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Abstract
Human placental villi are surfaced by the syncytiotrophoblast, a multinucleated, epithelial-cell
layer that functions in maternal-fetal exchange. Mononucleated cytotrophoblasts are subjacent to
the syncytiotrophoblast. Using confocal fluorescence microscopy of third-trimester villi, we
previously found that cytotrophoblasts are often interdigitated into the syncytiotrophoblast, that
cytotrophoblasts undergo caspase-mediated apoptosis, and that apoptosis is much lower, and
perhaps completely inhibited, in intact syncytiotrophoblast lacking fibrin-type fibrinoid. Previous
analysis of primary cultures of human trophoblasts also indicated lower levels of apoptosis in
syncytiotrophoblast compared to cytotrophoblasts. Here, using confocal microscopy we find that
cultured cytotrophoblasts and syncytiotrophoblasts display complex structural relationships, as in
vivo, and that apoptosis of a cytotrophoblast or syncytiotrophoblast does not induce apoptosis of
adjacent trophoblasts. Using live-cell imaging of mitochondrial depolarization and nuclear
condensation in cultured syncytiotrophoblasts, we show apoptosis initiates in a localized region
and propagates radially at ~five μm/min with no loss of velocity until the entire syncytium has
undergone apoptosis. The rate of propagation is similar in cases of spontaneous apoptosis and in
apoptosis that occurs in the presence of cobalt chloride or rotenone, two inducers of apoptosis. We
suggest that inhibition of syncytiotrophoblast apoptosis in vivo is important to prevent widespread
syncytiotrophoblast death, which would result in placental dysfunction and contribute to poor
pregnancy outcomes.
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1. Introduction
The placenta is a transient organ that is essential for growth and development of the human
fetus. This organ elaborates villous trees that are bathed in maternal blood, mediate
maternal-fetal exchange, and secrete hormones pivotal to pregnancy. A multinucleated
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syncytium, the syncytiotrophoblast, comprises the outer epithelial layer of villi and thus is
the primary site of interaction between the mother and fetus. Current evidence suggests the
human syncytiotrophoblast consists of a single, continuous cytoplasm [1], at term containing
~ 5 × 1010 nuclei, a volume of ~ 50 cm3 and a surface area of ~ 11 m2 [2,3]. Subjacent to the
syncytiotrophoblast are mononucleated cytotrophoblasts, the second villous trophoblast
phenotype. Cytotrophoblasts are able to undergo cell division and fuse with the syncytium,
thereby allowing syncytiotrophoblast growth and repair.

Preeclampsia, intrauterine growth restriction (IUGR), or preeclampsia with IUGR, occur in
about 10% of pregnancies [4,5]. Oxidative and nitrative stress and elevated levels of TNF-α
are characteristic of such complicated pregnancies, and these stressors are believed to
contribute to placental dysfunction [6–8]. To address the hypothesis that elevated
trophoblast apoptosis may contribute to these pathologies of pregnancy, we recently used Z-
stack confocal microscopy and staining for trophoblast plasma membranes with E-cadherin
and for markers of apoptosis to investigate apoptosis in both phenotypes of villous
trophoblasts from third-trimester pregnancies [9,10]. We found that cytotrophoblasts and the
syncytiotrophoblast showed complex structural relationships in villi, with one-third of the
cytotrophoblasts deeply interdigitated into the syncytiotrophoblast. In term, normotensive
pregnancies, about one percent of cytotrophoblasts were positive for markers of apoptosis.
In pregnancies complicated by preeclampsia, IUGR or both, cytotrophoblast apoptosis was
significantly elevated (to 4–8%), suggesting apoptosis in this stem-cell like population may
contribute to placental dysfunction in these pregnancies.

Remarkably, we did not detect any evidence in villi for caspase-mediated apoptosis in intact
regions of syncytiotrophoblast devoid of fibrin-containing fibrinoid, even in complicated
pregnancies [9,10]. During in vitro culture, primary human cytotrophoblasts undergo
spontaneous differentiation and fusion, with ~80% of the nuclei in syncytia after 52 h of
culture in 20% O2 [11–13]. Compared to cultured cytotrophoblasts, cultured
syncytiotrophoblasts express lower caspase protein levels [14], down-regulate p53 in
conditions of low oxygen [11], and are more resistant to apoptosis [11,14–16]. Together,
these results suggest apoptosis is repressed in syncytiotrophoblasts, perhaps to prevent
widespread death of the syncytium.

Here, we use fixed-cell imaging of cultured primary human trophoblasts to investigate the
structural relationships of cytotrophoblasts and syncytiotrophoblasts in vitro. We also use
fixed-cell and live-cell imaging of cultured primary human trophoblasts to test the
hypothesis that apoptosis, once initiated within a syncytium, progresses throughout the
entire syncytium without constraint.

2. Materials and methods
2.1. Isolation, culture and immunofluorescence of primary human trophoblasts

Primary human trophoblasts (PHTs) were isolated from placentas obtained after C-section
delivery of term, uncomplicated, singleton pregnancies, as described [11]. PHTs were plated
at 350,000 cells/cm2 on tissue-culture-treated plastic plates and cultured in DMEM
containing 10% fetal bovine serum, 20 mM HEPES pH 7.4, and penicillin/streptomycin in a
5% CO2/air atmosphere, as described previously [11], with daily media changes. Cells were
allowed to attach for 4 h, washed to remove unattached cells and syncytial fragments, and
this time was designated as hour zero. Cells were fixed at 76 h with 4% w/v
paraformaldehyde for 30 min, permeabilized and stained for DNA, E-cadherin (Abcam,
Cambridge, MA), cleaved cytokeratin 18 (clCyt18; Roche, Indianapolis, IN), or cleaved
PARP (clPARP; Cell Signaling Technology, Danvers, MA) and examined by confocal
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microscopy using image optimization and 10 or more optical Z-stacks of < 0.5-μm spacing,
as described previously [9].

2.2. Live-cell imaging
PHTs were cultured as described above. As noted in the text and Figure legends, after 76 h
culture, cells were either labeled for 1 h at 37°C in medium with 25 μM JC-1 (Sigma),
washed, and imaged in fresh medium with 0.5 μM JC-1 or with JC-1 in the presence of
either 100 μM cobalt chloride (CoCl2; Sigma) or 2 μM rotenone (Sigma), washed, and
imaged in medium with 0.5 μM JC-1 and, if used, the same CoCl2 or rotenone
concentrations. JC-1 is a fluorescent dye that accumulates in mitochondria. In polarized
mitochondria, JC-1 aggregates and is strongly fluorescesent at ~590 nm. Upon
mitochondrial depolarization, JC-1 disaggregates, resulting in a reduced fluorescence at
~590 nm. Plates were placed on the stage of a Nikon T2000 inverted microscope, which
used an X-, Y-, Z-position programmable motorized stage (ASI, Eugene, OR) and Sutter
shutters (Novato, CA) to allow rapid switching between phase contrast and fluorescence
microscopy, which used a rhodamine filter set (Chroma Technology, Bellows Falls, VT),
with the system managed using Metamorph software (Molecular Devices, Sunnyvale, CA).
The microscope and samples were housed within a plexiglass incubation box and
temperature maintained at 37°C using a heated air system (both from Life Imaging Services,
Basel, Switzerland) with a continuous flow of 5% CO2/air over the sample maintained
within a small glass chamber that covered the plate. After 30 min on the microscope stage to
allow temperature equilibration, images of 1600 × 1200 pixels (547 μm × 448 μm) were
acquired every 5 min for > 10 h using a 10X lens and a Retiga RTV2000 camera (QImaging,
Surray, BC Canada). Only linear functions of ImageJ (NIH) were used to adjust images.
Images were adjusted for photobleaching that occurred during the 10 h of imaging, which
was typically ≤ 40% of signal intensity, and the signal intensity of regions of interest
measured using the Multimeasure plugin of ImageJ.

2.3. Statistical analyses
Comparisons of the rates of progression of apoptosis between culture conditions was done
using Anova with Tukey’s post hoc test, with p < 0.05 as significant.

3. Results
3.1. Fixed-cell imaging of trophoblasts and trophoblast apoptosis

To examine apoptosis in cultured trophoblasts in fixed cells, we used confocal imaging to
distinguish cytotrophoblasts from the syncytiotrophoblasts after staining for E-cadherin,
which marks plasma membranes, and DNA (Fig. 1; see serial confocal sections in
Supplementary movie 1). Cytotrophoblasts on the periphery of a syncytium were visible
(Fig. 1, green arrow) as were cytotrophoblasts that partially or completely overlaid (Fig. 1,
red arrow) or underlaid the syncytium (not shown), or even that were surrounded by
syncytium (Fig. 1, white arrow). To identify apoptotic cells, we stained for E-cadherin,
DNA, and for cleaved cytokeratin 18 (clCyt18) and cleaved poly (ADP-ribose) polymerase
(clPARP), two markers for caspase-mediated apoptosis. Confocal microscopy showed that a
subset of cytotrophoblasts expressed clCyt18 (Fig. 2A, B, red arrows; see Supplementary
movie 2), with some of these apoptotic cytotrophoblasts adjacent to, overlaying, or
underlaying, a syncytium (Fig. 2A, B). Cytotrophoblasts that were apoptotic but surrounded
by regions of non-apoptotic syncytium were also identified (Fig. 2A, boxed region).
Confocal Z-stack imaging was required to identify cytotrophoblasts expressing a marker of
apoptosis, as the E-cadherin staining in these cells was less intense than in non-apoptotic
cytotrophoblasts and typically was largely cytoplasmic rather than localized to the plasma
membrane. This is similar to what we found in apoptotic cytotrophoblasts in term villi [9,10]
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and likely reflects caspase-mediated cleavage of E-cadherin, resulting in E-cadherin
becoming cytoplasmic [17,18]. DNA fragmentation and degradation were present in some
apoptotic cytotrophoblasts, again consistent with descriptions of placental tissues [9,10].

Apoptotic syncytiotrophoblast regions were also apparent, as indicated by multinucleated
regions lacking interstitial E-cadherin and containing high levels of clCyt18 or clPARP (Fig.
2C, D; see Supplementary movie 3). In all cases of apoptotic syncytium identified in fixed
cells, the marker for apoptosis was present throughout the entire syncytium and was not
restricted to subregions of an individual syncytium. Regions of apoptotic
syncytiotrophoblasts in the cultures typically displayed condensed nuclei with unevenly
distributed DNA (Fig. 2C), consistent with pyknosis [19].

Notably, syncytiotrophoblasts and cytotrophoblasts undergoing apoptosis did not influence
the presence or absence of apoptosis in adjacent cells: apoptotic cytotrophoblasts were in
contact with non-apoptotic syncytia (Fig. 2 A, B) and apoptotic syncytia were in contact
with non-apoptotic cytotrophoblasts (Fig. 2C, D).

3.2. Live-cell imaging of syncytiotrophoblast apoptosis
The above results using fixed cells showed that apoptosis occurred throughout a syncytium,
suggesting two possibilities for the progression of apoptosis in syncytiotrophoblasts in vitro.
First, apoptosis may occur simultaneously throughout the syncytium, or, second, apoptosis
may initiate in one or more localized regions and then propagate throughout the syncytium.
To investigate these possibilities, we used JC-1, a potential-dependent fluorescent dye that
accumulates in polarized mitochondria and whose fluorescence is decreased by
mitochondrial depolarization that occurs during apoptosis. After 76 h of culture, JC-1-
labeled trophoblasts were imaged by fluorescence and phase-contrast microscopy to follow
mitochondrial polarization and condensation of nuclear DNA, respectively, which are two
hallmarks of apoptosis [19]. Spontaneous events of apoptosis in syncytiotrophoblast were
captured, as reflected by loss of JC-1 signal and nuclear condensation (Fig. 3A). In all cases,
apoptosis initiated in a localized region (Fig. 3, i, t = 55 min), with mitochondrial
depolarization and nuclear condensation occurring in tandem within the 5 min time
resolution of the imaging. The two markers of apoptosis propagated outwards as a wave
(Fig. 3, See Supplementary Movie 4), moving at ~4.5 μm/min (4.40 ± 1.74, n = 8 events),
ultimately spreading throughout the entire syncytium, without spreading to adjacent
trophoblasts. There was a small, transient elevation in the JC-1 signal just in front of the
wave of mitochondrial depolarization (Fig. 3B, arrows). Although nuclei underwent
condensation, apoptotic syncytiotrophoblasts otherwise appeared remarkably stable: > 5 h
post nuclear condensation, we did not detect fragmentation or degradation of nuclei or
blebbing of the plasma membrane, which is seen in other cell types [20,21].

There were also dispersed, defined areas where the JC-1 signal persisted, and usually
increased ~ 2-fold, subsequent to the loss of the JC-1 signal during syncytiotrophoblast
apoptosis (Fig. 3, cyto). We propose these regions are due to overlaying, underlaying, or
captured cytotrophoblasts (see Discussion).

We next asked if apoptosis that occurs in the presence of inducers initiates in a single region
and progresses throughout the syncytium, as we noted for spontaneous events. Thus, we
carried out live-cell imaging of syncytiotrophoblasts exposed to cobalt chloride (CoCl2) and
rotenone, two inducers of apoptosis. CoCl2 is a hypoxia mimetic that increases apoptosis of
cultured trophoblasts [11] and other cells by altering transcription of HIF1α and by
increasing reactive oxygen species (ROS) [22,23]. Rotenone inhibits electron transport
through complex 1 [24,25], resulting in increased ROS and increased apoptosis [26–28]. In
the presence of CoCl2, apoptosis always initiated in a localized region of a syncytium and
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propagated outwards at 4.71 ± 1.77 μm/min (n = 5 events), which did not differ significantly
(p = 0.75) from the rate of propagation of spontaneous apoptosis. Similarly, in the presence
of rotenone, apoptosis initiated in a localized region of a syncytium and propagated
outwards at 3.73 ± 0.90 μm/min (n = 5 events), which again did not differ significantly (p =
0.7) from the rate of propagation of spontaneous apoptosis.

4. Discussion
Our data are consistent with a model that apoptosis, once initiated within a syncytium,
progresses throughout the entire syncytium without constraint. Although cultured primary
human cytotrophoblasts and syncytiotrophoblasts show complex structural relationships
with each other, similar to what is observed in the trophoblast bilayer of term human
placental villi, apoptosis in syncytiotrophoblasts or cytotrophoblasts does not induce
apoptosis in adjacent trophoblasts. Fixed-cell imaging indicates that apoptosis, measured by
caspase-cleaved proteins in the cytoplasm or nucleus, always occurs throughout the
syncytiotrophoblast. Live-cell imaging indicates that apoptosis initiates within a localized
region of a syncytium and propagates as a wave of mitochondrial depolarization and nuclear
condensation. This wave propagates at a similar rate whether occurring spontaneously or in
the presence of exogenous stimuli, appears self-reinforcing, and leads to apoptosis
throughout the syncytium. We speculate that the potential for unconstrained spreading is
why apoptosis is highly repressed in syncytiotrophoblasts in vivo.

We found no evidence of transmission of apoptotic signals between trophoblasts despite the
known role of gap-junctions in trophoblast fusion [29–31] and findings in other systems of
the bystander effect, which is when death of a cell, or a portion of a tissue, induces death of
nearby cells (reviewed in [32]) via gap junction-independent or -dependent mechanisms
[33–35]. Similarly, there is an apparent absence of spreading of apoptosis from apoptotic
cytotrophoblasts to adjacent syncytiotrophoblast in term [9,10] and first-trimester villi [36],
which may be important in limiting trophoblast apoptosis in vivo.

We noted a transient increase in JC-1 fluorescence in the syncytiotrophoblast just in front of
the apoptotic wave. We also noted a persistent increase in discrete areas subsequent to loss
of JC-1 fluorescence of a syncytium. These discrete areas of increased JC-1 fluorescence are
likely due to cytotrophoblasts that overlaid, underlaid, or were surrounded by
syncytiotrophoblast: the frequency and shape of these regions were consistent with those of
cytotrophoblasts detected by immunofluorescence of fixed cells and, in some cases (e.g.,
Fig. 3, cyto), the cytotrophoblast cell border was detectable by phase contrast microscopy. A
simple explanation for these findings is that JC-1 is released from the depolarizing
mitochondria of the syncytium resulting in an increase in JC-1 concentration in the
cytoplasm in front of the wave, resulting in a transient increase in JC-1 signal ahead of the
moving wave, and that the syncytiotrophoblast undergoing apoptosis also releases JC-1 into
the medium, allowing an increase of JC-1 levels in the mitochondria of nearby, non-
apoptotic cytotrophoblasts.

Using fixed-cell microscopy and staining for caspase-cleaved cytokeratin 18 and PARP, we
always detected apoptosis throughout an entire syncytium of cultured trophoblasts. Live-cell
imaging of mitochondrial depolarization and nuclear condensation in syncytiotrophoblasts
confirmed that apoptosis is unconstrained: apoptosis initiates in a localized region and
spreads as a spatially coordinated wave at a rate of 4–5 μm/second without dissipation of
velocity. This pattern of syncytiotrophoblast apoptosis occurred in standard condition
(spontaneous events) and under inducing conditions (i.e., in the presence of CoCl2 or
rotenone). Notably, the rate of propagation in cultured syncytiotrophoblasts is similar to
what has been observed previously in mononucleated cells and syncytia generated by
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artificial fusion of HeLa cells [37–39], including those initiated by activation of the intrinsic
or extrinsic pathways of apoptosis [37,40,41].

Our data do not currently address the mechanism by which the original intracellular
asymmetry arises that initiates the mitochondrial depolarization and apoptotic wave. Based
on other systems, one possibility is that there is a localized increase of ROS generation by a
mitochondrion or a few adjacent mitochondria. This locally elevated ROS production could
then induce ROS release from nearby mitochondria by a phenomenon termed ROS-induced
ROS release [37,40,42,43]. Because of its self-reinforcing nature, the wave of ROS, and thus
mitochondrial depolarization, cytochrome c release [37,40], and apoptosis could be
propagated from a small initial region throughout the syncytium.

In recent work [8,9], we used confocal microscopy to investigate apoptosis of third-trimester
villous trophoblasts from placentas of women with normotensive pregnancies or pregnancies
complicated with preeclampsia, IUGR, or both [8,9]. E-cadherin staining revealed non-
apoptotic and apoptotic cytotrophoblasts could often be deeply interdigitated into the
syncytiotrophoblast layer. Thus, in the absence of costaining for a membrane marker an
apoptotic cytotrophoblast could be misidentified as indicating a localized region of apoptosis
in the syncytiotrophoblast. Such misidentification may have occurred in some previous
studies from our lab and other labs (for detailed discussion, see references [8,9]). Here,
using E-cadherin staining of in vitro cultured trophoblasts, we find similar complex
relationships of cytotrophoblasts and syncytiotrophoblasts: cytotrophoblasts can over- or
underlay, or even be surrounded by, syncytia. Thus, in the absence of staining for a
membrane marker, such apoptotic cytotrophoblasts could easily be misidentified as
indicating a localized region of apoptosis in a syncytium.

The results described in this study, together with previous data [9–11,14,16], are consistent
with the following hypothesis for placental villous trophoblast apoptosis. Cytotrophoblasts
that are damaged by stressors respond by undergoing apoptosis, preventing the introduction
of damaged cell components into the syncytiotrophoblast. The apoptotic cytotrophoblasts
could be replaced by above-baseline division of the stem-cell-like population of
cytotrophoblasts. In contrast, in syncytiotrophoblasts apoptosis is strongly inhibited, even
under conditions of stress. Indeed, we suggest that the initiation of apoptosis is completely
inhibited in vivo in syncytiotrophoblast with a continuous cytoplasm. Otherwise, once
initiated, apoptosis would spread unconstrained, leading to death of the entire
syncytiotrophoblast, placental dysfunction, and negative consequences for the fetus.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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clCyt18 cleaved cytokeratin 18

clPARP cleaved poly-ADP-ribose polymerase
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CoCl2 cobalt chloride

O2 oxygen

ROS reactive oxygen species
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Figure 1. Structural relationships of cultured cytotrophoblasts and syncytiotrophoblast
Shown is a maximal projection of confocal Z-stacks of primary human trophoblasts cultured
for 76 h in 20% O2 and stained for E-cadherin (green) and DNA (blue). White dots indicate
syncytiotrophoblast nuclei, which frequently appear clustered, and yellow dots indicate
cytotrophoblast nuclei. White dotted lines indicate E-cadherin marking plasma membranes.
Green arrow indicates a cytotrophoblast on the periphery of the syncytium, the red arrow
indicates a cytotrophoblast that overlays the syncytium, and the white arrow indicates a
cytotrophoblast within, and at the same focal plane, as the surrounding syncytium. See
associated Supplementary movie 1.
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Figure 2. Apoptotic trophoblasts in fixed cells
Shown are maximal projections of confocal Z-stacks of primary human trophoblasts
cultured for 76 h in 20% O2 and stained for (A-C) E-cadherin, clCyt18 and DNA or (D)
clPARP, clCyt18, and DNA, as indicated by the colored text. White dots indicate
syncytiotrophoblast nuclei and yellow dots indicate cytotrophoblast nuclei. White dotted
lines indicate E-cadherin marking plasma membranes. (A, B) Yellow arrows indicate non-
apoptotic cytotrophoblasts and red arrows indicate apoptotic cytotrophoblasts. In (A), center
boxed region is shown below as single channel and merged images to show the cytoplasmic
E-cadherin demarcating the region with clCyt18, and the weakly staining, but detectable,
nuclear DNA that appears fragmented and partly degraded (white arrow). In (B), the center
red arrow indicates an apoptotic cytotrophoblast that overlays the syncytiotrophoblast. (A,
B) see associated Supplementary movie 2. (C, D) Entire regions of syncytia were apoptotic
as indicated by clCyt18 and clPARP throughout the syncytium. See associated
Supplementary movie 3. In (D), the nuclei of two non-apoptotic cytotrophoblasts are visible
which (a, b) partially underlay or are (b) partially surrounded by syncytiotrophoblast. See
associated Supplementary movie 3.
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Figure 3. Live-cell imaging of progressive wave of apoptosis through syncytiotrophoblast
Shown are (A) images of selected time points by fluorescence, to follow mitochondrial
depolarization by loss of JC-1 signal, and by phase contrast, to follow condensation of
nuclei. In this example, apoptosis initiates in region (i), as indicated by the arrow at t = 55
min after the beginning of imaging and proceeds from left to right, eventually encompassing
the entire region of the syncytium within the field of view. Mitochondrial depolarization and
nuclear condensation occur simultaneously, at least within the 5 min time resolution of the
imaging. i and 1–3; regions of syncytium used for quantification shown in (B). cyto,
cytotrophoblast that can be identified by phase contrast imaging (inset) that shows an
increase in JC-1 signal as apoptosis occurs in the adjacent syncytium. (B) Quantification
over time of the JC-1 signal intensity in the region of initiation (i) and of selected regions of
the syncytium (1–3, from left to right), show a transient increase in JC-1 signal (arrows) just
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in front of the apoptotic wave, and then a rapid decline in JC-1 signal in the syncytium. See
associated Supplementary movie 4.
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