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1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member
of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X
receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic
blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing
CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is
present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization
and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated
by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene
regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some
cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular
signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these
acting together.

1. Introduction

The primary role of 1α,25-dihydroxyvitamin D3

(1,25(OH)2D) is to maintain calcium and phosphate home-
ostasis in vertebrate organisms via actions in the intestine,
bones, kidneys, and parathyroid glands. However, it is well
known that physiological roles of 1,25(OH)2D reach much
beyond calcium and phosphate homeostasis. For example,
1,25(OH)2D induces differentiation and inhibits prolifera-
tion of various normal and cancer cells, including osteoclasts,
keratinocytes, and monocytes. In 1981 the group of Suda
observed that 1,25(OH)2D was able to induce differentiation
in the M1 murine myeloid cell line [1] and that it extended
the survival of mice inoculated with leukemia cells [2]. Since
then many research projects have been performed in order
to prepare ground for clinical use of 1,25(OH)2D or of its
low calcemic analogs in leukemia treatment [3–5].

There are two major signal transduction pathways acti-
vated by 1,25(OH)2D in target cells. The most important
and the best documented is the so-called “genomic pathway,”
with its most important player a vitamin D receptor (VDR).
The less well described is “nongenomic pathway,” which con-
sists of intracellular signalling molecules, such as mitogen-
activated protein kinases (MAPKs), phosphatidylinositol 3-
kinase (PI3K), and others, activated by mechanisms that are
not fully understood now [6]. It is believed that both path-
ways need to be activated for full biological activity of
1,25(OH)2D and that the most probable mediator of these
actions is a putative membrane VDR (mVDR) [6].

VDR belongs to the superfamily of intracellular receptors
for steroid and thyroid hormones. 48 members of the sup-
erfamily have been identified in humans; they act as ligand-
induced transcription factors [7]. Most of the superfamily
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members, in order to be biologically active, form homo- or
heterodimers. For VDR, retinoid X receptor (RXR) is a di-
merization partner. VDR upon ligation undergoes confor-
mational changes that allow binding to specific sequences
in promoter regions of target genes, called vitamin D re-
sponse elements (VDREs). VDREs are composed of two re-
peated half-sites with the consensus sequence AGGTCAca-
gAGGTCA (VDRE-DR3). Binding of 1,25(OH)2D to VDR
enhances heterodimerization with RXR and allows binding
of the coactivator complex, known as vitamin D receptor-
interacting protein complex (DRIP) [8] and of other pro-
teins, histone acetylase among them. Acetylated histones
relax chromatin structure to make DNA accessible and per-
mit initiation of transcription of target genes [9]. VDR may
be ligated not only with 1,25(OH)2D but also with other
compounds such as lithocholic acid, docosahexaenoic acid,
arachidonic acid, or curcumin [10]. Moreover, there are
about 300 compounds closely related to 1,25(OH)2D, called
1,25(OH)2D analogs, which can bind VDR and exert chang-
ed biological properties. Subtle conformational changes in
VDR structure caused by analogs can produce antagonistic,
agonistic, or even superagonistic effects. There are even some
analogs that exert semiselective activities, with lowered cal-
cemic and increased antiproliferative and cell differentiating
effects [11].

The VDR protein is expressed at low concentrations in
target tissues and cultured cells with the level of receptor
expression ranging from a few copies of the VDR/cell to
25 000 copies/cell [7]. Among blood cells VDR is express-
ed in Tcells, Bcells, monocytes, neutrophils, platelets, macro-
phages, and dendritic cells. Also many different myeloid
leukemia cell lines, blocked at various stages of maturation,
expressed mRNA for VDR; however, the expression levels
were variable [12]. Addition of 1,25(OH)2D to certain acute
myeloid leukemia (AML) cells induces dramatic changes in
their phenotype and function; however, the extent of these
changes is various in various cell lines.

The activation of MAPK/Erk1,2 signal transduction
pathway in AML cells in response to 1,25(OH)2D was for the
first time reported in 1997 [13], and it was later shown to be
important for the process of AML cell differentiation [14].
The exact mechanisms of how MAPK/Erk1,2 participate in
the differentiation process are not known; however, they
are being connected with a proliferative phase of AML cells
differentiation [15]. MAPK/JNK pathway, whose activation
was reported later [16], appeared to be involved in a subtle
way in regulation of 1,25(OH)2D-dependent transcription
factors [17]. Another MAP kinase, p38, has antagonistic
effects to both MAPK/Erk1,2 and MAPK/JNK [16, 18]. Also
activation of PI3K signal transduction pathway in AML cells
exposed to 1,25(OH)2D has been reported [19] and was later
shown to be responsible for activation of myeloid zinc finger-
1 (MZF-1) transcription factor, which in turn participates in
regulation of proteins crucial for macrophage function [20].

2. Nuclear Trafficking of VDR

VDR to fulfil its function of nuclear receptor must be trans-
ported into the nucleus [21]. In eukaryotic cells nucleoplasm
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Figure 1: Localization of nuclear import domains (NLS) in VDR
and RXR. NLS segments in VDR (a) and in RXR (b). Based on [26].

and genetic material are separated from the cytosol by a dou-
ble membrane which contains highly selective, bidirectional
transporter channel called nuclear pore complex (NPC) [22].
NPC is composed of nearly 30 proteins termed nuclear
pore complex components or “nucleoporins” (NUPs) [22]
which occur in multiple copies [23]. Nuclear import of pro-
teins through NPC is mediated by transporter proteins, such
as importinα and importinβ, which bind cargoes through
nuclear localisation signal (NLS) and interact with NUPs.
Complex cargo-importinα binds importinβ which inter-
acts with Ran-GDP protein [21]. Ran-GDP exists mostly in
cytoplasm, whereas Ran-GTP in nuclei and this GTP grad-
ient ensures the right direction of nuclear transport [21].
High concentration of Ran-GDP promotes the formation of
import complex, while high concentration of Ran-GTP dis-
sociates them and promotes formation of export complexes
[24]. To complete the cycle importinα and importinβ must
be transported back to the cytoplasm. To ensure Ran-GTP
gradient, in the cytosol Ran-guanosine triphosphatase acti-
vating protein (RanGAP) stimulates the intrinsic GTP-hy-
drolyzing activity of Ran to form Ran-GDP. Hydrolysis of
Ran-GTP to Ran-GDP causes release of importinβ for the
next cycle.

To overcome the NPC, large molecules, such as nuclear
receptors, harbour NLSs recognized by the transporter pro-
teins which interact with NUPs in NPC. In VDR four NLSs
were indentified (Figure 1(a)). First (NLS1) is localized be-
tween two zinc fingers within DNA-binding domain (DBD)
[29]. The second NLS is in the second zinc finger of the DBD
but data show that NLS2 does not function as an obligatory
NLS. The next two are localized in the hinge region of VDR.
NLS3 (102–110) is important for ligand-induced nuclear
localisation of VDR but has no effect on unligated VDR
nuclear import. NLS4 (154–173) is a short segment without
a confirmed function. The RXR which is a partner protein
for VDR has two NLSs, the first localized between two zinc
fingers in DBD and the second in the second zinc finger
(Figure 1(b)) [26]. Some data demonstrated that VDR shut-
tles between nucleus and cytoplasm in the absence of ligand,
but unligated VDR weakly interacts with importinα [27].
However, nuclear trafficking of unligated VDR involves im-
portin 4 through the interaction with the aminoterminus of
VDR [21]. Binding the ligand promotes heterodimerization
with RXR and enhances nuclear localization. Whereas RXR
is predominantly localized in the nuclei even in the absence
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Figure 2: Nuclear import of VDR, RXR, and their heterodimer. GTP: guanosine 5
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of ligand, there is also a cytoplasmic fraction of RXR that is
translocated to the nucleus in the presence of its ligand. The
nuclear import of RXR is mediated through importinβ, while
that of VDR is mediated through importinα (Figure 2) [27].
In their publication Prüfer and Barsony showed that VDR
is imported using two different pathways: ligand-dependent
and ligand-independent. In ligand independent pathway
RXR is the dominant partner for nuclear translocation,
whereas ligated VDR dominates the mobility of RXR [28].
Binding 1,25(OH)2D stabilizes heterodimer VDR : RXR and
its interaction with importinα but inhibits interaction of
RXR with importinβ [27].

In order to let proteins out of the nucleus, exportin nam-
ed the chromosomal region maintenance 1 protein (CRM1)
recognizes proteins containing leucine-rich nuclear export
signals (NESs). Export complex formation is favored by high
concentrations of RanGTP in the nucleus, which facilitate
specific interactions with nucleoporins at the nuclear basket
for appropriate translocation through the NPC [25]. VDR
utilizes two pathways of nuclear export: ligand dependent
and ligand independent. Unligated VDR uses a CRM1 export
mechanism using NES localized in position 320–325 in LBD
[28]. Mechanism for liganded VDR is CRM1 indepentent
and requires DBD which functions as NES [30].

3. Differentiation of Human AML Cell Lines in
Response to 1,25(OH)2D

One of the major processes in the array of anticancer actions
of 1,25(OH)2D is differentiation of AML cells. Differentia-
tion in AML cells consists of a G0/G1 cell cycle block [32],
which is connected to an increase of proteins p21 and p27

[33], an increase in expression of antiapoptotic proteins [34],
and acquisition of functional and phenotypic features char-
acteristic for normal macrophages. Functional features are
connected with an ability to phagocytose [35], with increased
activity of monocyte specific esterase (MSE) [36], and with
an ability to generate reactive oxygen species (ROS) and
reduce nitroblue tetrazolium (NBT) [37]. Differentiation is
also accompanied by upregulation of certain cell surface mo-
lecules, which are necessary for macrophage function, such
as CD14, which is a coreceptor for lipopolysaccharide (LPS),
as well as CD11b, which is a subunit of αMβ2 integrin or
CD11c, an integrin αX, both involved in the cell adhesion
[31, 38]. The process of 1,25(OH)2D-induced AML cell dif-
ferentiation is not fast, it requires 3-4 days to reach plateau
in expression of cell surface antigens, but differences in
cell phenotype and function are spectacular (Figure 3).
Since differentiation of blood cells may have beneficial ef-
fects, therapeutic applications for 1,25(OH)2D have been
postulated. However, a major limitation for therapeutic use
of 1,25(OH)2D is its potent calcemic and phosphatemic ac-
tivity. The doses of 1,25(OH)2D, which are necessary to
inhibit cell proliferation and induce differentiation, produce
in vivo hypercalcemia and hyperphosphatemia that may
be life threatening. Therefore there is a need for new
1,25(OH)2D analogs that retain high differentiating and
antiproliferative activities with minimal or tolerable calcemic
and phosphatemic effects [39]. Many such analogs were test-
ed in our laboratory and their activities in inducing differen-
tiation of various AML cell lines, as well as differentiation of
leukemic blasts from the peripheral blood of AML patients,
were studied.
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4. Side-Chain Modified Analogs of
Vitamin D2 and Vitamin D3

In our previous papers we described prodifferentiating ac-
tivities of various side-chain modified analogs of vitamin
D3, PRI-2191, PRI-2201, PRI-2202, and PRI-2205 and of
vitamin D2, PRI-1906, PRI-1907 PRI-1908, and PRI-1909
[40, 41, 45–48]. We studied their pro-differentiating activities
towards various human AML cell lines with genetic lesions
characteristic for AML. Our studies indicated that some of
the tested analogs were more potent than 1,25(OH)2D in in-
duction of cell differentiation. The most efficient were the
two analogs of vitamin D3, named PRI-2191 and PRI-2201,
and the two analogs of vitamin D2, PRI-1906 and PRI-1907
[40–42]. Interestingly, one of the most active analogs tested
by our group was PRI-2191, which in fact is a 1,25(OH)2D
metabolite, already in use for treatment of psoriasis [41, 49]

and a potential drug for vitiligo [50]. The four analogs men-
tioned above were tested in vivo for their calcemic activity.
Results of these studies showed that PRI-2191, PRI-2201, and
PRI-1906 were less calcemic than 1,25(OH)2D, while PRI-
1907 was comparable to 1,25(OH)2D [48, 51, 52].

The cell lines used in our studies were derived from
various AML subtypes. HL60 cells originate from M2 sub-
type of AML and are the most sensitive to 1,25(OH)2D-in-
duced differentiation out of all cell lines used in our tests.
NB-4 cells carry the t(15;17) PML-RARA fusion gene, which
is characteristic for AML M3, U937 cells carry translocation
t(10;11) often seen in AML M5, MV4-11 cells express fu-
sion gene MLL-AF4, and MOLM13 cells express fusion gene
MLL-AF9. Moreover, MOLM13 and MV4-11 have an in-
ternal tandem duplication in Flt3 gene (Flt3-ITD), in one or
in both alleles, respectively [53]. Our studies revealed that in
all cell lines studied, 1,25(OH)2D and its active analogs were
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Figure 4: Expression of monocytic differentiation markers in AML cell lines exposed to either 1,25(OH)2D or to PRI-1907. HL60, U-937,
NB-4, MV4-11, and MOLM-13 cells were exposed either to 1,25(OH)2D (a, b) or to PRI-1907 (c, d) for 96 h, and then the expression of
CD11b and CD14 was tested in flow cytometry. The graphs show mean percentages (±SEM) of cells expressing cell differentiation markers.
Based on [40].

able to upregulate CD14 cell surface antigen, while only in
some cell lines CD11b integrin level was elevated (Figure 4).
These data demonstrate that the expressions of CD14 and
CD11b are controlled by two different signal transduction
pathways, and in some AML cells CD11b pathway is blocked
and cannot be overcome by 1,25(OH)2D.

5. VDR in Human AML Cell Lines

Experiments made by our group showed that AML cell
lines have very low constitutive level of VDR protein,
which increases significantly after exposure of the cells to
1,25(OH)2D. Therefore if the proposed nuclear import and
export of unligated VDR exists in AML cells, it remains at
a very low level, which is difficult to detect. 1,25(OH)2D-
induced changes in nuclear trafficking of VDR could be
observed using confocal microscopy, but western blotting of
cell lysates fractionated into cytosol and nuclei appeared to
be a much more sensitive method of VDR detection [54]. The
kinetics of VDR accumulation in AML cells is surprisingly

fast after exposure of the cells to 1,25(OH)2D. In HL60 cells,
VDR starts to accumulate in the cell nuclei after few minutes
from exposure to 1,25(OH)2D [42] and after half of an hour
the difference is significant (Figure 5(a)). However, most
of our studies were performed using HL60 cell line; also in
other cell lines (Figure 5(b)) and in AML blasts (Figure 5(c))
accumulation of VDR in cell nuclei was observed [42, 54].
Obviously, the increase has not been caused through trans-
cription of new mRNA for VDR since mRNA levels remained
almost unchanged by 1,25(OH)2D, as confirmed by real-time
PCR (not shown). Therefore the mechanism of accumula-
tion of VDR must be regulated at post transcriptional level,
and according to our data it is caused by ligation-induced
protection of VDR protein from degradation [42]. It seems
that VDR is continuously produced in the cytosol, and as
long as it is unligated, it undergoes degradation. Ligation
of VDR with 1,25(OH)2D induces rapid translocation of
the receptor to the cell nuclei, where degradation process is
slower. For effective nuclear trafficking, active p42,44/MAPK
pathway and active PI3-K pathway are needed; however,
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Figure 6: Nuclear trafficking of VDR in presence of geldanamycin (a) or leptomycin B (b). HL60 cells were exposed to 10 nM 1,25(OH)2D
for 3 h. One sample was pretreated with 1 μM geldanamycin (geld) for 1 h before exposure to 1,25(OH)2D (a). Another sample was treated
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membrane. The membrane was probed with anti-VDR. Actin was probed as a control of equal loading and transfer of proteins.

the mechanism of this effect is not known [54]. It was
surprising that in most of freshly isolated AML cells from
patients constitutive level of VDR in cytosol was higher than
in established cell lines [41]. Unfortunately we were unable
to test this phenomenon in a more detailed manner, because
neither of the patient’s samples was possible to be cultured
in vitro for longer than two-three weeks. It is known;
however, that other nuclear receptors become stabilized in
the cytosol by heat shock proteins (Hsp) [55, 56], so the
involvement of this class of proteins was addressed. We
demonstrated recently that, in HL60 cells, VDR interacts
with Hsp90 and that activation of Hsp90 is necessary for
the differentiation process [57], but our new experiments
documented that activation of Hsp90 is not necessary for
nuclear translocation of VDR. Geldanamycin, which inhibits
activity of Hsp90, was not able to block 1,25(OH)2D-
induced nuclear accumulation of VDR (Figure 6(a)). VDR
protein appears in the nuclei of 1,25(OH)2D-treated cells

very fast but disappears slowly. Our experiments in which
HL60 cells were exposed to 1,25(OH)2D and an inhibitor of
CRM1, namely, leptomycin B, confirmed that nuclear export
of ligated VDR is CRM1 independent. As presented in
Figure 6(b), presence of leptomycin B did not cause further
accumulation of VDR in cells exposed to 1,25(OH)2D. As
it was presented before, VDR protein levels remain elevated
even after 4 days from exposure of HL60 cells to 1,25(OH)2D
[42]. During this time VDR activates transcription of its
target genes. One of them is CYP24A1, which encodes an
enzyme, 24-hydroxylase of 1,25(OH)2D, responsible for
degradation of 1,25(OH)2D to calcitrioic acid. As presented
in our previous publication, 1,25(OH)2D increased in
HL60 cells levels of CYP24A1 mRNA significantly; however,
kinetics of induction was very slow [40]. CYP24A1 protein is
localized exclusively in an inner membrane of mitochondria,
where its levels also increase slowly after exposure to
1,25(OH)2D (not shown here).
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6. Regulation of C/EBP Transcription Factors by
1,25(OH)2D in AML Cells

There are several important groups of genes regulated by
1,25(OH)2D in AML cells, including differentiation-related
genes that encode proteins important for function of mono-
cytes or macrophages. The examples of such are genes encod-
ing CAAT-enhancer binding proteins (C/EBPs), belonging
to the family of basic leucine zipper (bZIP) transcription
factors [44, 58, 59]. There are six genes for different C/EBPs
(α, β, γ, δ, ε, and ζ) which are expressed in hematopoietic
cells, hepatocytes, adipocytes, spleen, kidney, brain, and
others. They can form homodimers and heterodimers with
other family members and with other transcription factors.
The C/EBP proteins contain highly conserved bZIP domain
at the C-terminus, an activation domain at the N-terminus
and some other regulatory domains (Figure 7) [43]. In
hematopoietic cells C/EBPα is necessary mainly for differen-
tiation from lymphoid-myeloid progenitors to granulocytes
[60], while C/EBPβ is crucial for specialization of normal
and 1,25(OH)2D-induced monocytes and macrophages, as
well as for their proper functions [61–64], as it regulates
transcription of many monocyte-specific proteins, such as
CD14, lactoferrin, or lysozyme [43]. Recently an involvement
of C/EBPβ in differentiation-related inhibition of prolifera-
tion was reported [65]. Because of alternative translation

initiations sites, two different products of C/EBPα (42 kDa,
30 kDa) and three products of C/EBPβ genes are translated
(55 kDa, 49 kDa, 20 kDa) [43, 66]. As presented in Figure 7,
30 kDa form of C/EBPα and 20 kDa form of C/EBPβ are
devoid of portions of N-termini where transactivation
domains are localized. They are, however, still able to di-
merize, and therefore they can play an inhibitory function.
Experiments done by groups of Studzinski and ours have
shown that after exposure of HL60 to 1,25(OH)2D C/EBPα
was only transiently upregulated in an early phase of differ-
entiation, whilst upregulation of C/EBPβ was strong, long-
lasting and correlated with the differentiation process [67].
Specially two shorter C/EBPβ isoforms were abundant in dif-
ferentiating cells and their increase correlated with acquisi-
tion of monocytic differentiation markers, such as CD11b,
CD14 [67], or CD11c (not shown).

Transcriptional activity of C/EBP proteins is regulated
not only by their length and dimerization but most impor-
tantly by their intracellular localization. As transcription fac-
tors, C/EBPs must enter the cell nuclei to bind CCAAT box
motif in their target gene promoters [44, 66]. Therefore,
cellular trafficking of C/EBPs was extensively studied by our
group. Again, studied cells were fractionated into cytosol and
nuclei. As shown in Figure 8, after exposure of the cells to
1,25(OH)2D, the full length isoform of C/EBPβ-1 (55 kDa)
is present in either cytoplasmic or nuclear fraction, whilst
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Figure 9: Subcellular localization of C/EBPα isoforms in AML cells. HL60 and AML-M4 blasts from patient’s peripheral blood were exposed
to 10 nM 1,25(OH)2D for 96 h and then were fractionated into cytoplasmic (C) and nuclear (N) fractions. The lysates from equal numbers of
cells were separated in SDS-PAGE and blotted to the membrane. The membrane was probed with anti-C/EBPα antibody. Actin was probed
as a control of equal loading and transfer of proteins.
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Figure 10: Overview of 1,25(OH)2D-induced intracellular events in AML cells. Description is in the text.

the majority of shorter isoforms C/EBPβ-2 (49 kDa) and
C/EBPβ-3 (20 kDa) are placed in the nuclei of the cells.
Similar results were observed in various AML cell lines, such
as THP-1, MV4-11, or MOLM-13 and in some samples of
AML blasts isolated from patients. But when localization of
C/EBPα was tested in fractionated cells, it appeared to be
cytoplasmic, and no translocation was noticed after various
times of exposure of the cells to 1,25(OH)2D. As examples,
HL60, THP-1 cell lines, and AML blasts from patient’s
peripheral blood are presented (Figure 9). These findings
suggest that, in AML cells, even if not mutated, C/EBPα
is transcriptionally inactive what leads to the disturbances

in granulopoiesis. Elevated expression of C/EBPβ and its
nuclear translocation induced by 1,25(OH)2D can possibly
allow the cells to bypass this block and switch differentiation
into monocyte/macrophage pathway. The above hypothesis
was presented before [68] and is further supported by the
findings shown here, that in AML cells C/EBPα is localized in
the cytosol, where it cannot exert its transcriptional activity.

7. Conclusions

Exposure of AML cells to 1,25(OH)2D or to its analogs trig-
gers a long series of events which eventually lead to
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acquisition of monocyte/macrophage phenotype and func-
tion (some of them presented in Figure 10). The detailed
description of 1,25(OH)2D-induced differentiation in cell
line models, as well as in AML blasts isolated from patients
might be important for future therapeutic applications of
1,25(OH)2D analogs. It is especially significant to learn
which differentiation pathways are blocked in certain AML
subtypes and how they could be bypassed with help of phar-
macological agents.
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