Skip to main content
. 2012 Aug 31;13(6):785–798. doi: 10.1007/s10162-012-0345-0

FIG. 5.

FIG. 5

Predicting single-tone responses from multitone responses. A Automatic gain control model. The input passes a variable-gain filter that reproduces the measured multitone responses. The overall magnitude of the output, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {{{D}^{2}}} \right\rangle $$\end{document}, is fed back to the filter as a gain control, setting the shape of the filter. B Predicting a single-tone response. Passing a 50-dB near-CF single tone to all possible filters produces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {{D_{\text{S}}}^{{2}}} \right\rangle $$\end{document} as a function of the multitone level I M associated with the respective filters. For the filter setting to be self-consistent, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {{D_{\text{S}}}^{{2}}} \right\rangle $$\end{document} must match the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\langle {{D_{\text{M}}}^{{2}}} \right\rangle $$\end{document} associated with the candidate filter. C, E Model predictions of the data in Figure 3 for normalized amplitude and phase, respectively. D, F Difference between predictions and data plotted versus frequency for amplitude and phase, respectively. Each curve represents a different SPL. Inset in D scatter plot of model predictions versus data for amplitude, with correlation R and variance accounted for (vaf) indicated. Variance accounted for (vaf) in phase indicated in F.