this sort was recently analyzed
by Heckel and Roughgarden (10). Using an approximate ana-
lytical approach developed by Turelli (11) as a refinement of
his technique (12), we will examine a more general class of
models. The questions considered are: (i) how does individual
selection act on population parameters that govern the stability
of deterministic population dynamics, (ii) what characterizes
"more fit" genotypes, and (iii) under what conditions are
"protected polymorphisms" (13) maintained? The answer to
(i) is shown to be strikingly model-dependent, but general
conclusions emerge for a particular class of models. The answers
to (ii) and (iii) differ significantly from the standard deter-
ministic results.
The usual formulation of density-dependent selection at a

diallelic locus is as follows. Assume that generations are discrete,
denote the alleles by AI and A2, and let pt denote the frequency
of A1 at some specified stage of the life cycle (usually zygote
or prereproductive adult) in generation t. Let Nij,t denote the
number of AiAj individuals at the censused life stage in gen-
eration t; and let Nt = Ni1,t + N12,t + N22,J, the total popu-
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lation size. Denoting the (absolute) fitness of genotype AjA1 by
wi (Nt), the recursions of interest are

Pt+ I = pt[ptwll(Nt) + qtwl2(Nt)]/1U(Nt),
Nt + 1 = NtO(Nt ),

[1]
[2]

in which qt = 1 -Pt and i(Nt) = p2w1l(Nt) + 2ptqtwl2(Nt)
+ qtw22(Nt). We assume that neither allele is completely
dominant, that the wij 's are nonnegative, decreasing, differ-
entiable functions with w ;(0) > 1, and that recursion 2 has a
locally stable equilibrium for each fixed p. The solution of
Uwqj(N) = 1 is denoted Kiii, It has been shown under these as-
sumptions (5, 7, 14) that, except for models yielding zero fit-
nesses, the qualitative outcome of selection is governed solely
by the Kijs and selection maximizes the equilibrium population
size. (See refs. 7 and 14 for precise descriptions of the maximi-
zation, ref. 15 for clarification of its biological import, and refs.
16-18 for the implications of relaxing the constraints on the
wijs.) In particular, if K11 <K12 < K22, the population will
evolve toward monomorphism for A2; whereas if K12 >
KIIK22, a stable polymorphism will result. These results are
easily motivated by observing that if the population is initially
monomorphic for A2 and has achieved ecological equilibrium
so that Nt = K22, the dynamics of a mutant A1 allele would be
approximately

Pt+ 1 = PtW12(K22)/W22(K22) = PtW12(K22)- [3]
Thus Al would increase if and only if K12 > K22. This boundary
analysis will be generalized below to include stochastic ef-
fects.

In constant-environment models of populations with stable
dynamics, selection does not act directly on parameters such
as intrinsic growth rates that determine the local stability of and
rate of return to the population-size equilibrium but not its
position. In these models, such parameters could be subject to
evolutionary modification only through pleiotropic effects of
alleles controlling the Ksjs. However, the direction of evolu-
tionary change cannot be specified a priori because it would
depend on the nature of the pleiotropy. Plausible arguments
can be made for both positive and negative correlations between
intrinsic growth rates and carrying capacities (cf. refs. 2 and
15). The evolution of intrinsic growth rates and other stabil-
ity-determining parameters has important ecological and ev-
olutionary implications. As several recent papers have pointed
out (e.g., ref. 19), the task of understanding population dy-
namics in nature will be exceedingly complex if the relevant
growth laws are not stable but intrinsically chaotic or cyclical
with long periods. However, empirical studies that have fit
simple growth curves to data have almost invariably yielded
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parameter estimates corresponding to stable population dy-
namics (20-22). Thomas et al. (21) have proposed group se-
lection as a possible explanation. As shown below, the observed
stability can also be accounted for by individual selection.
The key finding of the Heckel and Roughgarden (10) ran-

dom environment study was that for a particular model, the
stability-determining growth rate parameter, r, came under
direct evolutionary control. They found that if genotypes dif-
fered only in their r values, selection would favor the genotype
with the lowest r, so that r would tend to evolve toward zero.
Our analysis will show that this prediction is not robust. In fact,
for a large class of models r is selected upward. However the
evolution of a second stability-determining parameter can
counter the effects of ever-increasing r and maintain stable
population dynamics. If the evolution of this parameter is
constrained by pleiotropic effects, evolutionary increase of r
can lead to unstable dynamics.

A GENERAL MODEL AND APPROXIMATE
BOUNDARY ANALYSIS

The heuristic boundary analysis of Eq. 3 will be extended to
account for environmental fluctuations in the fitnesses wjj. Let
Zij,t denote a vector-valued, stationary stochastic process with
E(zij t) = 0 that models the environmental variation experi-
enced by genotype AjA1. The second order moments of these
processes will be generically denoted a2. Assume that the fitness
of AjA1 in generation t can be expressed as wjj (Nt, zijt), that
the functions wtj(N,0) satisfy the conditions specified in the
review of the deterministic theory presented above, and that
thebivariate functions remain nonnegative and are differen-
tiable. The recursions 1 and 2 generalize to the stochastic
equations

Pt+ 1 = Pt [ptw1 i(Nt, zi1,t) + qtw 12(Nt, Z12,t)]/t, [4]

Nt+ 1 = Ntwt [5]

with iot = p2wil(Nt,zillt) + 2ptqtw12(Nt,Z12,t) +
q2w22(Nt, Z22,t).
We conjecture that if A1 is a new mutant, Eq. 4 can be ap-

proximated by

Pt+ 1 = PtWl2(Nt, Z12,t)/W22(Nt, Z22,t), [6]
and the dynamics of Nt can be approximated by the stationary
solution of

Nt + 1 = Ntw22(Nt, Z22,t), [7]

corresponding to the long-term stochastic behavior of a popu-
lation monomorphic for A2. We also conjecture that Eqs. 6 and
7, together with the analogous equations with the roles of A1
and A2 reversed, can provide necessary and sufficient condi-
tions for the existence of a stable polymorphism. Two as-
sumptions underly the latter conjecture. The first is that the
stochastic dynamics of a polymorphic population would ulti-
mately produce the configuration described by Eqs. 6 and 7 so
that A1 must be able to increase in frequency according to them
in order to be maintained. The second is that no additional in-
formation relevant to evaluating P(pt 0 as t , co) is con-
tained in the fully nonlinear system 4, 5. We cannot rigorously
justify these assumptions, but computer simulations support
predictions based on them (see ref. 23 for a similar analysis of
two-dimensional diffusion processes).

In addition, partial support comes from the corresponding
density-independent theory. Note that if the population process
Nt can be described by a stationary solution of Eq. 7, Eq. 4 is
equivalent to a density-independent model of selection in a

random environment. As shown heuristically by Gillespie (24)
and rigorously by Karlin and Liberman (25), pt will be repelled
from zero and allele Al will be "protected" if and only if
E[lnwI2(Nt, Z12,t)] > E[lnw22(Nt, z22,t)]. This criterion follows
directly from Eq. 6. Stationarity of Nt with respect to Eq. 7,
implies that E[Inw22(Nt,z22,t)] = 0. Hence the conjectured
condition for protection of the A1 allele reduces to

E[lnwl2(Nt,zl2,t)] > 0 [8]
in which E denotes expectation taken with respect to the joint
stationary distribution of Nt and ZI2,t and the distribution of
Nt determined by Eq. 7.

In most circumstances, it will be impossible to compute an-
alytically the expectation in 8, and approximations or numerical
evaluations, or both will be required. We will outline a general
approximation technique (see ref. 11 for details). The approx-
imation assumes that the level of environmental variation is
sufficiently low that terms of order an for n > 3 can be ignored.
To simplify the notation, we will drop the second subscript in
the expressions that follow; thus, W12(Nt,z12,t) will be written
as wi(Nt,zi,t). This notation emphasizes the fact that our
boundary analysis is equivalent to the analysis of a haploid
model with A2 an established genotype and A1 a rare mu-
tant.
To approximate E[lnwl(Nt,zit)], introduce the variable nt

= (Nt - K2)/K2 and expand lnwi(Nt,zl,t) in a Taylor series
about (K2,O). E(nt) and E(n ) are of order a2 (11). Hence, as-
suming that the means of terms of the form n'z' for a + b 2
3 are of order os or smaller, one can obtain an approximation
for 8 valid to order a2 by ignoring terms involving third and
higher-order partial derivatives. The resulting approximation
for E[lnwl(Nt,zl,t)] depends only on E(nt), the variance-co-
variance matrix of (nt,zi,t), and w1 and its first- and second-
order partial derivatives at (K2,0). We will consider here only
the case in which the noise processes zit are nonautocorrelated
so that only E(n?2) and E(nt) must be approximated. Any
scheme of cross-correlation is allowed. With the assumption that
the deterministic dynamics of the resident genotype are stable,
E(n2) can be obtained to order c2 by linearizing Eq. 7 about
(K2,0). To approximate E(nt), recall that the assumption of
stationarity of Nt with respect to Eq. 7 implies that
E[lnw2(Nt,z2,t)] = 0. Repeating the second order Taylor series
approximation yields a linear equation for E(nt) in terms of
E(n 2) and the variance-covariance matrix of Z2,t.

In the applications of the next section, the wi depend on only
two noise processes, zit and Z'ijt. Their standard deviations will
be denoted ai and aO' and their correlation pi. The approxi-
mations described above imply that to order a2

E[lnwi(Nt,zlt,z'lt)] = lnwi
+ (K22/2)(DNNW1 -CDNNW2)E(n2t)

+ (oi2Dzzwl-cU22D=w2)/2 + [(Ud1)2Dztz'w
- C(U'2)2Dztz'W2]/2

+ (plala'1Dzz'wl -cp202o'2Dzz'w2), [9]
in which DXYwi = a2lnw/aay,c = (olnwl/ON)/(alnw2/ON),
E(n2) = [(do2)2 + (d'oa'2)2 + 2dd'p2X2u'2]/(-X2), d =
aw2/,3z, d' = aw2/az', X = 1 + K2(0W2/ON), and all of the
functions are evaluated at (K2,0,0). If the right hand side of Eq.
9 is positive, we expect that allele Al will be protected-i.e.,
P(Pt - 0 as t - co) = 0. If it is negative, by analogy to the
density-independent theory we expect that the equilibrium pt
= 0 will be attracting-i.e., pt will tend to converge to zero
when near it (see ref. 25).

If no noise is present, the right hand side of Eq. 9 reduces to
lnwl, whose sign would determine the fate of Al in a deter-
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ministic environment. Because of the additional terms, K1>
K2 is neither necessary nor sufficient for allele Al to be pro-
tected, and any parameters that enter the partial derivatives
of the wj will come under selection. However, the intensity of
selection is on the order of ra2 (note that the quantities DNN are
proportional to K-2). It is reassuring that if the genotypes AA2
and A2A2 have identical fitness functions and experience
identically distributed environmental perturbations, the right
hand side of Eq. 9 reduces to zero. Thus, as expected under
neutrality, the rare allele tends to neither increase nor decrease.
This also shows that our analysis is inappropriate for models
involving complete dominance.

RESULTS AND DISCUSSION
To focus on the evolution of stability-determining parameters
that come under direct selection only when population fluc-
tuations are considered, we will investigate several stochastic
analogs of

Nt+ 1 = NtG[(Nt/K)0] [10]

in which G(0) = 1 + r, G(1) = 1, G(x) > 0, and G'(x) < 0. We
will concentrate on three specific cases: G(x) = max[0, 1 + r(1
- x)], G(x) = exp[ln(1 + r)(1 - x)], and G(x) = (1 + r)/(1 +
rx). These will be referred to as the linear, exponential, and
hyperbolic models, respectively. Each is a discrete-time analog
of dN/dt = rN[I - (N/K)0] (cf. refs. 26 and 27). The linear and
exponential forms have been fit to Drosophila data by Mueller
(22) and Thomas et al. (21), respectively. Their work provided
the motivation for considering this class of models. Unlike the
logistic model, which corresponds toO = 1, and various multi-
parameter growth models such as those proposed by Schoener
(28) and Hassell (29), this model has two separate parameters,
r and 0, that govern the shape of population trajectories without
modifying the equilibrium population size. The importance
of this flexibility will become clear below. The local (and pre-
sumably global) stability of K is governed jointly by r and 0
according to the eigenvalues X = 1-Or, X = 1- Oln(1 + r), and
X = 1 - Or/(1 + r), corresponding to the linear, exponential,
and hyperbolic models, respectively. For Eq. 10, X = 1 +
OG'(1).

For a given deterministic model, stochasticity can be incor-
porated in various ways. Because the biological mechanisms
that produce these recursions and determine their parameters
are not specified, the manner of incorporation of noise can only
metaphorically reflect specific biological processes. We will
consider two extremes. The first corresponds to stochastic
fluctuations in the species' limiting resource and is modeled by
replacing K in Eq. 10 by K(1 + Zt) with Zt > -1. [One can
multiply 1/K by (1 + Zt) without modifying the conclusions
below.] In this context, E(z2) -K2 is the square of the coeffi-
cient of variation of K. This formulation of density-dependent
growth in a random environment has been repeatedly used in
theoretical ecology (e.g., refs. 9, 12, 30, 31). Nevertheless, there
are certainly stochastic environmental factors that can affect
individual survival rates and thereby population growth rates
in a density-independent fashion. These can be modeled by
multiplying the per capita growth rate, G, in Eq. 10 by (1 + Zt)
with Zt > -1. Here E(z2) - a2is the square of the coefficient
of variation of the per capita growth rate. Actual environmental
events such as temperature and rainfall fluctuation would al-
most certainly not fit neatly into either of these categories but
rather would contribute to both. Hence, we suggest that a more
reasonable representation of a "random environment" than
either the purely density-dependent or the density-independent
extremes is to simultaneously consider both. A mathematical

assumption that is critical to several of the predictions below
is that the level of environmental noise does not affect the
arithmetic mean growth rate and K value (or, alternately, the
value of K-1). This convention coincides with the standard
interpretation of "average". It implies that as the level of en-
vironmental fluctuations increases, the geometric mean growth
rate and K value decrease, leading to a decrease in the (arith-
metic) mean population size.

Evolution of Population Parameters. The selection pressures
acting on the stability-determining parameters can be isolated
by determining the fate of a rare mutant that has the same
deterministic equilibrium and experiences the same level and
pattern of environmental variation as the resident type but
differs slightly in its r or 0 values, or both (cf. ref. 32). Applying
the approximation 9 to the general model 10 with noise in both
K and G shows that the mutant, denoted with subscript 1,
should succeed or fail according to whether

01021 '2[(C ' -)2- CG" --02'[("C'2])2
-G#2 -G'211(1 -22G'2c2)

-02G'2(2 + 02G'2)(02C'2 - 0G') [11]
is positive or negative. In [11], G' and G" are evaluated at 1;
and

W=p +
2

o( or(;
[121

with p denoting the level of cross correlation between the
fluctuations in K and C. Note that for any level of cross-cor-
relation, w > -1/4. Almost all of the results reported below fol-
low from [11]. The critical assumptions on which its biological
usefulness hinges are: (i) that the models examined are suffi-
ciently accurate descriptions of population dynamics and (ii)
that specific patterns of pleiotropy do not prevail that link the
values of r and 0 either positively or negatively to each other
or to K and a2, which are also under selection. If these as-
sumptions hold, natural selection should drive parameter values
in the direction predicted by [11]. When only a single parameter
is varied, we will refer to the predicted results as "univariate
evolution". To illustrate the sensitivity of the predictions to the
model used, we present a progression of results beginning with
univariate evolution of r with noise in either K or G and ending
with general results that follow from [11].

Because the dependence of G'(1) and G"(1) on r cannot be
specified in general, [11] yields no general prediction for the
univariate evolution of r. Table 1 shows the results for our
specific models. Extremely diverse predictions emerge. For the
linear model with noise in K, the prediction r I 0 parallels that
of Heckel and Roughgarden (10) for a linearized version of this
model with 0 = 1. However, if noise is added to C rather than
to K, selection drives r toward 1/0. Results for the exponential
model can be obtained analytically without recourse to the
approximations of the previous section whenever the stochastic
model possesses a stationary distribution with ElnNt < co (see
ref. 11 for details). Noise in K leaves r as a neutral parameter,
just as it is in the deterministic theory. With noise in G, on the
other hand, r evolves upward and even can be selected into the
region corresponding to deterministic chaos. Although our
approximate analysis requires I XI < 1 for the resident genotype,
the parameter values of the rare mutant need not satisfy this
constraint. Thus, although our analysis cannot predict whether
an initially unstable population (X < -1) will evolve stability,
it can predict whether an initially stable population will grad-
ually evolve parameter values yielding instability.

For the hyperbolic model, r is expected to increase whether
noise is added to K or to G. As r - c, A -l1 -0, which can be

Population Biology: Turelli and Petry
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Table 1. Univariate evolution of r and 6 in stochastic analogs of Model 10 with noise in
either K or G

Linear Exponential Hyperbolic
K G K G K G

r 0 - Neutral t t t
0

Xr ii D0 - (chaos) ;1-0 41-0

0 l 2 10 2 10
2

1 + 2r 1 + ln(1 +r)

1 2r t21 _2n(1+ r) t 2r

1 + 2r 1 + ln(1 +r) 1+ r

any value less than one. Thus, literally any prediction can be
obtained concerning the evolutionary dynamics of r and X.

Moreover, these approximate analytical predictions are sup-

ported by computer simulations. In contrast to this diversity,
all three models give the same predictions for the univariate
evolution of K and 2. K tends to increase as expected from the
density-dependent deterministic theory, and 92 tends to de-
crease as expected from the density-independent stochastic
theory (24).
Once the parameter 0 is introduced, even if only to provide

increased flexibility for data fitting, it is artificial to regard it
as a constant that cannot be modified by selection. 0 can be
estimated and, as demonstrated by Mueller (22), there is likely
to be intrapopulation genetic variation for its value. Hence, in
principle, it can respond to selection. However, as stated earlier,
predictions from [11] concerning its evolution will only be
meaningful if it can be genetically disentangled from the other
parameters under selection. This can only be determined em-
pirically. With this caveat, we will examine its univariate ev-

olution. The results for models with noise in K or G are sum-

marized in Table 1. Unlike the predictions for r, clear patterns
appear. With only noise in K, selection always acts to reduce
0 toward zero, pushing X toward one. This holds for Eq. 10
whenever c(G) = [G'(1)]2 -G'(1) - G"(1) > 0, as it is for the
linear, exponential, and hyperbolic models. In contrast,
whenever c(G) > 0 and noise is added only to G, 0 is selected
toward a positive constant that depends on the model, and the
corresponding eigenvalue, denoted Xo, satisfies XAI < 1. This
result is generalized below.

In the presence of correlated noise in K and G, r evolves
upward for both the exponential and hyperbolic models. For
the exponential model, this eventually would lead to instability
if 0 remained fixed; for the hyperbolic model, instability can

result only if 0 > 2. For the linear model, r evolves toward rio
= [-1 + VTTc]/20w, with w defined by [12]. For w > 0, the
corresponding eigenvalue always lies between zero and one.

For the general model 10, if c(G) > 0 and w > -1/4 selection
pushes 0 toward

Ac

(G')2 + c(G) - \/[(G')2 + c(G)]2 + 16(G')2c(G)w > 0,

4G'c(G)cw
[13]

and the corresponding eigenvalue, X0, satisfies XIl < 1. If cv>
0 and G"(1) < -G'(1), which is satisfied by the linear model
for all r > 0, by the exponential for 0 < r < e - 1, and by the
hyperbolic for 0 < r < 1, X0> 0. Thus for this broad class of
models, evolution of 0, based solely on individual selection,
emerges as a potential evolutionary mechanism capable of

maintaining stable population dynamics. For the linear model,
evolution of r can also maintain stability.

Because of the complexity of expression 11 when both r and
0 vary, the joint evolution of these parameters has not been
completely characterized for any of our models. However, an
interesting result follows from examining the direction of se-
lection along a particular slice of (r,0) space. If the rare type has
the same eigenvalue [i.e., the same value of OG'(1)] as the res-
ident, [11] has the same sign as 02G'1(1) - 02G"2(1) + (02-
X1)(1-X). Because this expression is generally not equal to zero,

it shows that X by itself does not determine the outcome of se-
lection. When applied to the linear model, for which G"(1) =
0, it shows that selection favors lower 0 and higher r. Thus, in
the linear model with noise in both K and G, there is selection
for ever higher intrinsic growth rates, just as there is in the ex-
ponential and hyperbolic models. This selection pressure, which
is proportional to c2, can be viewed as additional support for
and quantification of the proposal that high intrinsic growth
rates are favored in uncertain environments. Although the
underlying models are quite different, this result parallels the
"r-selection" reported in refs. 4, 16, and 33 and implicit in the
two-species analysis of ref. 23.

Characterization of Fitness and Conditions for Polymor-
phism. As originally emphasized by MacArthur (1), K plays the
role of fitness in the standard deterministic theory of density-
dependent selection. Natural candidates for a stochastic analog
are the arithmetic, geometric, and harmonic mean population
size. These can be approximated by K[1 + E(nt)], K[1 + E(nt)
- Var(nt)/2], and K[1 + E(nt) - Var(nt)], respectively. By
comparing the conditions for these quantities to increase with
conditions for a rare mutant to increase, one finds that univa-
riate evolution of r, K, or a leads to the increase of all three
means. However, none of them need be increased by univariate
evolution of 0 or multivariate evolution. Thus, as conjectured
by Slatkin and Maynard Smith (34), there is no simple charac-
terization of "more fit" genotypes. In spite of the counter-
examples, preliminary numerical investigations suggest that
all three means "usually" increase under selection, just as i does
in deterministic two-locus theory (35).

Because of the large number of parameters, many conditions
can be provided under which these models maintain poly-
morphisms. The most surprising is that a haploid polymorphism
can exist with two genotypes that differ only in their 0 values
(cf. ref. 16). Naturally, because of the convergence result 13,
the 0 values must lie on opposite sides of 0G. There are two
especially interesting classes of diploid polymorphisms. If c(G)
> 0, the general model 10 with noise in both K and G will
produce a stable polymorphism whenever the heterozygotes
experience less environmental variation than either homozygote
(cf. ref. 24). In addition, for all three specific models, poly-
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morphisms can be maintained with heterozygotes intermediate
but alternate homozygotes favored with respect to r and K.
Thus pleiotropic "tradeoffs" of the type frequently discussed
in evolutionary ecology can also provide a basis for the main-
tenance of genetic variation (cf. refs. 4 and 16).
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