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Abstract
The processes of cellular growth regulation and cellular metabolism are closely inter-related. The
c-Myc oncogene is a “master regulator” which controls many aspects of both of these processes.
The metabolic changes which occur in transformed cells, many of which are driven by c-Myc
overexpression, are necessary to support the increased need for nucleic acids, proteins and lipids
necessary for rapid cellular proliferation. At the same time, c-Myc overexpression results in
coordinated changes in level of expression of gene families which result in increased cellular
proliferation. This interesting duality of c-Myc effects places it in the mainstream of
transformational changes and gives it a very important role in regulating the “transformed
phenotype”. The effects induced by c-Myc can occur either as a “primary oncogene” which is
activated by amplification or translocation; or as a downstream effect of other activated
oncogenes. In either case, it appears that c-Myc plays a central role in sustaining the changes
which occur with transformation. Although efforts to utilize c-Myc as a therapeutic target have
been quite frustrating, it appears that this may change in the next few years.
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Introduction
It has become increasingly clear over the past two decades that the metabolic changes that
accompany transformation are intimately related to the growth abnormalities of malignant
cells and that these metabolic changes are necessary in order to provide the energy required
for rapid cell division. It has also become clear that the multifaceted oncogene, c-Myc, plays
important regulatory roles in many aspects of transformation1–4. Although c-Myc may play
a primary oncogenic role in tumors such as Burkitt’s lymphoma in which it is translocated
under the promoter regions of the heavy- or light-chain immunoglobulin genes5, it is more
commonly a downstream “early-response” gene, which responds to activation of many
diverse signaling pathways. It remains unclear whether c-Myc overexpression is primarily
responsible for the metabolic changes induced by transformation, or whether its common
overexpression may be a result of the complex metabolic changes which occur when cells
become malignant.
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Although our detailed understanding of cancer metabolism and growth regulation have
evolved independently6, these two areas of investigation have now merged. For a period of
time extending into the 1970’s, cellular metabolism was regarded as a collection of
metabolic pathways which largely served for energy production. We now know that
malignant transformation induces changes in almost every aspect of metabolism, allowing
transformed cells to fill the huge demand for proteins, lipids and nucleic acids necessary to
support rapid cell division. The changes in glycolysis which accompany transformation,
known as the Warburg effect7, 8, which have been recognized for more than eighty years are
“the tip of the iceberg” in terms of the many metabolic changes now known to occur. Our
current understanding of the Warburg effect and its implications for the regulation of cancer
cell growth has been refined by several generations of tumor biologists and has had
increasing clarity as the molecular biology of the malignant phenotype has been elucidated.
The Warburg effect9, has been observed in many tumor types and is now being used
clinically to detect tumors by fluorodeoxyglucose positron emission tomography (FDG-
PET)10.

Since the discovery of transforming oncogenes in the late 1970’s, the biochemical study of
cancer metabolism has been overshadowed by efforts to identify the mutations that
contribute to cancer initiation and progression. Recently, however, it has been demonstrated
that all of the key elements of “metabolic transformation” (the Warburg effect) — increased
glucose consumption, decreased oxidative phosphorylation, and accompanying lactate
production — are induced by oncogene activation. Induced overexpression of the c-Myc
gene is responsible for many of the changes that induce malignant changes (see Figure 1).
These changes support the production of intermediates for cell growth and division, and are
regulated by both oncogenes and tumor suppressor genes in a number of key cancer-
producing pathways. Metabolic transformation is the result of complex interactions between
a generally hypoxic tumor microenvironment and multiple oncogenic mutations which drive
the alterations in cellular metabolism which occur in transformed cells. The metabolic
changes which accompany malignant transformation represent one of a relatively few
“hallmarks” of malignancy11, 12.

Regulation of c-Myc Expression
In normal (nontransformed) cells, c-Myc expression and function is tightly regulated by
developmental or mitogenic signals. c-Myc mRNA is very short-lived and in the absence of
positive regulatory signals, c-Myc transcription decreases and c-Myc protein levels are low,
providing no proliferative drive. In tumor cells, on the other hand, c-Myc function is almost
always increased, sometimes by mutations in the gene itself, but more commonly through
the induction of c-Myc expression via upstream oncogenic pathways. The oncogenic
properties of c-Myc are counterbalanced by its ability to induce apoptosis through several
pathways13, 14. This dichotomy most likely explains why c-Myc is not commonly the
driving oncogene in early tumors.

Another safeguard mechanism by which c-Myc expression is tightly controlled is stability of
the c-Mmyc protein. The short half-life of c-Myc in proliferating cells (approximately 30
minutes)15 make this a particularly effective mechanism of gene regulation. c-Myc has been
shown to undergo ubiquitylation and degradation by the proteasome16, 17. This includes
phosphorylation-dependent degradation of c-Myc18.

On the other hand, c-Myc overexpression may also occur as a result of post-translational
modifications. For example, mutations in the coding region of c-Myc are commonly found
in human lymphomas, particularly in the Thr58 phosphorylation site. This mutation has been
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shown to enhance the transforming activity of c-Myc by cuasing inefficient ubuiquitination
and decreased proteasome-mediated protein turnover19

MicroRNAs (miRNAs) are intertwined in the c-Myc regulatory network, both as targets of
c-myc and as regulators of c-Myc expression. The application of microarray technology has
revealed both c-Myc-induced and c-Myc-repressed miRNAs. A miRNA wich is consistently
repressed by c-Myc in multiple tumors is miR-26a20. On the other hand, overespression of
the let-7a miRNA causes dramatic decreases in c-Myc gene expression and its target genes,
as well as antiproliferative activity in lymphoma cells21. More recent work has also shown
that miR-33b22miR-143 and miR-145 repress ERK5/c-Myc signaling23.

c-Myc Target Genes
Thousands of c-Myc target genes have been identified by one or more differential
expression screens including SAGE24, DNA microarray25, and subtractive
hybridization3, 26. The list of c-Myc-responsive genes27 includes genes involved in almost
every important cellular function (Table 1). In addition to those genes which are positively
regulated by c-Myc, the transcriptional activity of other genes, including cyclin D1 and
carboxypedidase D is repressed by the c-Myc-Max complex or c-Myc alone28, 29.
Interestingly, it has recently been shown that a network of c-Myc-induced genes accounts
for similarities between the transcriptional programs of embryonic stem cells and
transformed cells30.

c-Myc and Transformation
The human c-Myc gene was discovered as a result of early studies of very aggressive
chicken tumors which led to the identification of the v-myc oncogene as the cause of
myelocytomatosis (leukemia and sarcoma)31, 32. The discovery that human c-Myc is
consistently altered by balanced chromosomal translocation in Burkitt’s lymphoma marked
it as a bona fide human oncogene33. Myc is frequently translocated in multiple myeloma34

and is one of the most highly amplified oncogenes among many different human cancers35.
Myc is downstream of the deregulated Notch signaling pathways found in T cell leukemia36.
Hence, c-Myc overexpression may reflect amplification or physiologic overexpression as a
downstream member of a signaling pathway.

The c-Myc oncogene is overexpressed in the majority of human cancers and contributes to
the cause of at least 40% of tumors37. It encodes a helix-loop-helix leucine zipper
transcription factor that dimerizes with its partner protein, Max, to transactivate gene
expression. The c-Myc heterodimer can also repress gene expression via binding to the
transcription factor Miz138, 39. The other members of the myc gene family (l-Myc and n-
Myc) also encode essential transcription regulators whose expression is altered in a wide
variety of tumor types. c-Myc binds to the promoters of thousands of genes, although only a
fraction of these respond with transcriptional changes40, 41. c-Myc regulates several large
gene families resulting in coordinated changes in cell proliferation and cellular metabolism.
c-Myc stimulates genes involved in protein biosynthesis, cancer metabolism, transcription
factors and cell cycle genes and some microRNAs, while inhibiting expression of other
microRNAs and some tumor suppressor genes38. The pleiotropic effects of c-Myc
expression occur at the molecular and cellular level (Figure 2) and affect almost every
activity of cell life.

c-Myc Drives Cell Proliferation
c-Myc is critically involved in the regulation of many growth promoting signal transduction
pathways and is an immediate early response gene which is downstream of many ligand-

Miller et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2013 October 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



membrane receptor complexes42, 43. c-Myc expression is tightly regulated, its level of
expression is influenced at the transcriptional level by a number of transcriptional regulatory
motifs within its proximal promoter region4, 44, 45. Although the c-Myc gene product has
been most widely characterized as a driver of cell proliferation38, 46, it also stimulates
glycolysis47, 48 and has been shown to upregulate expression of a broad variety of metabolic
enzymes49.

Normal proliferating cells express low levels of c-Myc RNA and protein in response to a
broad variety of mitogenic stimuli. Almost all cancer-associated genetic changes in c-Myc
are associated with noncoding regulatory regions rather than protein coding sequences. This
reflects the fact that deregulation of c-Myc expression, rather than expression of a mutated
protein is what drives the c-Myc effect. Although almost all of the abnormalities of
metabolic transformation can be related to c-Myc overexpression, as noted above, it is not
always clear whether c-Myc overexpression is a primary or secondary effect in transformed
cells

Myc Stimulates Glycolysis
The first suggestion that c-Myc played an important role in regulation of glycolysis was the
observation that lactate dehydrogenase A (LDHA), which converts pyruvate to lactate as
part of the glycolytic pathway, was one of twenty putative c-Myc target genes26, 50, 51.
Subsequent work has shown that many other glucose metabolism genes are directly
regulated by c-Myc, as well37. These genes include glucose transporter GLUT1, hexokinase
2 (HK2), phosphofructokinase (PFKM), and enolase 1 (ENO1)52–54. Through the up-
regulation of these genes, c-Myc contributes directly to the Warburg effect (aerobic
glycolysis) and the ability of transformed cells to convert glucose to pyruvate even under
adequate oxygen tension. Interestingly, ENO1 has been shown to give rise to an alternative
translation initiation product, MBP-1, which is a negative regulator of c-Myc expression55.
This provides a negative feedback look which is modulated by hypoxia56.

The direct effects of c-Myc expression on glycolytic activity have been confirmed in studies
with transgenic animals57. Mice which overexpress c-Myc in the liver demonstrate increased
glycolytic enzyme activity in the liver and overproduce lactic acid. On the other hand, stably
transfected rodent fibroblasts overexpressing LDH-A alone, or those transformed by c-Myc,
overproduce lactate. This suggests that LDH-A, which is a downstream target of c-Myc, is
able to induce the Warburg effect. Soft agar clonogenicity of Burkitt’s Lymphoma cells is
markedly decreased by inhibiting expression of LDH-A50.

Other cancer-related genes also play a role in regulating glycolysis. For example,
phosphoinositol-3-kinase (PI3K) and its downstream effector AKT have a direct role in
stimulating glucose uptake and metabolism, rendering the transformed cell addicted to
glucose for the maintenance of survival. More recent studies have linked Ras, VHL, and
mutations of isocitrate dehydrogenase 1 (IDH1)58, succinate dehydrogenase (SDH), and
fumarate hydratase (FH) to the activation of glycolysis through HIF-1. This results in
increased glycolytic enzyme gene expression50, 59–61. On the other hand, the Akt oncogene
was shown to stimulate glycolysis post-transcriptionally, and the p53 tumor suppressor
emerged as another regulator of mitochondrial function and glycolysis, demonstrating that
loss of p53 is associated with enhanced glycolysis59. The signaling molecule Ras, which
becomes a powerful oncogene when mutated, stimulates glycolysis51, 62, 63. Akt kinase, a
well-characterized downstream effector of insulin signaling, reprises its role in glucose
uptake and utilization in the cancer setting64. Other work also suggests that p53-mediated
regulation of glucose metabolism may be dependent on the transcription factor NF-κB65.
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The M2 splice isoform of pyruvate kinase (PKM2) is a key regulator of aerobic glycolysis in
cancer cells66.

c-Myc Stimulates Mitochondrial Biogenesis
In addition to its important role in regulating cellular metabolism by altering expression of
genes involved in metabolic pathways, c-Myc also plays an important role in mitochondrial
biogenesis. Large scale studies of gene expression in rat and human systems first suggested
that c-Myc overexpression can induce nuclearly encoded mitochondrial genes24, 25, 29. In
addition, c-Myc has been shown to bind to the promoters of genes encoding progeins
involved in mitochondrial function24, 67. Using an inducible c-Myc-dependent human B cell
model of cell proliferation it was shown that mitochondrial biogenesis is completely
dependent on c-Myc expression68. Moreover, the genes involved with mitochondrial
biogenesis were among the c-Myc target genes most highly induced.

In addition to its role in generation of functional mitochondria, c-Myc appears to increase
mitochondrial function. It has been shown that c-Myc increases mitochondrial synthesis of
acetyl-CoA which, in turn, contributes to significant increases in histone acetylation and
fatty acid biosynthesis in rapidly dividing cells69, 70. The ability of c-Myc to induce
mitochondrial biogenesis in proliferating cells while inhibiting mitochondrial respiration is
very important, because mitochondria not only provide a means for efficient production of
ATP in the presence of oxygen, but they also play a role in generating substrates for
macromolecular synthesis in dividing cells. These components include pyrimidines, whose
synthesis is directly linked to the electron transport chain, the carbon backbone for amino
acids, as well as citrate which is converted to acetyl-CoA for lipid biosynthesis. These
functions complement the stimulation of glucose uptake and metabolism by c-Myc, which
provides carbon backbones for critical cellular components, including ribose for nucleotide
biosynthesis and NADPH through the pentose phosphate pathway for redox homeostasis,
triglycerides and ATP through glycolysis.

c-Myc Regulates Glutamine Metabolism
In addition to their use of glucose, mammalian cells obtain energy for growth and
proliferation through the catabolism of glutamine48, 71, 72. Induced c-Myc overexpression
coordinates the expression of genes necessary for cells to engage in glutamine catabolism
that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence
of this c-Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism
to depend on glutamine catabolism to sustain cellular viability and tricarboxcylic acid
(TCA) cycle anapleurosis. Some human tumors have been reported to consume so much
glutamine that they decrease circulating plasma glutamine levels73, 74.

Glutamine is used as a source of energy and nitrogen for biosynthesis, and a carbon
substrate for anabolic processes in cancer cells75, 76, but the regulation of glutamine
metabolism is not well understood75, 77, 78. In contrast to most other metabolites that are
taken up by proliferating cells which are not catabolized, but instead are used as substrates
for anabolic macromolecular synthesis, glutamine is a very important energy source72.
Glutamine metabolism is an important mitochondrial function in cancer cells, specifically
enzymatic glutaminolysis that catabolizes glutamine to generate ATP and lactate77.

Recent studies have shown that cancer-related alterations in glucose and glutamine
metabolism are strongly influenced by c-Myc expression79. In particular, the demonstration
of persistent, c-Myc-dependent hypoxic metabolism of glutamine, even in the absence of
glucose suggests that this is a major influence of c-Myc expression. In fact, in transformed
cells, overexpression of c-Myc results in the concurrent conversion of glucose to lactate and
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the oxidation of glutamine via the TCA cycle79. Under hypoxic conditions with high c-Myc,
a substantial fraction of the glucose consumed was converted to excreted lactate, and
glutamine continued to be utilized by the TCA cycle, which was used for cell survival. This
study also found that a glutamine-dependent and glucose independent TCA cycle may
operate under both aerobic and hypoxic conditions under glucose-depleted culture
conditions. Moreover, they observed an enhanced conversion of glutamine to glutathione
under hypoxia; glutathione is an important reducing agent for controlling the accumulation
of mitochondrial reactive oxygen species (ROS). They also demonstrated that inhibition of
glutaminase effectively kills hypoxic cancer cells in vitro and delays tumor xenograft
growth. The essential role of glutamine metabolism in cell survival and proliferation under
hypoxia and glucose deficiency makes cells susceptible to the glutaminase inhibitor bis-2-
(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and hence could be targeted
for cancer therapy (as described below).

Interestingly, c-Myc appears to alter glutamine metabolism by transcriptionally repressing
the miRNAs, miR-23a and miR-23b80, 81. This results in increased expression of their target
protein, mitochondrial glutaminase (GLS). This leads, in turn, to up-regulation of glutamine
catabolism82, resulting in increased glutamate which is further metabolized through the TCA
cycle or serves as a substrate for glutathione synthesis. This unexpected mechanism of gene
regulation connects myc regulation of miRNAs, glutamine metabolism and ROS
homeostasis.

c-Myc is a Therapeutic Target
Because of its ubiquitous role in human tumors, c-Myc is an attractive therapeutic target.
Blocking the metabolic pathways which are “driven” by c-Myc or restoring these altered
pathways could lead to a new approach in cancer treatment. Inhibition of lactate
dehydrogenase A has been shown to inhibit tumor progression83. Other groups have targeted
c-Myc transcription by interfering with chromatin-dependent-signal-transduction84. Using a
potent, selective small-molecule inhibitor of (BET) bromodomain proteins, proteins which
associate with acetylated chromatin and activate transcription by increasing the
concentration of attracted transcriptional activators85, 86. Using this approach, growth
inhibitory activity was seen in three murine models of multiple myeloma87. Histone
deacetylase inhibitors, including several which are in early phase clinical trials, have also
shown marked downregulation of c-Myc88–91. Another interesting approach has been the
development of a dominant negative c-Myc construct, Omomyc, which is a c-Myc-derived
bHLHZip domain which forms heterodimers with wild type c-Myc, but interferes with the
formation of c-Myc/Max dimers and suppresses binding to E-box elements92–94. More
recent work94 has demonstrated that this interesting c-Myc inhibitor effects some, but not
all, c-Myc functions. In addition, work which targets closely related pathways, such as the
HIF-1 pathway, may have dramatic effects on c-Myc function95.

Other groups have focused on transcriptional inhibition of the c-Myc gene. Preliminary
evidence from experiments using c-Myc antisense oligonucleotides has been encouraging,
but has not translated into effective clinical treatments96. Using the Pu27 quadruplex-
forming sequence present in the c-Myc promoter, quadruplex stabilizing compounds have
been shown to decrease c-Myc expression levels97. Recent work has shown that treating
cells with oligonucleotides encoding the genomic c-Myc promoter quadruplex-forming
sequence, Pu27, results in leukemic cell death98. New approaches, such as genome-scale
metabolic modeling hold promise for the identification of novel drug targets and
biomarkers99
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Summary
The c-Myc gene serves as a “master regulator” of cellular metabolism and proliferation.
Since it is activated by a large number of oncogenic pathways and, in turn, stimulates many
of the metabolic changes that result in malignant transformation, it is truly “both the
chicken and the egg”. Under normal circumstances c-Myc is dependent on mitogenic
stimulation for its expression and function. c-Myc is a multifunctional transcription factor
which drives the multiple synthetic functions necessary for rapid cell division while at the
same time inhibiting expression of genes with antiproliferative functions. Because of its
propensity to induce apoptosis, its expression is tightly regulated. It influences expression of
a wide variety of gene families which contribute to the abnormal growth abilities of
transformed cells. It is quite clear that this central role in regulating cell function represents
a unique opportunity to develop novel cancer therapies.
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Figure 1.
Diagram of Myc effects in transformed cells. There are a wide variety of downstream
pathways which are both positively and negatively regulated by Myc expression.
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Figure 2.
Pleiotropic Effects of c-Myc Expression. The c-myc gene has a variety of molecular and
cellular effects (which are closely related). These effects result from myc-mediated changes
in large gene families which drive cellular functions. Microarray studies have shown that
these changes occur in concert and have major effects on cellular function.
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Table 1

Selected Myc target genes with relevance to metabolic activity of transformed cells27, 100

Target Gene Regulation Pathway Functional Relevance

Cyclin A2, Cyclin D2, Cyclin E1 Up Growth Factor Response Response to mitogenic stimuli

Enolase, LDH-A Up Glycolysis Metabolic Transformation

Serine hydroxymethyl transferase Up C1 Metabolism Anaplerosis

EIF4E, Ribosomal Proteins L3, L6, S15A Up Translation Initiation Global increase in translation

Ornithine Decarboxylase, prothymosin-α, HMG1/Y Up Transformation Anchorage-independent growth

Iron-regulatory protein-2 H-ferritin, transferrin receptor Up Iron metabolism Required for Myc-induced proliferation

Nucleolin, NM23, Nucleophosmin Up Cellular proliferation Required for RNA and DNA synthesis

p21CIP1 Down DNA damage response Differentiation

p15INK4B Down TGFβ pathway Resistance to growth arrest

N-cadherin, Integrins Down Cell adhesion Metastatic Potential
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