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Abstract
Segmenting the thyroid gland in head and neck CT images is of vital clinical significance in
designing intensity-modulated radiation therapy (IMRT) treatment plans. In this work, we evaluate
and compare several multiple-atlas-based methods to segment this structure. Using the most robust
method, we generate automatic segmentations for the thyroid gland and study their clinical
applicability. The various methods we evaluate range from selecting one single atlas based on one
of three similarity measures, to combining the segmentation results obtained with several atlases
and weighting their contribution using techniques including a simple majority vote rule, a
technique called STAPLE that is widely used in the medical imaging literature, and the similarity
between the atlas and the volume to be segmented. We show that the best results are obtained
when several atlases are combined and their contributions are weighted with a measure of
similarity between each atlas and the volume to be segmented. We also show that with our data
set, STAPLE does not always lead to the best results. Automatic segmentations generated by the
combination method using the correlation coefficient (CC) between the deformed atlas and the
patient volume, which is the most accurate and robust method we evaluated, are presented to a
physician as 2D contours and modified to meet clinical requirements. It is shown that about 40%
of the contours of the left thyroid and about 42% of the right thyroid can be used directly. An
additional 21% on the left and 24% on the right require only minimal modification. The amount
and the location of the modifications are qualitatively and quantitatively assessed. We demonstrate
that, although challenged by large inter-subject anatomical discrepancy, atlas-based segmentation
of the thyroid gland in IMRT CT images is feasible by involving multiple atlases. The results
show that a weighted combination of segmentations by atlases using the CC as the similarity
measure slightly outperforms standard combination methods, e.g., the majority vote rule and
STAPLE, as well as methods selecting one single most similar atlas. Results we have obtained
suggest that using our contours as initial contours to be edited has clinical value.
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1. Introduction
Intensity modulated radiation therapy (IMRT) requires a precise delineation of structures to
be treated and of organs to be spared on the pre-treatment planning CT images. For head and
neck cancer IMRT, the thyroid gland is one of the most important organs to be spared.
Irradiating the thyroid gland may result in thyroid dysfunction, which is an important
clinical complication of radiation treatment that may be manifest as either chronic
hypothyroidism requiring long-term daily hormone replacement therapy or, less commonly,
the potentially fatal acute thyroid storm clinical syndrome. The reported incidence of thyroid
dysfunction in patients undergoing conventional methods of radiation treatment ranges from
6 to 48% in retrospective studies (Bethge et al 2000, Colevas et al 2001, Garcia-Serra et al
2005, Grande et al 1992, Lo Galbo et al 2007, Liening et al 1990, Mercado et al 2001,
Nishiyama et al 1996, Tell et al 1997, 2004).

Although most external beam radiation treatment plans require entry or exit beams to pass
directly through the thyroid gland to reach the primary tumor region and/or the region of
surrounding cervical lymph node regions which are at risk for cancer involvement, damage
to the gland still needs to be controlled to avoid severe complications. Since the risk for
“collateral damage” to the thyroid gland appears to be related to the volume exposed to
radiation (Alterio et al 2007, Grande et al 1992, Tell et al 1997) as well as the overall
intensity of radiation passing through the gland (Bhandare et al 2007, Constine et al 1984,
Grande et al 1992, Norris et al 2006), precise delineation serves as the basis for constraining
the radiation fluence resulting from the inverse treatment planning process.

Developing automatic or semi-automatic methods for the segmentation of the thyroid is
important because precise manual delineation of this structure is time-consuming, even for
experienced radiation oncologists. Because the thyroid is inhomogeneous, and because it is
surrounded by structures that have similar intensity, its segmentation using standard
intensity-based methods such as level-set (Sethian 1999) or graph-cut techniques (Boykov et
al 2001) is challenging. In the recent past we have used model-based methods to segment
the lymph node regions (Chen et al 2010) but the anatomical variability we have observed
for the thyroid makes the creation of reliable statistical shape models difficult for this
structure. Atlas-based methods have been proposed as an alternative for the segmentation of
head and neck structures but not for the thyroid. These methods require the selection or
construction of one or multiple atlas images, with the structures of interest delineated
precisely on the atlas(es). Image registration is then used to compute the transformations
required to propagate the segmentations onto the patient image. Chao et al (2007a)
delineated the clinical target volume (CTV), left and right parotid glands, spinal cord,
brainstem and optical track using one atlas. The automatically generated contours were
modified and then compared with manual delineations. Commowick et al (2008) used an
average atlas to segment the mandible, parotid glands, submandibular glands, spinal cord,
brainstem, and lymph node regions with good precision (sensitivity and specificity higher
than 0.8). However, over-segmentations of lymph node regions were observed, and a
limitation of the method was revealed when the patient had large anatomical discrepancy
compared with the atlas. To overcome these problems, Commowick et al (2009) proposed a
scheme to select the locally most similar images from the set of atlases to construct a
piecewise most similar atlas. This reduced the over-segmentation problem, which resulted in
an improvement in specificity, but the sensitivity was reduced. Gorthi et al (2009) used a
single-atlas-based method to segment the lymph node regions, but the accuracy of the
segmentations was limited (average Dice similarity coefficient (DSC) (Dice 1945) <0.5 and
average Hausdorff distance (HD) (Huttenlocher et al 1993) >17mm). Han et al (2008)
segmented several muscle groups in addition to the same set of structures as those
segmented by Chao et al (2007); these did not include the thyroid. The median DSC for five
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out of seven structures to be spared were 0.8 or above using a method combining
segmentations from multiple atlases. It was also shown that the method outperformed the
method using the most similar atlas selected based on mutual information (MI) (Wells et al
1996). In the later approach only three out of seven structures reached the 0.8 mark. Both
methods had a median DSC above 0.55 for all structures.

Compared with the conventional technique that uses a single atlas, the major advantage of
using a multiple-atlas-based approach as we do in this study is its ability to reduce the
possibly large discrepancy between a single atlas and the patient image. In general, atlases
are registered to the patient image, and the segmentations are propagated from each atlas to
the patient image using the transformations obtained. The final segmentation on the patient
image is then established through either combining or selecting among these propagated
segmentations. Wu et al (2007) proposed to select the single optimal atlas for each region of
interest (ROI) based on the measure of local normalized mutual information (NMI)
(Studholme et al 1999). Heckermann et al (2006) applied the majority vote rule to fuse
segmentations from up to 29 atlases, and found that using about 15 to 20 atlases was
sufficient. Further increasing the number of atlases did not improve segmentation accuracy
very much. The method was later improved (Heckermann et al 2010) by enhancing the
robustness of the nonrigid registration algorithm with an approximate tissue classification at
the coarse levels of the multi-resolution implementation. Rohlfing et al (2004a) compared
three techniques: selecting the most similar atlas, using an average shape atlas, and using
multiple atlases and determining the final segmentation by the majority vote rule. In their
study, the last method showed the best performance. Instead of using the majority vote rule,
which assigns equal weight to each atlas, Warfield et al (2004) weighted the segmentations
through an expectation maximization (EM) algorithm known as the simultaneous truth and
performance level estimation (STAPLE) algorithm. This algorithm has been used as a
standard technique for combining automatic or manual segmentations from multiple raters.
Rohlfing et al (2004b) expanded the original STAPLE algorithm such that it could be used
to simultaneously combine labels for multiple classes. Experiments they performed on bee
brain confocal microscopy images showed that the proposed method performed better than
majority vote. Klein et al (2008) combined segmentations from a set of atlases using both
STAPLE and an altered version of the vote rule, which weighted the contribution of each
atlas with the value of the NMI between the atlas and the volume to be segmented. In their
study, they showed that STAPLE did not perform better than the vote rule. They also found
that using multiple atlases outperformed selecting one single optimal atlas. Aljabar et al
(2009) studied the effect of increasing the number of atlases that were ranked by the value of
the NMI between the registered atlases and the volume to be segmented. This study showed
that using 20 atlases from a set of 275 was optimal. Artaechevarria et al (2009) compared
strategies for combining segmentations by multiple atlases including STAPLE, majority
vote, and weighted voting methods based on global or local similarity between patient and
atlas images after affine and nonrigid registrations. The experiment on a set of 18 brain MR
images showed that, among the methods that were evaluated, local weighted voting based on
measuring similarity in the neighborhood of the structure of interest performed the best. In
addition to the typical local weighted voting which assigns the weights only once, Sabuncu
et al (2010) proposed an iterative method to optimize the weights through EM. Different
from STAPLE, which calculates the weights based only on the segmentations, the method
also takes the intensity information of the registered images into consideration. Langerak et
al (2010) proposed a selective and iterative method for performance level estimation
(SIMPLE) to combine segmentations without EM, and the experimental results on a set of
100 prostate MR volumes showed that SIMPLE outperformed STAPLE in both accuracy
(statistically significant improvements on volume-wise similarity with manual
segmentations) and computation time (reduction to about 1/4 to 1/3 of STAPLE).
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In our experience, inter-subject variations are large in head and neck CT images, especially
for the areas near the thyroid gland, where differences can be caused by the existence of
tumors, surgical procedures, or simply normal tissue variation. These problems challenge
conventional single-atlas-based approaches and may be a very good application for multiple-
atlas-based approaches. Because there is no consensus on the best atlas combination method
to use, we investigate the use of several approaches involving multiple atlases to segment
the thyroid gland in a set of clinical scans. In the study discussed herein, different methods
for selecting or combining segmentations were compared. Results obtained with these
various methods were evaluated quantitatively and qualitatively. The method that generated
the most accurate results was then employed, and its resulting contours were presented to a
practicing radiation oncologist. The subsequent amount of contour-editing was then assessed
to measure the clinical usefulness of the automatic contouring method.

2. Methods and materials
2.1. Description of data

The 20 CT images used in this study with institution review board (IRB) approval are de-
identified images from patients undergoing IMRT treatment for larynx and base of tongue
cancers. Sixteen of them show normal anatomy in the area of the thyroid gland. The four
remaining ones had a tracheotomy, which involves inserting a plastic tube into the larynx to
help breathing. One of these four (patient 11) also had the trachea filled by a large tumor
that substantially altered the anatomy around the thyroid gland. These images have a voxel
size of approximately 1 mm in the x and y directions and a slice thickness of 3 mm. For all
20 volumes, the thyroid glands were manually delineated by the first author and reviewed by
a radiation oncologist (KN). Changes were made carefully to meet the anatomical and
clinical requirements (this was done with greater care than what is done for routine clinical
cases), and the final manual delineations were saved in the form of contours and binary
masks.

2.2. Registration programs
The affine registration program used in this study has been developed in-house. It is a
standard algorithm that is intensity-based and uses NMI as the similarity measure (Maes et
al 1997). The nonrigid registrations are performed using the adaptive bases algorithm (ABA)
(Rohde et al 2003) also developed in-house. This algorithm also uses NMI defined below as
the similarity measure,

(1)

where H(A) is the marginal entropy of the source image, H(B’) is the marginal entropy of
the transformed target image, and H(A, B’) is their joint entropy. This similarity measure is
used to optimize a deformation field modeled as a linear combination of radial basis
functions with local support,

(2)

where Φ is one of Wu’s compactly supported positive radial basis functions (Wu 1995), 
is a vector of coefficients to be optimized, and N is the number of basis functions. Three
major parameters are used in this algorithm: (1) The density of basis functions, which
determines the scale of the transformation. Few basis functions with large support lead to
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transformations that are more global than transformations obtained with many basis
functions with small support. (2) One parameter that constrains the difference between the
coefficients of the adjacent basis functions, which we call the elasticity parameter. This
parameter is used to control the regularity of the transformation. A small value for this
parameter leads to transformations that are more regularized than transformations obtained
with large values. (3) The range of intensities, which is used to compute the intensity
histograms from which the NMI between images is estimated. It is used, for instance, to
specify whether the deformations are driven by soft tissue regions or bony structures, or
both. The algorithm produces forward (from the source image, i.e., the atlas, to the target
image, i.e., the patient image volume) and backward (from the target image to the source
image) transformations that are inverses of each other.

2.3. Registration and segmentation procedure
Instead of directly performing registrations between each atlas and the patient image at full
resolution, which can be a very time-consuming process given the size of the CT image
volumes, we define a common space in which all the volumes are registered with affine and
heavily regularized nonrigid transformations. Nonrigid registration can then be obtained in
smaller bounding boxes, thus speeding up the calculations. To create this common space we
first compute an average volume to which all the other volumes are registered.

2.3.1. Construction of an average image volume—We follow the procedure
proposed by Guimond et al (2000) for the construction of the average image volume. In this
method, one image in the set of images is selected randomly as the initial target. All the
other volumes are then registered affinely to this first target. This compensates for large
differences in pose or shape between the volumes. Nonrigid registrations are then computed
between each of the affinely registered volume and the initial target, producing forward and
backward deformation fields. The images are deformed using the forward fields and the
resulting images intensity-averaged. This produces an intensity-average volume. The
backward deformation fields are averaged and this average field is used to deform the
intensity-average volume. At the end of this step a shape- and intensity-average volume
representing the population as a whole has been produced. The process is repeated, taking
the current shape- and intensity-average volume as the target, until convergence is reached.
In our experience, convergence is typically reached in 3 to 4 iterations. The nonrigid
registrations are computed with a parameter setting that is suitable for aligning all classes of
tissues (an isotropic density of basis functions at 16 mm per basis function, a moderate value
for the elasticity parameter of 0.3, and the entire intensity range was used to compute 32-bin
histograms that were used to estimate the entropy of the images). We have observed that
because anatomical variations in the region of the thyroid are large, the accurate registration
of CT images in this area is difficult. As a consequence, the average volume we obtain is
very blurry in this area, which undermines its potential to be used as the atlas. The average
volume is thus only used as a common space where all atlas images are globally aligned.

2.3.2. Segmentation of patient images—To segment a new patient image volume, this
volume is first registered to the average image volume using affine and nonrigid
transformations following the procedure shown in the top row of figure 1. The parameters
for the nonrigid registration (an isotropic density of basis functions at 16 mm per basis
function, a smaller value for the elasticity parameter of 0.2, and the full intensity range for
histogram computation) are set to produce a transformation Tn that is highly regularized.
These two registrations result in the alignment of the bony structures and the outside body
contours between the patient image and the atlas.
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A bounding box surrounding the thyroid gland is defined on the average image volume and
copied onto the patient and atlases. As shown in the bottom row of figure 1, nonrigid
registrations are then performed between each atlas and the patient image inside the
bounding box using parameters (an isotropic density of basis functions at 6.25 mm per basis
function, a moderate value for the elasticity parameter of 0.3, and intensity range to compute
the intensity histograms limited to the soft tissue range) permitting more flexible
transformations Tnbk’s for aligning the soft tissue regions. With these transformations,
segmentations of the thyroid gland are propagated from each atlas to the patient image.
These segmentations are then combined using various methods described below.

The first category of approaches proposed to take advantage of multiple segmentations
selects the atlas volume that is most similar to the patient image according to some similarity
criterion. The criteria we use are similar to those proposed by Rohlfing et al (2004a), i.e., the
correlation coefficient (CC) between the volumes after nonrigid registrations, the average
magnitude of the deformation field (AVG_df), and the maximum magnitude of the
deformation field (MAX_df). The first criterion is a measure of the similarity between the
volume to be segmented and the deformed atlas, i.e., it can be viewed as a measure of the
registration quality. The other two criteria measure how much “work” the registration
algorithm has to do to register the image volumes. It is thus a measure of similarity between
volumes before registration. We note that Rohlfing et al (2004a) and Klein et al (2008) used
NMI as a measure of similarity after registration. Here we have preferred to use the CC
because NMI is the quantity being optimized by our registration algorithm. The CC is
defined as follows (Lewis 1995, Fitzpatrick et al 2000):

(3)

where  is the mean intensity value of the voxels in the source image and  is the mean
intensity value of the voxels in the transformed target image.

To avoid measurements of CC and deformation fields in irrelevant areas, a region that
contains the thyroid gland is created by dilating the union of segmentations propagated from
all the atlases using a 3×3×3 structuring element such that only the CC and deformation
fields that are close to the thyroid gland are considered in the computation. The atlas with
the highest CC is selected as the most similar atlas. In the other two methods the atlas with
the lowest average or maximum deformation field magnitude is selected. Segmented
structures propagated from this volume are used to segment the patient image.

The second category of approaches uses the entire set of atlases, but their contributions are
weighted using the same three similarity measures introduced above. To be used as weights
in the combination, the similarity measures are normalized. For CC, the weights are
calculated as

(4)

where cci is the average CC over the region of interest for the ith atlas, and k is the number
of atlases. For AVG_df and MAX_df, the weights are determined as
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(5)

in which for AVG_df, di is the average deformation field magnitude in the region defined
above, while for MAX_df it is the maximum field magnitude in this box. The combined
segmentation L is calculated as

(6)

where Li is the segmentation produced by the ith atlas and wi is its weight calculated using
either Eq. (4) or (5). The segmentation L is then rescaled into the intensity range of [0, 255],
and the final segmentation is obtained by thresholding the rescaled image at intensity I > 127
and saving it as a binary image in which 0 is the background and 255 is the structure.

2.4. Running time
The affine and nonrigid registration algorithms used in this study are implemented in C and
C++. When segmenting a new patient image, the typical running time on a computer with a
2.93 GHz Intel Xeon quad-core PC with the 64-bit Windows OS and 16 GB of memory is 2
min for the global affine component and 10 min for the global nonrigid component used for
registering the image to the average image volume. After the bounding box is defined, each
of the k (k=20 for segmentation of new patient with all 20 atlases, and k=19 for leave-one-
out experiments) local nonrigid registrations between one atlas and the patient image takes
around 1 min, but the process can be parallelized.

3. Results
A leave-one-out strategy is used to compare the various atlas-based segmentation methods
introduced above. For each run, one image is eliminated from the set of atlas images, and the
segmentations of the thyroid gland are obtained using the remaining 19 volumes. The results
are evaluated on the 20th image by comparing the atlas-based and manual segmentations.
For each patient the thyroid gland on the left and right sides are segmented separately,
because for patients undergoing tracheotomy the thyroid gland is fully transected in the
midline to facilitate installation of tracheotomy tube, resulting in two totally separated
sections (one left and one right) of the thyroid gland.

For patients with tracheotomy, combining or selecting segmentations propagated from
patients with normal anatomy may result in over-segmentation of the thyroid into the area of
the air tube. Segmentations for these patients were post-processed by excluding areas with
Hounsfield units (HU) > 270 on the corresponding CT images, since the plastic tracheotomy
tube in general have intensity of 300 HU and above, while the soft tissues are lower than
250 HU.

The DSC, which is defined as the overlap of two segmentation volumes normalized to their
mean volume, is the primary measure used to assess the accuracy of the segmentations. It
ranges from zero to one with zero indicating no overlap and one complete agreement.
Statistics of DSCs obtained between the automatic and manual segmentation volumes using
the various atlas-based methods are summarized in figure 2. In this figure, the range
between the minimum and the maximum whiskers show the data range, the bottom and top
of the box shows the 25th and 75th percentile, the line in the middle shows the median, and
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the “+” signs show the outliers. High DSC values indicate high similarity between manual
and automatic contours. The left panel shows the results for the left thyroid and the right
panel for the right thyroid. For each panel, results obtained when using a single atlas
selected with one of the three metrics discussed above (these are labeled CC_max,
MAX_df_min, and AVG_df_min) are shown on the three first left columns. The next three
columns show results obtained with methods combining segmentations weighted using the
three metrics (these are called CC_weighted, MAX_df_weighted, and AVG_df_weighted).
The last two columns show the average of all segmentations (avg_all) which is equivalent to
the majority vote rule and the results obtained using STAPLE. When calculating the
combined segmentation using STAPLE, a bounding box of minimum size containing the
dilated union of all propagated segmentations is defined for each thyroid. The method is thus
evaluated in regions that are similar to those used for evaluating the other methods. The
STAPLE implementation provided by the Computational Radiology Laboratory of Warfield
et al (2007) was used, with the stationary priors of the background and thyroid set to 0.9 and
0.1 according to the approximate ratio of each class in the bounding box. The average DSC
values for the various approaches are presented in numerical form in table 1. Since the
anatomy of patient 11 is substantially different from the anatomy of the other patients due to
pathology, the DSCs obtained for this patient are generally much lower than those for other
patients. Therefore the average DSCs were also calculated without the results for patient 11
and shown in table 1. Since CC_weighted showed the highest volume DSC among all the
eight methods, we statistically compared the DSCs of CC_weighted with all the other seven
methods by performing a one sided paired t-test. The p-values that were obtained are shown
in table 2.

As shown in table 1, among the three methods we evaluated for selecting the most similar
atlas, CC_max has the highest mean DSC. Among the three combination methods we
evaluated, CC_weighted has the highest mean DSCs albeit the boxplot shows that the three
combination methods perform quite similarly. Although the difference is small, the p-values
in table 2 show that the results for CC_weighted are significantly better than those for
AVG_df_weighted. The difference between the results obtained with CC_weighted and
MAX_df_weighted are statistically insignificant. Comparing DSCs of CC_weighted with
CC_max, avg_all, and STAPLE, CC_weighted outperforms avg_all with significant
difference, while the difference between CC_weighted and CC_max, as well as the
difference between CC_weighted and STAPLE, are statistically insignificant. Note that
although STAPLE has the highest median DSC for the left thyroid, as shown in figure 2, its
mean DSC is lower than CC_weighted, AVG_df_weighted, MAX_df_weighted, and avg_all
because of lower DSCs for cases in the lower range. Based on these results, we selected
CC_max as the representative method for the three methods relying on the most similar atlas
and CC_weighted as the representative method for the three methods relying on a weighted
combination of segmentations along with avg_all and STAPLE that are the two standard
methods for combining segmentations. We then analyzed further the performance of these
methods. Since in clinical applications structures are delineated as contours on axial slices,
and the accuracy of automatic segmentations on axial slices may not be directly reflected by
volume-wise comparisons, we refined our analysis of these methods by comparing
automatic and manual segmentations on a slice-by-slice basis.

In this analysis, we first calculate the DSC on each image slice. Then we compute the
average among all slices for each method and for each patient, thus generating 20 averages
for each method. Figure 3 shows the range, the 25th percentile, the 75th percentile, the
median, and the outliers for each technique. It can be seen that when compared on a slice-
by-slice basis all methods perform comparably on the left thyroid. Although STAPLE has
the highest median value, it also has a lower minimum. On the right thyroid the leading
methods are CC_weighted and avg_all.
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The Hausdorff distance (HD) which is defined as

(7)

where vA represents voxels belonging to the automatic segmentation, vM represents voxels
belonging to the manual segmentation, and ∥·∥ is the Euclidian distance, is also calculated on
the 2D slices for these four representative methods. The range, 25th percentile, 75th
percentile, median, and the outliers of the averages for each method are shown in figure 4. It
can be seen that CC_max, CC_weighted, and avg_all show similar Hausdorff distances
which are generally lower than STAPLE on the left side, while on the right side
CC_weighted and avg_all are comparable and show more cases toward the lower end of the
Hausdorff distance measure than the other two methods.

Because a Hausdorff distance of 3 mm on a slice generally indicates that the automatic
contour is clinically acceptable, we also counted, for each method, the number of slices on
which the contours are at a Hausdorff distance of 3 mm or less from the manual contours.
CC_weighted had 108 out of 267 slices on the left side and 122 out of 292 slices on the right
side falling in this range. These numbers were 103, 82, and 98 out of 267 on the left side and
119, 51 and 74 out of 292 on the right side for the avg_all, CC_max, and STAPLE methods,
respectively. Thus, 41.1% of the contours produced by CC_weighted were in this range
when only 39.7%, 23.8%, and 30.8% were in the same range with the avg_all, CC_max, and
STAPLE methods, respectively.

The slice-wise comparisons, together with the volume-wise comparison show that
CC_weighted and avg_all are more consistent than CC_max and STAPLE which perform
more poorly on the right side. CC_weighted is slightly better than avg_all in all
comparisons.

Figure 5 shows qualitative results for six representative cases. From top to bottom,
segmentation results are shown for the left thyroid obtained on one slice in the data set of
patients 3, 8, and 16 using the four representative methods discussed above, as well as
results for the right thyroid of patients 3, 5, and 11. It can be observed that for patients with
normal anatomy, e.g., the left thyroid of patient 8 and the right thyroid of patient 3 and 5,
CC_weighted and avg_all showed more consistent agreement with the manual delineations
than CC_max and STAPLE. Using all methods, over-segmentations into the blood vessel
are observed for the left thyroid of patient 3, while under-segmentations are seen for the left
thyroid of patient 16. A substantial segmentation error is observed for patient 11, in which
the anatomy is altered by a large tumor.

To further study the clinical usefulness of the automatically generated contours, we
presented the segmentation results of CC_weighted to a physician (KN) and instructed him
to modify the contours to make them clinically useable. In this experiment, the contours are
shown superimposed to the patient images presented along the axial direction and modified
using a tool which removes/adds a part from/to the contour by brushing over the target area.
The modified contours, which are denoted CC_weighted_mod, are saved as binary masks
and compared with the original automatic segmentations to measure the amount of
modifications made by the physician.

Table 3 shows the volume-wise DSC between the original automatic segmentations
(CC_weighted) and the modified segmentations (CC_weighted_mod) for all 20 patients. It
can be observed that for each side, 13 cases out of the 20 reached a volume-wise DSC of 0.9
or higher. We also compared the 2D axial contours of CC_weighted and the
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CC_weighted_mod. 112 out of 281 slices (40%) on the left side and 125 out of 297 (42%)
on the right side were accepted without modification. For 173 slices on the left side and 196
slices on the right side, the DSC between the automatic and the modified contours was 0.9
or above, indicating that in about 61% of cases on the left side and 66% of cases on the right
side, none or minimal changes were made.

To illustrate qualitatively the amount and location of modifications made by the physician,
we calculated the distance from the surfaces of the modified segmentations to the surfaces of
the original automatic segmentations. Colored 3D surfaces of the modified segmentations
are shown in figure 6, where the blue color represents zero or small distance, indicating none
or minimum modification, while the red color represents large distances, indicating
substantial modification. The patients shown are the same as those shown in figure 5. It can
be seen that for the left thyroid of patient 8 and the right thyroid of patients 3 and 5, the
automatic segmentations received little or none modification for most of the areas, except
for several slices on the top and bottom. This is because there is some variability on the
extent of the gland along the z-direction delineated on the atlases, which in turn causes
disagreements in the combination. Also, large portions of the surface of the left thyroid for
patients 3 and 16 and the right thyroid for patient 11 are red, indicating extensive
modifications. These are also the cases for which CC_weighted showed inaccurate results
when compared with the manual segmentations, as shown in figure 5.

4. Discussion and conclusion
Although the conventional atlas-based segmentation of the thyroid gland in head and neck
CT images is challenged by large anatomical differences, we demonstrated that the
automatic segmentation of the gland may be achievable by using a multiple-atlas-based
approach. We show that combining segmentations obtained from multiple atlases tends to
perform better than methods selecting a single most similar atlas, especially for segmenting
images that do not show drastic anatomical differences with the majority of the atlases. This
is in agreement with the conclusions of the study conducted by Klein et al (2008), in which
combining segmentations from atlases with large normalized similarity performed better
than selecting the most similar atlas. Among the methods that combine segmentations, the
method based on CC showed its stability by staying in the top-ranked methods when
evaluated with all three criteria (volume DSC, slice DSC, slice Hausdorff distance). Its
overall performance is substantially better than CC_max, which is the method on the lower
end of the accuracy scale. It shows comparable performance with STAPLE when evaluated
by volume and slice-wise DSCs, and a significantly better performance when evaluated with
the Hausdorff distance. When compared with avg_all, the volume DSC shows that
CC_weighted performs better than avg_all, and the difference is statistically significant. The
slice-wise differences between the two methods with the DSC and the Hausdorff distance
are statistically insignificant, but as it is shown in figure 3 and 4, CC_weighted is never
outperformed by avg_all. These results suggest that when both methods are available,
CC_weighted should be preferred to avg_all. The clinical acceptance of the method was
further assessed in the modification study, in which the segmentations generated by
CC_weighted were presented to a physician and modified to meet clinical requirements. A
comparison between the original and modified automatic segmentations shows that a large
portion of segmentations (about 61% of 2D contours on axial slices for the left thyroid, and
66% for the right thyroid) required zero or very little modification, which is an indication of
the clinical usefulness of the approach.

Although CC_weighted is shown to be the best method overall in this study, its superiority
over other methods is not always significant, which indicates that determining the optimal
multiple-atlas-based strategy remains an open problem. This is in line with contradictory
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results that have been reported in the literature. Indeed, Rohlfing et al (2004b) report that
majority vote was outperformed by STAPLE on their data. However, in the study of
Artaechevarria et al (2010), STAPLE was shown to lead to results that are substantially
worse than those obtained with a series of alternative methods including majority vote.
These authors report that voting weighted by local similarity was found to be the most
accurate, while the difference between the top two (weighted by local NMI or mean square
distance (MSD)) was subtle. Sabuncu et al (2010) indicated that both STAPLE and majority
vote were inferior when compared with the three weighted voting methods they used, with
the majority vote being the clear worst. The best local weighted voting method using EM
improved DSC by only 0.006 or less for most structures compared with a method similar to
CC_weighted at the cost of multiplying the CPU time by about 17. On the other hand, Klein
et al (2008) did not find STAPLE to be significantly different from the weighted voting
method based on NMI, as well as majority vote. While there is converging evidence that
multiple-atlas-based strategies lead to better results, there is clearly no agreement on the best
way to achieve it. Comparison between methods also remains difficult due to many factors,
e.g. image modalities, image quality, size of dataset, registration accuracy, size of the
structure of interest, and parameter setting and implementation of standard algorithm
(especially STAPLE). It would thus be useful to perform more comprehensive comparative
study of all available methods on a series of openly accessible data sets for which a ground
truth is known.

Although we have shown the potential clinical usefulness of the approach, i.e.,
CC_weighted is accurate for most of the 20 patients with normal anatomy included in this
study and exemplified by the left side of patient 8 and the right side of patients 3 and 5
shown in figure 5, shortcomings still need to be addressed. We have observed three major
categories of problems: First, as shown in figure 5, for the left thyroid of patient 3, over-
segmentation into the blood vessel was observed by all automatic methods including
CC_weighted. This is mainly because the thyroid gland on the left side of this patient is
smaller than those in the atlases. In this patient, the vessel and thyroid together match the
size and shape of a left thyroid in a regular volume. The large anatomical discrepancy
between this particular patient and the other volumes in our atlases resulted in a systematic
false segmentation. A similar problem is also observed on both the left and right sides of
patient 2, the left side of patient 13, and the right side of patient 15. Second, anatomical
discrepancies can also be caused by structures that are larger than usual, which is the case
for patient 16 on the left side. This patient had a thyroid gland that was considerably larger
than those in normal patients. Also, the gland extended into the chest cavity, while for a
normal patient the gland does not extend lower than the clavicle level. Since none of the
atlases could match the gland with similar size and extent, the results showed obvious under-
segmentation. Both the left and right sides of patient 7 and patient 17 fall into the same
category. Third, pathology is another major cause for anatomical differences, as shown in
patient 11. The tumor filling the trachea pushed its surrounding tissues into the area that
should normally be occupied by the thyroid, and subsequently caused completely false
registrations.

Over-segmentations may be corrected by applying anatomical constraints, i.e. segmenting
the falsely included structures individually and removing them from the original automatic
segmentation. For the left thyroid of patient 3, an accurate segmentation of the blood vessel
may be achievable (Noble et al 2008), and removing the vessel could drastically improve the
accuracy of the segmentation of the thyroid. A more general solution to false segmentations
caused by anatomical discrepancies in normal patients is to expand the set of atlases. Cases
like patient 3 on the left side and patient 16 may benefit from using a subset of atlases with
similar anatomy, which could be selected automatically via certain similarity measures.
However, false segmentations caused by large anatomical discrepancies in patients with
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pathology, e.g., large tumors and tissue resections, may not be corrected by expanding the
atlas set, since the structural alteration in each patient may be unique. In these cases, models
of the tumors or resections may be needed to simulate the deformation, and practically
manual delineations may be more suitable than automatic approaches.

Increasing the number of atlases may not only provide the anatomical variability required
for segmenting patients with rare anatomy, but also optimize the number of atlases involved
in the combination. Aljabar et al (2009) opted to use a fixed number of atlases (20 out of
275) ranked by their similarity to the patient image. This method may be confounded when
there are too few atlases that are similar to the volume to segment. In this case, a number of
very dissimilar atlases could be selected to reach the preset number of atlases and thus
negatively affect the results. Klein et al (2008) also studied the impact of using a subset of
atlases which was selected by thresholding their normalized similarity (the NMI of each
atlas divided by the maximum NMI in all atlases) and found an optimum threshold value
that corresponded to 23 out of 49 atlases in the experiments they performed. The advantage
of the method can be limited when most atlases are similar. The SIMPLE approach by
Langerak et al (2010) essentially reduced the number of atlases in an iterative process by
eliminating the worst performers, i.e., those leading to segmentations that are different from
the consensus at the current iteration. Ultimately around 35 atlases out of a set of 99 were
used to compute the combined segmentation. The major obstacle to conducting studies with
a very large set of atlases is to obtain a ground truth, i.e., volumes in which the thyroid has
been segmented with an accuracy that exceeds the accuracy of delineation performed in the
clinical setting under time constraints.

Even though automatic segmentations obtained with the CC_weighted combination
approach may not be directly applicable for clinical application (i.e. they need to be
modified by physicians), this study has shown its potential to reduce delineation efforts
compared to a fully manual delineation of the structure. For most cases with normal
anatomy the clinician who evaluated the results did not need to make changes for the
majority of the contours generated automatically. In this study, modifications have been
done by one physician using in-house developed software instead of the clinical radiation
oncology planning station. What this study does not yet address is the accuracy of the results
compared to intra- and inter-rater variability. In a recent study (Deeley et al 2011) performed
with eight raters on twenty volumes, we have shown that a single-atlas-based method
performs as well as a human rater for the segmentation of the eyes, optic nerves, optic
chiasm, and brainstem. The anatomical variability we have observed in the thyroid led us to
explore a multi-atlas procedure. Based on the encouraging results we have obtained with this
approach for the thyroid and with a model-based approach for the lymph node regions (Chen
et al 2010) we are planning a multi-rater validation study for the thyroid, the lymph node
regions, and the parotid. Early results we have obtained with the parotid indicate that a
model-based approach as the one we have used for the lymph node regions may be better
than a multi-atlas-based approaches as proposed by Ramus et al (2010), Yang et al (2010),
or Han et al (2010).

Finally, we note that this work is focused on the segmentation of structures of interest in the
planning CT images. Adaptation of these contours to the on-board CT, e.g. Cone Beam CT
(CBCT), when these are acquired during the course of therapy is required to take into
account change in tumor and normal anatomy (e.g. shrinkage of tumor and body size) that
may occur between acquisitions. Techniques have been proposed for this purpose (see for
instance studies by Wang et al (2005), Lu et al (2006), Chao et al (2007b), Xie et al (2008),
and Lee et al (2008)). The comparison of these techniques with the registration of the
planning CT to the CBCT using an intensity-based non-rigid registration method as we have
used herein will need to be done.
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Figure 1.
Flow charts illustrating the registration process. Top panel: Registration of patient image
with the average image volume at full scale. Bottom panel: Registration in the bounding box
containing the thyroid between the patient image and the atlases.
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Figure 2.
Boxplots showing the sample minimum, Q1, Q2, Q3, and the sample maximum of volume
DSC’s obtained using the most similar atlas selected by maximum CC (CC_max), minimum
MAX_df (MAX_df_min) , and minimum AVG_df (AVG_df_min), the combination of all
segmentation weighted by CC (CC_weighted), MAX_df (MAX_df_weighted), AVG_df
(AVG_df_weighted), the average of all segmentations (avg_all), and the combination of all
segmentations by STAPLE. Left panel: Left thyroids. Right panel: Right thyroids.
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Figure 3.
Boxplots showing the sample minimum, Q1, Q2, Q3, and the sample maximum of the
averages of slice DSC’s obtained using CC_max, CC_weighted, avg_all, and STAPLE. Left
panel: Left thyroids. Right panel: Right thyroids.
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Figure 4.
Boxplots showing the sample minimum, Q1, Q2, Q3, and the sample maximum of the
averages of Hausdorff distance in mm on 2D slices obtained using CC_max, CC_weighted,
avg_all, and STAPLE. Left panel: Left thyroids. Right panel: Right thyroids.
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Figure 5.
Segmentations obtained using the four representative methods shown in contours with
dotted lines compared with the manual segmentation shown in solid lines. For each row,
from the left to the right: The original patient image, images with contours obtained using
CC_max, CC_weighted, avg_all, and STAPLE compared with the manual contours. Rows
from top to bottom: Left thyroids for patients 3, 8, and 16, right thyroids for patients 3, 5,
and 11.
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Figure 6.
3D surfaces of the modified segmentations, with blue color representing zero or little
distance to the surface of the original automatic segmentation obtained using CC_weighted,
and red color representing large distance. Columns from left to right: Left thyroids for
patients 3, 8, and 16, and right thyroids for patients 3, 5, and 11. For each column, the top
and bottom rows show the same surface viewed from two different angles.

Chen et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2013 January 07.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Chen et al. Page 22

Ta
bl

e 
1

T
he

 a
ve

ra
ge

 D
SC

s 
fo

r 
vo

lu
m

es
 c

al
cu

la
te

d 
w

ith
 v

ar
io

us
 m

et
ho

ds
 w

ith
 a

nd
 w

ith
ou

t p
at

ie
nt

 1
1.

C
C

_
m

ax
M

A
X

_
df

_m
in

A
V

G
_

df
_m

in
C

C
_w

ei
gh

te
d

M
A

X
_

df
_w

ei
gh

te
d

A
V

G
_

df
_w

ei
gh

te
d

av
g_

al
l

ST
A

P
L

E

L
ef

t
A

vg
.

0.
74

7
0.

69
8

0.
70

3
0.

76
8

0.
76

7
0.

76
5

0.
76

1
0.

75
6

T
hy

ro
id

A
vg

. w
/o

 1
1

0.
78

3
0.

70
5

0.
73

0
0.

79
3

0.
79

2
0.

79
0

0.
78

6
0.

77
1

R
ig

ht
A

vg
.

0.
73

7
0.

72
6

0.
71

9
0.

78
4

0.
78

3
0.

78
1

0.
77

9
0.

76
5

T
hy

ro
id

A
vg

. w
/o

 1
1

0.
74

3
0.

73
7

0.
73

7
0.

80
8

0.
80

6
0.

80
5

0.
80

3
0.

77
9

Phys Med Biol. Author manuscript; available in PMC 2013 January 07.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Chen et al. Page 23

Ta
bl

e 
2

T
he

 p
-v

al
ue

s 
fo

r 
t-

te
st

s 
on

 D
SC

s 
of

 C
C

_w
ei

gh
te

d 
co

m
pa

re
d 

w
ith

 th
e 

ot
he

r 
se

ve
n 

m
et

ho
ds

, w
ith

 a
nd

 w
ith

ou
t D

SC
s 

fo
r 

pa
tie

nt
 1

1.
 p

-v
al

ue
s 

gr
ea

te
r 

th
an

0.
05

 a
re

 it
al

ic
, i

nd
ic

at
in

g 
st

at
is

tic
al

 in
si

gn
if

ic
an

ce
.

C
C

_
m

ax
M

A
X

_
df

_m
in

A
V

G
_

df
_m

in

M
A

X
_

df
_w

ei
gh

te
d

A
V

G
_

df
_w

ei
gh

te
d

av
g_

al
l

ST
A

P
L

E

L
ef

t
A

vg
.

0.
18

0
0.

02
1

0.
00

1
0.

08
7

0.
00

2
0.

00
1

0.
31

2

T
hy

ro
id

A
vg

. w
/o

 1
1

0.
31

7
0.

00
3

0.
00

1
0.

05
9

0.
00

5
0.

00
2

0.
17

8

R
ig

ht
A

vg
.

0.
06

1
0.

00
2

0.
00

2
0.

02
6

0.
00

4
0.

00
5

0.
21

5

T
hy

ro
id

A
vg

. w
/o

 1
1

0.
00

7
0.

00
0

0.
00

1
0.

04
3

0.
00

8
0.

00
8

0.
11

4

Phys Med Biol. Author manuscript; available in PMC 2013 January 07.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Chen et al. Page 24

Ta
bl

e 
3

T
he

 D
SC

s 
co

m
pu

te
d 

be
tw

ee
n 

vo
lu

m
es

 o
f 

C
C

_w
ei

gh
te

d 
an

d 
vo

lu
m

es
 o

f 
th

e 
m

od
if

ie
d 

se
gm

en
ta

tio
ns

 C
C

_w
ei

gh
te

d_
m

od
 f

or
 a

ll 
pa

tie
nt

s.

P
at

ie
nt

1
2

3
4

5
6

7
8

9
10

L
ef

t T
hy

ro
id

0.
93

0
0.

66
9

0.
78

2
0.

95
5

0.
98

2
0.

90
8

0.
92

3
0.

98
7

0.
72

8
0.

99
2

R
ig

ht
 T

hy
ro

id
0.

95
0

0.
70

2
0.

95
6

0.
88

5
0.

98
0

0.
94

8
0.

89
3

0.
98

1
0.

97
2

0.
98

5

Pa
tie

nt
11

12
13

14
15

16
17

18
19

20

L
ef

t T
hy

ro
id

0.
20

2
0.

92
6

0.
76

4
0.

94
6

0.
98

2
0.

78
7

0.
87

6
0.

98
3

0.
93

6
0.

98
0

R
ig

ht
 T

hy
ro

id
0.

30
4

0.
86

0
0.

94
9

0.
95

3
0.

87
9

0.
69

5
0.

90
0

0.
90

9
0.

95
3

0.
98

1

Phys Med Biol. Author manuscript; available in PMC 2013 January 07.


