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Abstract
Autism spectrum disorders (ASD) are a group of related neurodevelopmental disorders with
significant combined prevalence (~1%) and high heritability. Dozens of individually rare genes
and loci associated with high-risk for ASD have been identified, which overlap extensively with
genes for intellectual disability (ID). However, studies indicate that there may be hundreds of
genes that remain to be identified. The advent of inexpensive massively parallel nucleotide
sequencing can reveal the genetic underpinnings of heritable complex diseases, including ASD
and ID. However, whole exome sequencing (WES) and whole genome sequencing (WGS)
provides an embarrassment of riches, where many candidate variants emerge. It has been argued
that genetic variation for ASD and ID will cluster in genes involved in distinct pathways and
protein complexes. For this reason, computational methods that prioritize candidate genes based
on additional functional information such as protein-protein interactions or association with
specific canonical or empirical pathways, or other attributes, can be useful. In this study we
applied several supervised learning approaches to prioritize ASD or ID disease gene candidates
based on curated lists of known ASD and ID disease genes. We implemented two network-based
classifiers and one attribute-based classifier to show that we can rank and classify known, and
predict new, genes for these neurodevelopmental disorders. We also show that ID and ASD share
common pathways that perturb an overlapping synaptic regulatory subnetwork. We also show that
features relating to neuronal phenotypes in mouse knockouts can help in classifying
neurodevelopmental genes. Our methods can be applied broadly to other diseases helping in
prioritizing newly identified genetic variation that emerge from disease gene discovery based on
WES and WGS.
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Introduction
ASD and ID are complex, multifactorial neurodevelopmental disorders with high
heritability, which share overlapping risk factors (Betancur 2010; El-Fishawy and State
2009; Topper et al. 2011). Great progress has been made in the past years in identifying rare
variants of major effect in both ASD and ID (Betancur 2010; Topper et al. 2011). However,
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the genetic underpinning of these disorders remains mostly unknown. For example, a
specific genetic etiology can currently be identified in about 15% of patients with ASD.
Similarly, although dozens of high-risk ASD genes and loci have been identified (Betancur
2010), estimates from ongoing studies estimate that 60–80% of ASD and ID genes and loci
remain to be discovered [see (Sanders et al. 2011) and (Topper et al. 2011)]. The recent
advances in massively parallel DNA sequencing bring the promise that genetic variation
identified in individuals affected with a neurodevelopmental disorder would add to our
understanding of the etiology of these disorders. However, as sequencing data are
accumulating, vast amounts of genetic variations are being discovered. This presents the
challenge of deciding which variations lead to the phenotype and which are coincidental. To
address this challenge, it is useful to have computational approaches that place gene
products harboring known variation within networks and placing newly identified variation
in the same context. For example, (Gilman et al. 2011) developed a weighted functional
background network, which when seeded with genes found within CNVs associated with
high risk for ASD yielded a subnetwork enriched with neuronal motility, synaptic
development and axonal guidance gene products. Their resultant subnetwork was also
enriched in genes previously associated with ID phenotypes. Similarly, (Voineagu et al.
2011) developed a gene co-expression subnetwork made from ASD and normal brain
samples to find a differentially expressed subnetwork made of genes enriched in neuronal
and immune functions as well as glial markers. In another study, Ziats and Rennert [2011]
tracked the expression levels of ASD associated genes during development using published
microarrays. They showed that co-expressed subnetworks seeded with ASD genes form
modules that are enriched in genes known to play a role in immunity (Ziats and Rennert
2011). The ability of such approaches to discover new mechanisms in ASD suggests that
functional molecular interactomes may be useful for linking the complex human phenotypes
of ASD and ID to variation in genes (Gilman et al. 2011).

Many computational approaches have been developed to construct background networks for
the purpose of placing lists of disease genes within the background networks for the purpose
of constructing functional disease neighborhoods that connect the seed disease genes
(Berger et al. 2007; Chen et al. 2009; Kann 2009; Navlakha and Kingsford 2010; Oti et al.
2006; Zhang et al. 2011). For instance, by calculating the shortest path between seed genes
using a protein interaction network, it was shown that a much shorter mean path length
exists between eight syndromic ASD proteins compared with the mean shortest path
between random proteins (Sakai et al. 2011). This observation indicates a close connectivity
among some known ASD-related proteins. An alternative method, the mean-first-passage-
time (MFPT) uses diffusion-based random walks on networks instead of shortest paths.
MFPT is the average steps a random-walker takes to reach a specific node from a given
node in the background network. Comparing different methods for classifying and
recovering disease genes with background protein interaction networks, the MFPT approach
appears to outperform most other methods (Navlakha and Kingsford 2010). Berger et al.
(Berger et al. 2010) implemented an MFPT-based ranking system to identify a distinct
disease gene neighborhood by exploring the relationship between known long-QT syndrome
(LQTS) genes using a human protein interactome. Such network-based classifiers can be
used to rank disease genes and candidate disease genes based on their proximity to the
disease subnetwork locus. An alternative and related approach is to classify and rank disease
genes based on known disease genes attributes. For example, Support Vector Machine
(SVM) (Byvatov and Schneider, 2003) is a popular supervised learning method that has
been applied to classify genes based on their shared functional attributes (Xu et al. 2010).
Additionally, Li et al. (2009) developed an SVM classifier trained with features that include
protein interactions, protein domains and enriched GO terms of known cancer genes to
prioritize putative cancer genes; more recently, a set of DNA repair genes were predicted by
an SVM classifier trained with gene expression data (Jiang and Ching 2011). Similarly, we
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developed an SVM classifier for prioritizing pluripotency stem cell regulators from RNAi
screens using microarray and ChIP-seq data (Xu et al. 2010). The SVM strategy could be
applied to classify ASD and ID genes based on attributes extracted from heterogeneous data
sources. Here we developed three supervised learning methods to classify and prioritize
ASD and ID disease genes. Two of the classifiers are network-based and one is attribute-
based. We find that such methods are show promise in predicting and ranking ASD and ID
genes and there is significant overlap between these two disorders as well as the top genes
used for the classification. Furthermore, we identified subnetworks that connect the most
informative genes to potentially point to the disease molecular loci. The use of such
approaches in ongoing WES and WGS sequencing projects will help with gene and pathway
identification in neurodevelopmental disorders and can be applied to other complex
disorders as well.

APPROACH
ASD and ID gene lists

We made use of manually curated lists of genes implicated in ASD. We focused on genes
where there was prior evidence of an etiological role in ASD (i.e., genes of major effect for
ASD). We began with a carefully curated list of 103 such genes implicated in ASD, with or
without intellectual disability (ID), from a recent review by one of us (CB) (Betancur 2010).
In that study, an extensive literature search was conducted looking for articles describing
genetic disorders in patients with autism, ASD, pervasive developmental disorder, Asperger
syndrome, or autistic/autistic-like traits/features/behavior, using PubMed and Google
Scholar, as well as follow-up of references cited in the papers thus identified. This list is
meant to be as exhaustive as possible, and has therefore been routinely updated by the
author using the same criteria such that 11 additional genes were added since the published
report (BBS10, DPYD, FOLR1, GNS, GRIN2B, HEPACAM, HGSNAT, KCNJ11,
NAGLU, SCN2A and STXBP1). The final list of 114 genes implicated in ASD (ASD114) is
shown in Table I. Since most high-risk ASD genes were identified by unbiased genetic
approaches (e.g., characterization of translocation breakpoints, recurrent copy number
variants, X-linked genes first identified by linkage, etc), ASD114 represents a largely
unbiased list of such genes. A similar list was developed by the same author to include a
very diverse, but not exhaustive, group of genes implicated in ID (n=223), which provided a
means to assess the behavior of the classifiers against a separate list of neurodevelopmental
genes. This gene list was developed in an analogous manner to the ASD gene list, and
included genes implicated in ID that were not already in the ASD gene list (note that many
genes on the ASD list are also considered genes for ID and many genes first identified in ID
have since been shown to contribute to ASD; see Figure 1 in (Betancur, 2010) for many
examples on the X chromosome). The ID list is also found in Table II. All gene lists were
prepared and frozen before the start of the analyses described here.

Mammalian protein-protein interaction network
We collected protein-protein interactions (PPI) data from the following databases and
papers: BioGrid (Stark et al., 2006), HPRD (Peri et al., 2004), InnateDB (Lynn et al., 2008),
IntAct (Hermjakob et al., 2004), KEGG (Kanehisa et al. 2008), KEA (Lachmann and
Ma'ayan, 2009), MINT (Chatr-aryamontri et al., 2007), MIPS (Mewes et al., 2004), DIP
(Xenarios et al., 2000), BIND (Bader et al., 2003), BioCarta, PDZBase (Beuming et al.,
2005), PPID, Yu et al. (2011), Stelzl et al. (2005), Ewing et al. (2007), Rual et al. (2005) and
Ma’ayan et al. (2005). Gene/protein IDs were converted to Entrez gene symbols. To
increase the confidence of the protein interaction dataset we filtered the interaction table by
removing interactions from PubMed identifiers (PMIDs) that have more than 10
interactions. The final PPI network is fully connected and consists of 14,191 nodes and
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64,741 non-redundant, high-confident interactions. From the two gene lists, 82 genes from
the ASD list and 158 from the ID gene list were found in the final PPI network. The filtered
network can be found in Supplemental eTable 1 (See Supporting Information online).

Control and comparison gene lists
Six types of control gene lists were generated for statistical tests: completely random,
degree-matched, brain expressed, gene-ontology biological process matched, gene-ontology
molecular function matched, and gene-ontology cellular component matched. All of the
control gene lists contained the same number of genes as the seed lists, which is 82 for ASD
and 158 for ID. Random lists are made of randomly selected genes picked from the
background network. To construct the degree-matched control lists, the connectivity degree
of all genes in the network were distributed into bins. Genes were then picked from the same
bins as the seed genes. Since the genes in the ASD and ID lists are likely biased toward
brain expressed, we also took advantage of a dataset of brain-expressed genes (Kang et al.
2011) and randomly selected genes from this dataset. To obtain a list of brain expressed
genes, brain regions were dissected from 57 clinically unremarkable postmortem brains of
donors ranging from 6 post conceptual weeks to 82 years, which were divided into 15
periods based on age, and the expression levels of 17,565 protein-coding genes within each
sample were assayed using the Affymetrix GeneChip Human Exon 1.0 ST Array platform.
A list of “brain-expressed” genes (graciously provided by Drs. Stephan J Sanders and Kyle
Meyer) included genes having a log2-transformed signal intensity ≥6 in at least one sample
and a mean DABG P<0.01 in at least one brain region of at least one period. The GO-
matched control lists were created using GO Slim. Using the Jaccard similarity score to
assess overlap of GO terms between pairs of genes; we randomly picked genes having at
least a 0.4 Jaccard similarity score when compared to each of the original seed nodes.

Shortest path algorithm for defining distance to seed gene list
The distance (Di) from a given node to the seed gene list, i.e., ASD or ID gene list, is
defined as the average shortest path along the PPI network from the node to all genes in the
seed list. The pair-wise shortest path length was obtained using Johnson’s algorithm in
MATLAB. Dijkstra’s algorithm was implemented to obtain the specific nodes along the
shortest paths. All genes in the PPI network were ranked according to their Di to the seed
gene list. We conducted leave-one-out cross validation (LOOCV) for the seed gene lists by
leaving one seed gene out and computing the Di from this gene to the rest of the seed genes.
Receiver operating characteristic (ROC) curves were derived by gradually increasing the Di
cutoff. True positive rate (TPR) was defined as the proportion of genes from the input list
with Di shorter than an arbitrary cutoff; whereas false positive rate (FPR) was the proportion
of genes with Di shorter than the cutoff but not in the input list. Fifty lists were generated for
each control list type for comparison, and the means FPR and TPR for the 50 control lists
were used to plot the ROC curves.

Mean-first-passage-time to identify genes in a PPI neighborhood
Mean-first-passage-time (MFPT) is the average steps a random walker takes to reach a
specific node from a given seed node and provides an alternative way to quantify the
distance between pairs of genes. To explore the neighborhood of a list of seed nodes, we
defined a module distance score Sj as the difference of MFPT steps starting from non-seed
nodes in the background network, compared with starting from seed nodes, normalized by
the average MFPT steps a random walker takes to reach the same node from a random start
as follows (Berger et al. 2010):
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(Equation 1)

Where Nn is the set of seed nodes and Ns is the set of nodes reachable by a random walker
starting from the seed nodes, and Tij is the matrix containing pair-wise MFPT computed for
the background network. Therefore the score Sj above zero indicates that on average the
target node is located closer to the seed genes than other randomly selected genes in the
background network. All nodes in the PPI network were ranked according to their Sj score
obtained using ASD or ID genes as seed nodes.

Support Vector Machine (SVM) classifiers for predicting and ranking genes
We utilized 11 gene-set libraries to generate features/attributes for all genes or gene products
from the network. The gene-set libraries were previously created by us for the program
Lists2Networks (Lachmann and Ma'ayan, 2010) or downloaded from open online sources.
These gene-set libraries include: GO biological processes, GO cellular components, and GO
molecular functions (libraries 1–3); Transcription factor binding sites from TRANSFAC
(Matys et al., 2003) or ChEA (Lachmann et al., 2010) (libraries 4–5); Metabolites associated
with gene-lists (library 6); Knockout mouse phenotypes from the MGI-MP browser
(Gkoutos et al., 2004) (7); microRNA targets from TargetScan (8); Structural domains (9);
Hub proteins (10); and, gene signatures from GeneSigDB (Culhane et al., 2010) (11). In
total we collected 8986 features represented as binary vectors each corresponding to a row
entry in the gene-set library.

To set up the SVM we created negative and positive gene list sets of the same size. The
negative sets are randomly generated based on the various criteria described above:
randomly chosen, degree matched, GO term matched, and brain expressed. Positive
examples are always ASD or ID genes. For each type of control gene list, 10 lists where
created for training and testing and 10 classifiers were generated.

For each classifier, features were ranked, and the top 200 features were selected based on
mutual information computed between the feature and the class calculated as follows:

(Equation 2)

where f- feature and c- class. 200 features were selected after evaluating the performance of
using 10, 50, 100, 150, or 200 features. The SVM classifiers map the data from the input
space to a high-dimensional feature space in which classification can be performed by
locating data points with respect to a hyperplane that separates, in our case, binary classes.
The projection from the input space to the high-dimensional feature space is achieved by a
kernel function, which is used to transform the data for optimization of the classification. In
this study, a standard linear kernel was used since it performed best after trying several other
types of kernel functions. Each classifier was subjected to 10-fold cross-validation: for each
round among the total 10 rounds, 9 of the selected examples of a list were used for training
the SVM classifier and 1 of the lists was left out for testing the performance of the learned
SVM classifier.

Five different scores were used to evaluate the classifiers’ performance.

1. Matthew’s correlation coefficient (MCC):
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(Equation 3)

In this equation, TP is the number of true positives; TN is the number of true
negatives; FP is the number of false positives; FN is the number of false negatives.

2. Accuracy:

(Equation 4)

3. Sensitivity:

(Equation 5)

4. Specificity:

(Equation 6)

5. The area under the ROC curve (AUC)

The AUC scores were computed using MATLAB’s build-in function ‘perfcurve’ from the
Statistics Toolbox and the results are provided in Tables III and IV.

RESULTS
We made use of two non-overlapping lists of 114 known ASD and 223 ID genes reflecting
rare, high-risk genes (Tables I and II). These two gene lists are collected from sparse sources
with various methods and the genes within those two lists, except for being enriched in
neuronal functions and being brain expressed, do not have widespread functional
relationships that are immediately apparent. Since the inclusion of the genes within these
lists is imperfect, and many more genes are likely to be bona-fide ASD or ID disease genes,
the questions that we aim to address in our analysis here are as follows: For any gene that is
not identified as an ASD or ID disease gene, can we predict whether the gene is likely to be
an ASD or ID disease gene, i.e., can we rank genes for likelihood to be ASD or ID gene
based on the known ASD/ID genes; and, can we prioritize and group the already known
ASD and ID genes such that we can find functional relationships that connect known ID and
ASD disease genes?

To address these questions we utilized prior knowledge about known mammalian PPI as
well as functional annotations of human genes and their protein products. We addressed
these questions by first developing two related PPI network-based classifiers. These
classifiers assume that the known ASD and ID genes form loci within the human
interactome that reflect the dis-regulation of molecular protein complexes in the human
brain that lead to the associated phenotypes. If this is the case, and we have enough accurate
information about binary protein interactions, we should be able to identify such loci and
define the distance from such loci as a probability for genes to be found to contain variation
that lead to the ASD or ID phenotype. To measure such distance we implemented two
complimentary approaches, the shortest path and MFPT classifiers. These two methods
define an average distance between the seed disease genes and the rest of the genes within
the PPI network. Note that of these two classifiers, the MFPT approach was reported
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previously to perform better because it reduces the influence of hub nodes and can reach
nodes that are not necessarily falling on shortest paths (Navlakha and Kingsford, 2010).

To evaluate the ability of such network based classifiers to predict and rank ASD and ID
disease genes we implemented a leave-one-out-cross-validation (LOOCV) analysis drawing
neighborhood plots (Figs. 1–2) and plotting ROC curves (Fig. 3) to evaluate the
performance of the two network-based classifiers. In this analysis we created several control
lists and comparison lists to examine whether the classifiers outperform the misclassification
of lists of genes with similar GO terms or lists of genes that are brain expressed. A first
finding from our analysis is that the ASD and ID genes are closer to each other in PPI space
than by chance (Table V) and ID genes are significantly found in the ASD gene
neighborhood (Figs. 1–3). Moreover, the classifiers correctly classify ID genes using ASD-
gene derived classifiers and ASD genes using ID-gene derived classifiers more specifically
than misclassifying control-lists. In the case of brain-expressed genes, the MFPT ASD
classifier can correctly classify ID genes with 75% accuracy and misclassify brain expressed
genes on average only 63% of the time as potential ID genes (Fig. 3). The shortest-path-
based ASD classifier performs slightly worst in classifying ID genes (70%). On the other
hand the ID classifiers, MFPT or shortest-path-based, do not discriminate well between
ASD genes and other genes, suggesting that the ID genes are more spread out randomly
within the human interactome and are not good enough together to classify ASD genes.

Next we developed an SVM classifier by collecting and combining gene-set libraries and
setting each row from these libraries as a potential feature vector for classification. After
sampling for various sizes of feature sets (Fig. 4C), we chose the top 200 features using
mutual information (see Approach) to create SVM classifiers for ASD and ID genes. In our
datasets, our SVM classifiers are capable of discriminating between ASD or ID genes and
other genes with ~80%–98% accuracy (Fig. 4 and Tables III and IV), performing better than
the network-based classifiers. Complete statistics of the performance of the SVM classifier
are provided in Table IV. It is interesting to see that the ASD classifiers perform better than
the ID classifiers, consistent with the network-based classifiers, further suggesting that the
ID gene list contains a broader and less discriminative list of genes/gene-products. Looking
at the top features that contribute most toward correct classification, we repeatedly observe
that neuronal-related knockout mouse phenotypes associated with a given gene contributed
important information for correct classification (Supplemental Table II – See Supporting
Information online). For example, 7 of the top 10 features contributing to the ability of the
SVM to distinguish between brain-expressed genes and ASD genes relied on knockout
mouse phenotypes. Interestingly, the knockout mouse phenotypes included those associated
with morphological abnormalities as well as abnormalities in nervous system function and
behavior, all of which are associated with ASD and ID.

As a final analysis, we attempted to integrate the results from all three classifiers by
overlapping the top ranked genes and identifying the functional connections between them.
For this we took the genes within a certain cutoff from the network-based classifiers and the
genes retrieved as positive by all SVM classifiers and examined their overlap (Fig. 5A–B).
We then connected the genes that overlap among all three ASD or ID classifiers using
protein-protein interactions and shared functional annotations by drawing edges if the two
genes/gene products directly interact or if pairs of genes share significant number of
overlapping annotations as defined by the gene set libraries we used for the SVM classifier.
This resulted in four distinct clusters (Fig. 5E), consistent with the accumulating evidence
that core pathways, common to ASD and ID, are perturbed in a recurrent manner in these
related disorders.
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DISCUSSION
In this study we developed two PPI based classifiers and one attribute based SVM classifier
to discriminate between ASD or ID disease genes and other genes. All three classifiers
perform better that random classifiers; however, the PPI based classifiers perform only
slightly better that would be expected for classifying sets of genes with similar functional
categories. In contrast, the SVM classifier performs well, likely because it relies on more
data points. However, all classifiers report a relatively high degree of false positives.
Nevertheless, all three classifiers point to a highly overlapping core of ASD and ID disease
genes loci that organize into four clusters.

The use of these classifiers in ongoing gene and pathway discovery in neurodevelopmental
disorders will facilitate discovery and the identification of high-value therapeutic targets. In
addition, the hub genes and networks identified (e.g., Fig. 5C–E) can be experimentally
perturbed in mouse models to observe their effects on phenotype and to be used for
understanding of pathophysiology.

In this study gene expression data were not considered. However, such information can
potentially be integrated within the classifiers. Gene expression can be added as attributes
for the SVM classifier, or the differentially expressed genes between ASD or ID post-
mortem brains, as compared to normal controls, can add confidence to genes within the
disease protein interaction neighborhoods. In addition, we can apply the methods presented
here to better define the distances and shared mechanisms between other complex diseases
with genetic underpinning.

While the complex enigma of pathways and networks in neurodevelopmental disorders is
not resolved by these analyses, organizing the accumulated knowledge about ASD and ID
genes within a supervised framework is likely to contribute towards a better understanding
of the genetic and biological underpinning of this family of complex disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of (A) ID genes in the ASD genes neighborhood, (B) ASD genes in the ID
genes neighborhood or, (C) LOOCV of the ASD+ID genes neighborhood
Shortest path distance Di (left) and MFPT score Sj (right) were computed for each node in
the PPI network. The number of ID or ASD genes identified in each neighborhood within
the specified cutoff range is shown on the left and the leave-one-out cross validation
(LOOCV) of the seed gene lists is shown on the right.
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Figure 2. Non-cumulative percentages of identified non-seed gene hits per shortest path distance
and MFPT score ranking in (A) ASD, (B) ID, or (C) ASD+ID neighborhoods
The green frames show Di and Sj scores chosen arbitrarily as disease neighborhoods.
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Figure 3. ROC curves and AUC analysis for the identification of (A) ASD genes, or (B) ID genes
in ID or ASD gene neighborhoods
The Di of each gene to the seed list was calculated and the ROC curve was plotted by
increasing the cutoff distance by steps of 0.05, starting from the minimum distance of all
genes in the network. True positive rate (TPR) was defined as the proportion of genes from
the inquiring list with Di shorter than the cutoff distance over the total number of genes in
the list and false positive rate (FPR) the proportion of genes with Di shorter than the cutoff
distance but not in the inquiring list over total number of genes not in the list. 50 lists were
generated for each control type for comparison, as shown in different colors. The mean FPR
and TPR for the 50 control lists were used to plot the ROC curve. In the AUC section, t-test
statistics was performed with the null hypothesis that the AUC of ASD/ID genes
identification can be achieved with random gene lists of each type. P value <0.0001 is
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indicated as double stars (**), and <0.01 as single star (*). The ROC curve of Sj was plotted
in the same way by increasing the cutoff rank by one gene.
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Figure 4. ROC curves and AUC analysis of the SVM classifiers of (A) ASD or (B) ID genes
The classifiers are trained and tested by 10-fold cross-validation using seed genes and
different types of control gene lists with the same size. An average ROC curve for the 10
folds for each classifier is plotted. Inset plots show the average AUC with standard deviation
for each classifier.
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Figure 5. Genes identified using the three classifiers and their connections using functional
associated networks
The shortest path distance of 3.95 and 3.65 (shown in Fig. 2) were applied as cutoff for the
identification of (A) ASD genes or (B) ID genes, respectively. The number of SVM
retrieved genes is the intersection of genes retrievable by all six classifiers trained by
different types of control gene lists. The 39 ASD genes and 59 ID genes identified in all
three classifiers, as well as the 39+59 genes are connected using functional associated
networks with the software Genes2FANs (http://actin.pharm.mssm.edu/genes2FANs) and
direct interactions are shown in (C) for the 39 ASD genes, (D) 59 ID genes and (E) 39+59
combined genes.
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Table 1
Seed lists of 114 ASD genes

ACSL4, GRIN2B, PAH, ADSL, GUCY2D, PCDH19, AFF2, HEPACAM, PHF6, AGTR2, HGSNAT, PHF8, AHI1, HOXA1, POMGNT1,
ALDH5A1, HRAS, POMT1, ALDH7A1, IGF2, PQBP1, AP1S2, IL1RAPL1, PRSS12, ARHGEF6, IQSEC2, PTCHD1, ARX, JARID1C,
PTEN, ATRX, KCNJ11, PTPN11, BBS10, KIAA2022, RAB39B, BRAF, KRAS, RAI1, BTD, L1CAM, RNF135, CACNA1C, L2HGDH,
RPE65, CACNA1F, LAMP2, RPGRIP1L, CASK, MAP2K1, SATB2, CDKL5, MBD5, SCN1A, CEP290, MECP2, SCN2A, CHD7, MED12,
SGSH, CNTNAP2, MEF2C, SHANK2, CREBBP, MID1, SHANK3, DCX, MKKS, SLC6A8, DHCR7, NAGLU, SLC9A6, DMD, NDP,
SMC1A, DMPK, NF1, STXBP1, DPYD, NFIX, SYN1, EHMT1, NHS, SYNGAP1, FGD1, NIPBL, TBX1, FGFR2, NLGN3, TSC1, FMR1,
NLGN4X, TSC2, FOLR1, NPHP1, UBE3A, FOXG1, NRXN1, UPF3B, FOXP1, NSD1, VPS13B, FTSJ1, OCRL, YWHAE, GAMT, OPHN1,
ZNF674, GATM, OTC, ZNF81, GNS, PAFAH1B1, GRIA3
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Table 2
Seed lists of 114 ASD genes

ABCD1, CA8, FKTN, KIF7, PRPS1, ST3GAL3, AGA, CBL, FLNA, KIRREL3, PVRL1, STIL, AIPL1, CBS, FUCA1, KLF8, QDPR,
SUMF1, ALG12, CC2D1A, GAD1, LAMA2, RAB18, SUOX, ALG3, CC2D2A, GALC, LARGE, RAB3GAP1, SYP, ALG6, CDH15, GALE,
LCA5, RAB3GAP2, SYT14, ALG8, CDK5RAP2, GCH1, LRAT, RAF1, TBC1D24, ALG9, CENPJ, GDI1, MAGT1, RD3, TBCE, ANKH,
CEP152, GFAP, MAN1B1, RDH12, TCF4, ANKRD11, CHKB, GK, MAOA, RECQL4, TGFBR1, AP4B1, COG1, GLB1, MAP2K2, RELN,
TGFBR2, AP4E1, COG8, GNPTAB, MCOLN1, RPGRIP1, TIMM8A, AP4M1, COL4A1, GNPTG, MCPH1, RPS6KA3, TMEM216, AP4S1,
CRB1, GPC3, MED17, SETBP1, TMEM67, ARFGEF2, CRBN, GPR56, MED23, SHOC2, TRAPPC9, ARG1, CRX, GPSN2, MGAT2,
SHROOM4, TRIM32, ARHGEF9, CTSA, GRIK2, MKS1, SIL1, TSEN2, ARL13B, CUL4B, GRIN2A, MLL2, SLC12A6, TSEN54, ARL6,
CYB5R3, GTF2H5, MOCS1, SLC16A2, TSPAN7, ASPM, DAG1, GUSB, MOCS2, SLC17A5, TTC8, ASXL1, DBT, HCCS, MPDU1,
SLC1A1, TUBA1A, ATP6AP2, DIP2B, HDAC4, MYCN, SLC25A15, TUBB2B, ATP6V0A2, DKC1, HPRT1, NDUFA1, SLC25A22,
TUSC3, ATP7A, DLD, HSD17B10, NEU1, SLC2A1, UBE2A, ATR, DLG3, HUWE1, NRAS, SLC35C1, VLDLR, AVPR2, DNMT3B, IDS,
NSDHL, SLC46A1, VRK1, BBS1, DPM1, IDUA, OFD1, SLC4A4, WDR62, BBS12, EP300, IER3IP1, PAK3, SMC3, WDR81, BBS2,
ERCC1, IGBP1, PAX6, SMS, ZC3H14, BBS4, ERCC2, IGF1, PCNT, SNAP29, ZDHHC9, BBS5, ERCC3, IKBKG, PDHA1, SOBP, ZEB2,
BBS7, ERCC5, IMPDH1, PEX7, SOS1, ZNF41, BBS9, ERCC6, INPP5E, PGK1, SOX3, ZNF711, BCKDHA, ERCC8, KCNJ10, PLP1,
SPATA7, BCKDHB, ERLIN2, KCNK9, PMM2, SPRED1, BCOR, FANCB, KIAA0226, PNKP, SPTAN1, BRWD3, FH, KIAA1033, POMT2,
SRD5A3, C7ORF11, FKRP, KIAA1279, PORCN, SRPX2
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Table 3
ASD or ID genes retrieved with attributes-based SVM classifiers

Genes counts listed in the table are the intersection of genes retrievable by all six SVM classifiers trained with
different types of control gene lists.

ASD genes retrieved from ID genes classifier ID genes retrieved from
ASD genes classifier

AGTR2, MECP2, ALDH5A1, MEF2C,
ALDH7A1, MID1, AP1S2, MKKS, ARHGEF6,
NDP, ATRX, NFIX, BRAF, NIPBL, CACNA1C,
NLGN3, CACNA1F, NLGN4X, CASK, NPHP1,
CEP290, NRXN1, CHD7, NSD1, CNTNAP2,
OCRL, CREBBP, PAFAH1B1, DCX, PAH,
DMD, PQBP1, DMPK, PTEN, EHMT1, PTPN11,
FGD1, RAI1, FGFR2, RNF135, FMR1, SATB2,
FOXG1, SCN1A, FOXP1, SHANK2, GNS,
SLC9A6, GRIN2B, SMC1A, HOXA1, STXBP1,
HRAS, SYN1, IGF2, SYNGAP1, IL1RAPL1,
TBX1, KCNJ11, TSC1, L1CAM, TSC2, LAMP2,
UBE3A, MAP2K1, UPF3B, MBD5, YWHAE

ABCD1, DAG1, MCOLN1, COL4A1, AGA, DBT, MCPH1, CRB1, AIPL1, DKC1,
MED17, CRBN, ALG8, DLD, MKS1, CRX, ALG9, DLG3, MLL2, CTSA, ANKRD11,
DNMT3B, MYCN, CUL4B, AP4B1, DPM1, NEU1, CYB5R3, AP4E1, EP300, NRAS,
TRAPPC9, ARFGEF2, ERCC1, OFD1, TRIM32, ARG1, ERCC2, PAK3, TTC8,
ARHGEF9, ERCC3, PAX6, TUBA1A, ARL6, ERCC5, PDHA1, TUBB2B, ASPM,
ERCC6, PEX7, ZNF41, ASXL1, ERCC8, PGK1, TIMM8A, ATP6AP2, FANCB, PLP1,
KCNJ10, ATP6V0A2, FLNA, PNKP, KIAA0226, ATP7A, GAD1, PORCN, KIAA1033,
ATR, GCH1, PRPS1, KIRREL3, AVPR2, GDI1, PVRL1, KLF8, BBS1, GFAP, QDPR,
LAMA2, BBS2, GLB1, RAB3GAP1, MAOA, BBS4, GPC3, RAF1, TUSC3, BBS7,
GRIK2, RECQL4, UBE2A, BCKDHA, GRIN2A, RELN, VLDLR, BCOR, GTF2H5,
RPGRIP1, VRK1, CA8, HCCS, RPS6KA3, WDR62, CBL, HDAC4, SETBP1, ZEB2,
CBS, HPRT1, SHOC2, SMS, CC2D1A, HUWE1, SIL1, SNAP29, CDH15, IDUA,
SLC12A6, SOS1, CDK5RAP2, IGBP1, SLC1A1, SPRED1, CENPJ, IGF1, SLC2A1,
SPTAN1, COG1, IKBKG, SLC4A4, ST3GAL3, COG8, IMPDH1, SMC3, STIL,
TGFBR1, TBCE, SYP, SUMF1, TGFBR2, TCF4
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Table 5
Shortest path averages and standard deviations between all genes/proteins in the PPI
network, or between ID, ASD, ASD+ID genes

All pairs ID genes ASD genes ASD+ID genes

Avg 4.4817 4.0323 3.5265 3.8867

stddev 0.031 0.0491 0.0651 0.041
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