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Abstract
Antagonistic muscle activity can impair performance, increase metabolic cost, and increase joint
stability. Excessive antagonist muscle activity may also cause an undesirable increase in joint
contact forces in certain populations such as persons with knee osteoarthritis. Co-contraction of
antagonistic muscles measured by electromyography (EMG) is a popular method used to infer
muscle forces and subsequent joint forces. However, EMG alone cannot completely describe joint
loads that are experienced. This study compares a co-contraction index from EMG to a co-
contraction index calculated from simulated muscle moments during gait.

Co-contraction indices were calculated from nine healthy, able-bodied subjects during treadmill
walking at self-selected speed. Musculoskeletal simulations that tracked experimental kinematics
and kinetics were generated for each subject. Experimentally measured EMG was used to
constrain the model’s muscle excitation for the vastus lateralis and semimembranosus muscles.
Using the model’s excitations as constrained by EMG, muscle activation and muscle moments
were calculated. A common co-contraction index (CCI) based on EMG was compared with co-
contraction based on normalized modeled muscle moments (MCCI). While the overall patterns
were similar, the co-contraction predicted by MCCI was significantly lower than CCI.

Because a simulation can account for passive muscle forces not detected with traditional EMG
analysis, MCCI may better reflect physiological knee joint loads. Overall, the application of two
co-contraction methods provides a more complete description of muscle co-contraction and joint
loading than either method individually.
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1. Introduction
Quantification of antagonistic muscle activity is a critical component of many in vivo
analyses of human movement. Excessive antagonistic muscle contractions during dynamic
activities can impair functional performance and increase the metabolic cost of performing
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the task (Frost et al., 1997). This phenomenon, known as co-contraction, also has the
potential to increase the forces within the joint, as muscle forces are the greatest contributor
to joint loads during weight-bearing activities (Richards and Higginson, 2010; Lu et al.,
1998). Certain populations such as persons with knee osteoarthritis demonstrate abnormal
muscle coordination strategies and in particular increased antagonist muscle activity around
the knee joint (Zeni et al., 2010). The resultant excessive forces may lead to the initiation
and progression of cartilage degeneration (Griffin and Guilak, 2005). Contrarily,
coordinated antagonistic muscle activity may be a desired strategy to improve joint stability
during rapid ballistic movements. These coordinated motor control patterns have the
potential to protect ligaments from excessive forces during dynamic movements in which
the bony segments undergo rapid acceleration or deceleration (O’Connor, 1993; Hirokawa et
al., 1991). Therefore an accurate assessment of muscle-induced modifications in joint forces
and moments is critical in understanding the biomechanical variables that may lead to injury
or disease progression.

Although quantification of co-contraction is difficult, surface electromyography (EMG) has
become a common experimental tool to evaluate the magnitude of antagonistic muscle
activity. Using EMG, the summation of concomitant electrical activity from muscles that
create opposing joint motions can provide a surrogate measure of antagonistic muscles
forces acting across a joint. Although greater EMG magnitude is related to greater internal
muscle force (Richards and Higginson, 2010; Griffin and Guilak, 2005), the relationship
between EMG activity and force is not linear (Buchanan et al., 2004), particularly during
high force levels. Additionally, accurate and detailed EMG-force models can be difficult and
time-consuming to construct. Data collections associated with these models are complex and
highly reliant on electrode placement (Rainoldi et al., 2004; Hogrel et al., 1998) and
normalization procedures (Knutson et al., 1994), which may make them undesirable for
certain applications. For these reasons, interpretation of muscle force and subsequent joint
contact force based solely on surface EMG data is not ideal.

Recently, musculoskeletal simulations have provided a method for calculating realistic
estimates of muscle forces during gait (Neptune, 2000; Thelen and Anderson, 2006;
Anderson and Pandy, 2003; Richards and Higginson, 2010; Erdemir et al., 2007; Kim et al.,
2009). The potential of musculoskeletal models to provide meaningful clinical interpretation
has been highlighted, especially in cases where the relative forces of individual muscles are
assessed (Erdemir et al., 2007). While accessibility to modeling software had been a
previous limitation to this type of analysis, the recent emergence of the OpenSim software
package (Delp et al., 2007) provides an open-source, user-friendly software package to
perform these muscle force estimations from experimental kinetic and kinematic data.
Musculoskeletal simulations also model the activation dynamics and force generating
properties of muscle, and are able to estimate muscle force from excitation signals such as
EMG (Buchanan et al., 2004). However, there are limitations to musculoskeletal modeling,
such as applying generic muscle properties to a non-homogenous population and a limited
ability to validate model results. In light of these limitations, appropriate use of simulations
is paramount (Erdemir et al., 2007), and results must be evaluated before application to
clinical scenarios. The purpose of this study was to compare a co-contraction index obtained
from simulated muscle moments to a co-contraction index derived from experimentally
measured muscle activity during gait.

2. Methods
2.1. Experiment

Nine healthy, able-bodied subjects without a history of neurological or orthopedic
impairments (five males/four females, age 49.7 (13.8) years, mass 81.3 (9.5) kg, walking
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speed 1.28 (.12) m/s) were recruited as part of a study approved by the Human Subjects
Review Board at the University of Delaware. EMG and motion data were collected while
the subject walked at self-selected walking speed on an instrumented split-belt treadmill
(Bertec Corp., Columbus, OH, USA). Self-selected walking speed was determined during an
overground 20 m walk, of which the central 10 m was timed. The subjects were asked to
walk at a comfortable, self-selected speed and the calculated walking speed was used during
the treadmill data collection trials. Ground reaction forces, free moment, and center of
pressure were obtained during a 30 s trial at self-selected speed on the treadmill. The three
dimensional motion of retroreflective markers was captured at 60 Hz using a 6 camera
system(Orthotrak, Motion Analysis Corp., Santa Rosa, CA, USA).Markers were placed on
the bilateral lower extremities, pelvis and trunk using a modified Helen Hayes marker set.
The subject’s skin was cleaned with rubbing alcohol prior to placement of the EMG
electrodes on the skin surface above the vastus lateralis and semimembranosus. Accurate
placement of the electrodes was validated by palpation of the muscle bellies and assurance
of a clean EMG signal during manually resisted knee extension and flexion for the vastus
lateralis and semimembranosus, respectively. EMG data were collected at 1080 Hz and then
filtered in post-processing using a 20–400 Hz bandwidth filter. The EMG data were rectified
then filtered with a 4th order zero-phase shift Butterworth filter with a cut-off frequency of
30 Hz. EMG data were selected for a representative stride and time-normalized to 100
points. The EMG data were then normalized to the peak EMG signal from the self-selected
walking speed.

The co-contraction index (Rudolph et al., 2000) was chosen to describe the temporal and
magnitude components of the EMG signals:

(1)

where LEMG is the normalized magnitude of the EMG signal for the less active muscle,
HEMG is the normalized magnitude of EMG signal for the more highly active muscle.
Therefore, for the self-selected walking speed the CCI at each time point can range from a
value of zero (zero for both variables) to 2 (maximum normalized value for both variables).
This CCI was calculated at each point of the gait cycle, providing a time series curve from
which mean CCI was then calculated for each trial.

2.2. Modeling
The OpenSim software package was used to build a 3D, subject-specific, musculoskeletal
model containing 92 actuators and 13 degrees of freedom for the walking trial from each
subject (Delp et al., 2007). The model was scaled to the subjects’ height and mass. Inverse
kinematics was used to calculate joint kinematics from the motion capture data. The residual
reduction algorithm was then run to account for any discrepancies between experimentally
measured kinetics and kinematics calculated by inverse kinematics (Delp et al., 2007) and
resulted in minor adjustments to mass distribution and joint kinematics. Because EMG
signals are representative of the neural input responsible for muscle activation, we used the
EMG input to constrain the muscle excitation of our simulation. To do this, the magnitude
and timing of muscle excitation for the vastus lateralis and semimembranosus were set equal
to the experimentally measured EMG signals for the corresponding muscle. Next, computed
muscle control (CMC) (Thelen and Anderson, 2006) was run to calculate the forces and
resultant moments produced by these muscles while reproducing the experimental
kinematics. The joint moments generated at the knee by the vastus lateralis and
semimembranosus were normalized to the maximum muscle moment during the self-
selected walking trial. Using the normalized muscle joint moments, the co-contraction index
was modified:
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(2)

where LM is the magnitude of the joint moment for the smaller muscle moment, and HM is
the magnitude of the joint moment for the larger muscle moment at a given time.

CCI and MCCI were calculated for each point in the gait cycle. The mean values for
normalized EMG, normalized moment, and CCI and MCCI were calculated and compared
for the stance phase (first 65% of gait cycle), swing phase (terminal 35% of gait cycle) and
weight acceptance phase (first 20% of gait cycle). Significant difference between the two
methods for each phase was assessed using a paired t-test (p < 0.05). A descriptive
comparison of the time series curves over the whole gait cycle was also performed for the
CCI and MCCI.

3. Results
Data were collected for nine subjects. Overall, normalized vastus lateralis moment and
normalized EMG activity followed a similar shape, with normalized muscle moment greater
than normalized EMG during the loading (p = 0.001) and stance (p = 0.022) phase of gait
(Fig. 1a, Table 1). Conversely, normalized EMG activity was greater than normalized
muscle moment during swing (p = 0.003) for the vastus lateralis. The semimembranosus
trended (p = 0.075) toward greater normalized muscle moment than normalized EMG
activity in swing phase and showed lower normalized moment than normalized EMG
activity during stance (Fig. 1b).

On average, the EMG based CCI was higher for all three phases of gait investigated in the
study (loading p = 0.047, stance p = 0.02, swing p = 0.007) (Fig. 1c). The two methods
showed similar shapes however, with CCI and MCCI greatest during the weight acceptance
portion of the gait cycle when averaged across nine subjects. The largest difference between
CCI and MCCI occurred during swing, with the mean MCCI less than 50% of the mean
CCI.

4. Discussion
Co-contraction calculated from experimental EMG activity and modeled muscle moments of
the vastus lateralis and semimembranosus were fairly similar with peak values occurring
during early stance, which is consistent with previous reports of muscle activation (Perry
and Burnfield, 2010). Overall, the co-contraction predicted by the MCCI technique was
significantly lower than CCI. This is due to lower semimembranosus moment during stance
and lower vastus lateralis moment during swing compared to EMG activity.

Discrepancies between EMG activity and muscle moments can be partially attributed to a
combination of muscle properties (e.g. force-length and force-velocity) and mechanical
properties (e.g. moment arm). These factors play an important role in the modulation of
muscle force and are included in musculoskeletal joint models, but are not considered in
traditional EMG co-contraction analyses. For example, muscle moment produced by the
semimembranosus during the loading phase of gait is decreased due to the concentric
behavior of the muscle as the knee flexes. In this case, loss in muscle moment due to
shortening of the semimembranosus outweighs the small (~2 mm) increase in moment arm
experienced by the semimembranosus over the knee flexion range during loading.
Conversely, extension of the knee during terminal swing causes an eccentric contraction of
the semimembranosus, enhancing the force and moment generated about the knee. The
vastus lateralis has an eccentric contraction during loading, enhancing the moment
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production in stance, and a concentric contraction during terminal swing, decreasing
moment production.

The apparent differences between the two approaches may reflect important non-neural
factors that influence muscle forces. During dynamic activities, muscles can exert passive
forces which are translated to the knee joint. Force–length and force–velocity properties in
particular can heavily influence the force production of a muscle for a given activation level
(Zajac et al., 2003). It is important to note that in our simulations, the excitation for each
muscle was equal to the EMG signals. Therefore, the differences between the computed
muscle moments and muscle EMG signals were attributable to the active and passive
physiological properties of muscle that are considered within the simulation framework, but
are not encompassed with traditional EMG analysis.

While using simulated muscle moments to calculate co-contraction may be advantageous,
there are several limitations to this approach. Although there have been recent attempts to
validate simulated muscle forces with the use of an instrumented knee implant (Kim et al.,
2009), simulated muscles forces in general cannot be validated directly. In this study,
generic muscle properties were used when modeling the muscle moment from EMG. While
the normalization of muscle moment used to facilitate comparison between the EMG and
muscle moment methods also removed the influence of maximum muscle force, other
generically modeled muscle properties such as optimal fiber length may still affect the
timing and magnitude of the simulated muscle moment. Although EMG provides an
estimation of muscle activity, it is also subject to several limitations that make accurate
assessment of co-contraction difficult. Assessment of electrical muscle activity from the
same electrode within the same session, but at a different joint angle or during a different
direction of contraction is an inherent limitation of EMG. Different joint angles will alter the
tissue volume located beneath the muscle, which may also affect the magnitude and
frequency characteristics of the EMG signal (Farina et al., 2002). The quality and
repeatability of the EMG signal is dependent on the careful placement of electrodes (Hogrel
et al., 1998; Rainoldi et al., 2004), but even with careful and repeatable electrode placement,
EMG signals are subject to cross talk from other muscles (De Luca and Merletti, 1988) or
may contain aberrant signals from electrical devices and motion artifact. Finally, all EMG
processing is subject to a normalization process, and the selection of a normalization value
(i.e. maximum within trial, global maximum) has an associated muscle state (i.e. velocity,
length)which can affect the processed EMG values (Farina et al., 2002). Ideally, the muscle
state during the maximal trial used for normalization would be comparable to the muscle
state during the dynamic trial, however this is not always the case. Differences in
normalization procedures can affect reported EMG magnitudes, as well as subsequent co-
contraction indices. EMG magnitudes in this and other studies must be cautiously
interpreted.

The combination of EMG and joint moment co-contraction analysis may give a more
complete description of muscle activity and joint loads than either method can provide. Joint
moment co-contraction analysis using modeling techniques accounts for additional factors
that play a role in force production such as force–velocity and force–length properties.
These properties may have substantial impact when considering abnormal gait patterns. In
this study, only two muscles were compared between the experimental and simulated co-
contractions. The muscles chosen in this paper represent the two muscles during the gait
cycle that are likely to have overlapping on-times (Perry and Burnfield, 2010), produce the
highest amount of muscle force (Delp, 1990), and are commonly attributed to abnormal
antagonistic activity in patients with knee pathology (Rudolph et al., 2000; Zeni et al., 2010;
Ramsey et al., 2007; Hubley-Kozey et al., 2009). Future studies evaluating co-contraction
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should consider using the MCCI with additional muscles as an alternate or supplement to
EMG analysis.
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Fig. 1.
Comparison of the EMG and muscle moment techniques for (a) the vastus lateralis EMG
activity versus simulated muscle moment, (b) the semimembranosus EMG activity versus
simulated muscle moment, and (c) CCI versus MCCI. Vertical line indicates beginning of
swing phase.

Knarr et al. Page 9

J Electromyogr Kinesiol. Author manuscript; available in PMC 2013 August 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Knarr et al. Page 10

Ta
bl

e 
1

M
ea

n 
va

lu
es

 f
or

 th
e 

lo
ad

in
g,

 s
ta

nc
e,

 a
nd

 s
w

in
g 

ph
as

es
 o

f 
ga

it 
fo

r 
th

e 
va

st
us

 la
te

ra
lis

, s
em

im
em

br
an

os
us

, a
nd

 c
o-

co
nt

ra
ct

io
n 

in
di

ce
s.

 G
ra

ye
d 

co
m

pa
ri

so
ns

ar
e 

no
t s

ig
ni

fi
ca

nt
 (

p>
 0

.0
5)

.

P
ha

se
V

as
tu

s 
L

at
er

al
is

Se
m

im
em

br
an

os
us

C
o-

co
nt

ra
ct

io
n

E
M

G
M

om
en

t
E

M
G

M
om

en
t

C
C

I
M

C
C

I

L
oa

di
ng

0.
54

 (
0.

09
)

0.
67

 (
0.

07
)

0.
30

 (
0.

18
)

0.
23

 (
0.

12
)

0.
42

 (
0.

27
)

0.
28

 (
0.

17
)

St
an

ce
0.

28
 (

0.
06

)
0.

32
 (

0.
04

)
0.

21
 (

0.
11

)
0.

13
 (

0.
06

)
0.

24
 (

0.
14

)
0.

15
 (

0.
09

)

Sw
in

g
0.

23
 (

0.
13

)
0.

14
 (

0.
08

)
0.

31
 (

0.
09

)
0.

38
 (

0.
12

)
0.

24
 (

0.
16

)
0.

09
 (

0.
06

)

J Electromyogr Kinesiol. Author manuscript; available in PMC 2013 August 01.


