

NIH Public Access Author Manuscript

Front Biosci. Author manuscript; available in PMC 2012 November 26.

Published in final edited form as: *Front Biosci.*; 11: 81–88.

CHANGES IN LAMININ ISOFORMS ASSOCIATED WITH BRAIN TUMOR INVASION AND ANGIOGENESIS

Julia Y. Ljubimova¹, Manabu Fujita¹, Natalya M. Khazenzon¹, Alexander V. Ljubimov², and Keith L. Black¹

¹Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California

²Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California

Abstract

Laminins are the major constituents of blood vessel basement membranes (BMs). Each laminin is a trimer consisting of three assembled polypeptide chains, α , β and γ . More than 15 laminin isoforms are known to date and the expression of specific isoforms may change in certain pathological conditions. Here we show that during progression of glial tumors laminin-9 ($\alpha 4\beta 2\gamma 1$) is switched to laminin-8 ($\alpha 4\beta 1\gamma 1$), which is dramatically increased in glial brain tumors. Laminin-8 overproduction by glial tumor cells facilitates spread of glioma. Brain tumors with laminin-8 overexpression recur faster after standard treatment and patients have shorter survival time. Laminin-8 may be thus used as a predictor of tumor recurrence, patient survival and as a potential molecular target for glioma therapy.

Keywords

Laminin-8; Laminin-9; Basement Membrane; Extracellular Matrix; Angiogenesis; Human; Cancer; Tumor; Neoplasm; Glioma; Glioblastoma Multiforme; Recurrence; Survival; Invasion; Morpholino antisense; Review

2. INTRODUCTION

The majority of gioblastoma multiforme (GBM) tumors are highly invasive and rapidly develop recurrences at the primary site. Tumor prognoses and responses to therapy, however, can vary greatly even with the same histological diagnosis (1). It is generally recognized that the improvement of prognosis, prediction of response to treatment, and development of novel effective therapeutic approaches for glial tumors may largely depend upon the introduction into clinical practice of novel specific markers involved in the development of different gliomas and their subsequent recurrences. Attempts have been made to establish and characterize a number of glioma markers, but such studies have not altered existing therapeutic approaches, treatment success rates or disease outcome prediction (1, 2). Researchers then sought to identify novel glioma markers using powerful gene array technology (3–6).

3. LAMININ ISOFORM CHANGES DURING GLIOMA PROGRESSION

A number of genes and proteins have been identified with altered expression in glial tumors. Most recently, some of the markers have been tested for diagnostic and prognostic purposes.

Send correspondence to: Julia Y. Ljubimova, M.D., Ph.D., Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 8631 West Third Street, Suite 800-E, Los Angeles, CA 90048, Tel. 310-423-0834, Fax 310-423-0810, ljubimovaj@cshs.org.

These markers include epidermal growth factor receptor (EGFR), tenascin-C, bcl-2 family of antiapoptotic proteins, survivin, Rho proteins, p53, and vascular endothelial growth factor (VEGF) and its receptors (7–12). Results of these tests have so far been controversial. Some reports suggest that specific proteins (Rho, VEGF, EGFR) could be used to discriminate between low-grade and high-grade gliomas. Increased expression of some proteins (EGFR, tenascin-C, survivin) correlated with shorter patient survival (13–15). At the same time, some of these markers, e.g., VEGF, are upregulated in a variety of tumors and are not glioma-specific. Other markers (bcl-2 family, EGFR) did not significantly correlate with survival when large groups of patients were studied (15–17). Therefore, before being considered as diagnostic and/or prognostic tools, these and other candidate markers have to be thoroughly analyzed in well-controlled studies involving significant numbers of patients and tumors of different grades. Unfortunately, the vast majority of existing markers of tumor invasion and progression have not yet been put through a rigorous pre-clinical and clinical testing.

3.1. Laminin-8 as a new glioma biomarker

In an earlier study (4) we found two genes that were consistently upregulated in all highgrade and low-grade gliomas and in tissues adjacent to GBMs, the most aggressive gliomas. One of these genes coding for EGFR was already known to be overexpressed in gliomas. The other one was coding for the α 4 chain of laminin, which was not known to be overexpressed in any type of tumor. Laminin α 4 chain is a constituent of three known laminins, laminin 8, laminin-9 and laminin-14 (18). Laminins are the major components of basement membranes that lie beneath the endothelial surface layer of blood vessels. Each laminin consists of three chains, α , β , and γ (4,18).

We found that during progression of human gliomas, the expression of capillary basement membrane (BM) laminins containing $\alpha 4$ chain switched from the predominant laminin-9 ($\alpha 4\beta 2\gamma 1$) to laminin-8 ($\alpha 4\beta 1\gamma 1$) (4, Figure 1). Laminin-8 and laminin-9 have similar structure but different β chains. Laminin-8 and its receptors, integrins $\alpha_3\beta_1$ and $\alpha_6\beta_1$, appear to be important to the functioning of endothelial cell BMs, which play a role in the maintenance of the blood-brain barrier (19,20). Recently, the association of laminin $\alpha 4$ chain with angiogenesis has been demonstrated *in vivo* and *in vitro* (21). Some cultured glioma cell lines can also produce $\alpha 4$ and $\beta 1$ -containing laminins. Laminin-8 is thought to play a role in cell migration during development, wound healing, and angiogenesis (19,22,23).

3.2. Development of in vitro system to block laminin-8

To examine the involvement of laminin-8 in glioma invasion, a reliable *in vitro* system was needed where it was possible to quantify invasion rates and to optimize the dosage of antisense laminin oligonucleotides. We used a cell culture system to meet these important needs. To better mimic the *in vivo* situation in glial tumors where the major cell types are glial (astrocytes) and endothelial cells (21), we needed to combine glioma cells with brain endothelium in a co-culture (24, Figure 2). In such a situation, endothelial cells can develop capillary-like structures, and this process is faster when endothelial cells are cultured with tumor astrocytes than with normal embryonic brain astrocytes (25). We hypothesized that in glioma-endothelium co-cultures there would be more laminin-8 produced, and that this laminin might increase glioma invasion in a Matrigel assay. Research into these issues could facilitate GBM diagnosis and prognosis, and eventually increase survival of brain cancer patients.

To probe the role of laminin-8 in glioma invasion, the use of antisense oligonucleotides to block its expression was attempted. The potential of antisense is widely recognized but it

remained unfulfilled since, until recently, the available oligonucleotides suffered from poor specificity, instability, and undesirable non-antisense effects (26, 27). These problems have been largely solved by the new generation of antisense oligonucleotides that offer the promise of safe and effective therapeutics for various diseases including cancer (28,29). New-generation antisense oligonucleotides are being used in studies to find effective medications and treatments for many disorders, including viruses and cancers. Antisense technology is being refined not only for drug validation and diagnostic purposes but also for the development of future treatments for patients.

The most promising types of antisense oligonucleotides are Morpholino and peptide nucleic acid (PNA; they have nucleobases attached to a neutral "peptide-like" backbone) oligonucleotides (26, 28). Our new study used short strands of chemically modified genetic material (MorpholinoTM antisense oligonucleotides) to block the messenger RNA (mRNA). They work well in the presence or absence of serum, are totally resistant to nucleases, and remain intact in culture medium and in cells indefinitely. Morpholino oligonucleotides have a high affinity for RNA and efficiently invade even quite stable secondary structures in mRNAs. They have the highest sequence specificity of all antisense types over a very broad concentration range and appear to be free of non-antisense effects (28,29). They have high activity in a cell-free translation system and can block target protein production in cultured cells (26). Morpholino are also effective *in vivo* (30). Given these properties, Morpholino oligonucleotides have been chosen here to inhibit the expression of laminin-8 chains in culture. Special experiments (cell viability assay (32)) have shown that Morpholino antisense treatment did not affect the viability of any cell line used.

Matrigel invasion assay was developed for quantitative measurement of the invasiveness of tumor cells through a BM matrix. Most tested cells characterized as invasive and metastatic *in vivo* are able *in vitro* to invade Matrigel, which is a BM-like material from the mouse Engelbreth-Holm-Swarm tumor (33,34).

When co-cultures of human U-87MG or M059K glioma cells with normal human brain endothelial cells (HBMVEC) were treated by antisense, the inhibition of invasiveness on Matrigel was 62% for U-87MG+HBMVEC and 53% for M059K+HBMVEC compared to control cells treated with corresponding sense oligonucleotides. In our experiments, $\alpha 4$ and $\beta 1$ laminin chain expression was inhibited more efficiently with a lower concentration of antisense oligonucleotides (0.25 + 0.25 mM) than with a higher concentration (0.5 + 0.5 mM), although no apparent toxicity was noticed at either concentration (Figure 3).

The use of antisense technology *in vivo* may offer an effective future tumor treatment because of its efficiency, specificity and ease of delivery to tumor cells (28, 29). This technology is being continuously developed and refined not only for the drug validation and diagnostic purposes but also for the development of future treatments. The present data emphasize the feasibility of antisense approach using laminin-8 as a target for treatment of brain gliomas. Reduction of tumor invasion by antisense to laminin-8 may slow the growth and spread of aggressive two GBMs cell lines, U-87MG and M059K (Figure 4). In combination with other treatment methods or with blocking of other targets as well (EGFR or matrix metalloproteinases, MMPs) it may prolong disease-free periods and increase survival of glioma patients. Future developments of laminin-8 blocking for therapeutic purposes may also include the use of specific monoclonal antibodies and/or small interfering RNA (siRNA) that is an emerging promising approach for gene silencing.

It remains to be established how laminin-8 promotes glioma invasiveness. One possible mechanism may be stimulation of cell migration. Laminin-8 rather weakly supported cell adhesion and spreading compared to laminin-5 or laminin 10/11 (20,37). At the same time,

laminin-8 stimulated cell migration better than several other laminin isoforms (20). Increased expression of laminin-8 in both glioma cells and glioma-adjacent capillary endothelial cells (4, 20, this report) may reduce glial cell adhesion and enhance migration, which is necessary for local tumor invasiveness. A recent gene microarray analysis of 85 gliomas identified the top 44 genes that distinguish the major gene clusters of gliomas. Gene expression of laminin β 1 chain (part of laminin-8) was one of them out of ten thousand genes (38).

3.3. Laminin-8 is a predictor of glioma outcome. Clinical data

We have recently examined a significantly larger number of brain tumors (from 60 patients) including glial tumors of different grades in an attempt to correlate laminin-8 expression with recurrence development and patient survival (39). Immunohistochemistry and Western blotting were used to detect laminin isoforms of interest.

For 23 GBM patients laminin-8 expression was compared with tumor recurrence and patient survival time. For one patient, who was twice operated, the death record was not found. Clinically, all 17 GBM patients with high laminin-8 levels developed tumor recurrences at a mean of 3.92 months after surgery, whereas six patients with high laminin-9 expression developed recurrences at a mean of 11.43 months after surgery. This difference was highly significant (p=0.0002, Figure 4). The new data with expanded number of patients fully confirmed our previous study on 9 GBM patients (4). The mean survival time for 16 GBM patients whose tumors expressed laminin-8 was 11.2 months, whereas for eight GBM patients whose tumors expressed laminin-9 the mean survival time was 16.7 months (p<0.015, Figure 4).

Enhanced expression of laminin-8 in high-grade compared with low-grade gliomas suggests its involvement in tumor progression. Overexpression of laminin-8 in tumor-adjacent tissues may facilitate the spread of microinvasive glioma foci not removed by surgery or available therapy and lead to recurrence. This may explain why laminin-8 may be predictive of glioma recurrence. Given these patterns of laminin-8 (and to a lesser extent, laminin-9) expression, we hypothesize that laminin-8 plays a role in glioma progression and tumor recurrence, and that inhibiting its expression may inhibit glioma invasion and recurrence. In summary, the majority of high-grade gliomas had increased levels of laminin-8 ($\alpha 4\beta 1\gamma 1$) in blood vessel walls, whereas in low-grade tumors laminin-9 ($\alpha 4\beta 2\gamma 1$) predominated. GBMs that predominantly expressed laminin-8 had a shorter time to tumor recurrence and patient survival than GBMs that predominantly expressed laminin-8 had as in their progression. It thus appears to be a promising target for new therapeutic approaches possibly with combination with other tumor markers or standard chemo- and radiation therapy.

A new glioma-endothelial co-culture model suitable for studying laminin-8 expression and its inhibition *in vitro* by antisense oligonucleotides was developed to examine the role of laminin-8 in cell migration and invasion. Morpholino antisense oligonucleotides proved to be efficient inhibitors of laminin-8 expression in co-cultures. These antisense oligonucleotides also significantly inhibited invasion of two different glioma cell lines *in vitro*. The results suggest that laminin-8 may play an important role in glioma invasion. Morpholino oligonucleotides may provide an efficient method to block laminin-8 expression for future therapeutic purposes.

4. PERSPECTIVE

Laminins are the major constituents of blood vessel BMs. Gradual increase of laminin-8 expression with a switch from laminin-9 in low-grade glial tumors (grade I-II) to moderate

Page 5

in grade III and significantly high expression in 76% of GBMs (grade IV) may be associated with neovascularization and, thus, contribute to tumor aggressiveness. Overall, laminin-8 overexpressed in GBMs, together with factors promoting tumor growth (e.g., EGFR), might be an important prognostic factor for predicting GBM time to recurrence and patient survival time. As invasion-promoting factor it may be potentially used as a target for glioma therapy.

In combination with several new well-characterized proteins associated with glioma progression, such as tenascin-C, MMP-2 and MMP-9 (4, 38, 40–44), laminin-8 may be an important tool for potential diagnosis or treatment of gliomas. Previously, only laminin-5 was shown to play a role in melanoma invasion (45). Our present data suggest that vascular laminin-8 also plays a significant role in glioma cell invasiveness. Since matrix-degrading proteinases are also important for glioma invasion (46), future research should explore whether proteolysis of laminin is required for glioma invasion. Our recent data suggest that laminin-8, which may facilitate tumor invasion, contributes to tumor regrowth after therapy. Laminin-8 may be used as a predictor of tumor recurrence, patient survival and as a potential molecular target for glioma therapy. Pre-clinical study of laminin-8 inhibition is in progress to develop treatment regimens for glial tumor prevention.

Our recent study on breast cancer (47) also showed that the expression of laminin β 2 chain (a constituent of laminin-9) was mostly seen in vascular BMs of normal breast and carcinomas *in situ* but not in invasive carcinomas or metastases. In contrast, laminin β 1 chain (a constituent of laminin-8) appeared in vessel walls of carcinomas and their metastases. A similar change from laminin-11 (α 5 β 2 γ 1) to laminin-10 (α 5 β 1 γ 1) was observed in vascular BMs during breast tumor progression. Therefore, a switch from β 2-containing to β 1-containing laminins may not be confined to brain glioma but appears to be a more general phenomenon associated with tumor development and progression. In this respect, blocking the expression of laminin β 1 chain (possibly, together with α 4 and/or α 5 chains) could have a potential importance for the development of future antiangiogenic therapies for cancer.

The original work described in this review was conducted under appropriate protocols approved by Cedars-Sinai Medical Center Institutional Review Board.

References

- Shapiro WR, Shapiro JR. Biology and treatment of malignant glioma. Oncology. 1998; 12:233–240. [PubMed: 9507524]
- 2. Gonzales, MF. Classification and pathogenesis of brain tumors. In: Kaye, AH.; Laws, ER., Jr, editors. Brain tumors. Churchill Livingstone; Edinburgh: 1997.
- Ljubimova JY, Khazenzon NM, Chen Z, Neyman YI, Turner L, Riedinger MS, Black KL. Gene array analysis of differentially expressed genes in human glial tumors. Int J Oncol. 2001; 18:287– 295. [PubMed: 11172594]
- Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin ML, Ljubimov AV, Black KL. Overexpression of α4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001; 61:5601–5610. [PubMed: 11454714]
- Sehgal A. Molecular changes during the genesis of human gliomas. Semin Surg Oncol. 1998; 14:3– 12. [PubMed: 9407626]
- Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ. A public database for gene expression in human cancers. Cancer Res. 1999; 59:5403–5407. [PubMed: 10554005]

- Qin H, Sun Y, Benveniste EN. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem. 1999; 274:29130–29137. [PubMed: 10506168]
- Huncharek M, Kupelnick B. Epidermal growth factor receptor gene amplification as a prognostic marker in glioblastoma multiforme: results of a meta-analysis. Oncol Res. 2000; 12:107–112. [PubMed: 11132923]
- Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N, Fujimaki T, Hojo S, Kubo O, Ide T, Usui M, Ochiai C, Ito S, Takahashi H, Mukasa A, Asai A, Kirino T. Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res. 2002; 8:196–201. [PubMed: 11801559]
- Muracciole X, Romain S, Dufour H, Palmari J, Chinot O, Ouafik L, Grisoli F, Branger DF, Martin PM. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys. 2002; 52:592–598. [PubMed: 11849778]
- Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol. 2002; 20:1063–1068. [PubMed: 11844831]
- Forget MA, Desrosiers RR, Del M, Moumdjian R, Shedid D, Berthelet F, Beliveau R. The expression of rho proteins decreases with human brain tumor progression: potential tumor markers. Clin Exp Metastasis. 2002; 19:9–15. [PubMed: 11918088]
- Kulla A, Liigant A, Piirsoo A, Rippin G, Asser T. Tenascin expression patterns and cells of monocyte lineage: relationship in human gliomas. Mod Pathol. 2000; 13:56–67. [PubMed: 10658911]
- Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer. 2002; 98:362–369. [PubMed: 11920587]
- Yao Y, Kubota T, Sato K, Kitai R, Takeuchi H, Arishima H. Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochir (Wien). 2001; 143:159–166. [PubMed: 11459088]
- Strik H, Deininger M, Streffer J, Grote E, Wickboldt J, Dichgans J, Weller M, Meyermann R. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 2001; 67:763–768. [PubMed: 10567494]
- Zhou YH, Tan F, Hess KR, Yung WK. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res. 2003; 9:3369–3375. [PubMed: 12960124]
- Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004; 20:255–284. [PubMed: 15473841]
- Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K. Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002; 22:1194–1202. [PubMed: 11809810]
- 20. Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K. Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through $\alpha_3\beta_1$ and $\alpha_6\beta_1$ integrins. J Biol Chem. 2001; 276:17550–17558. [PubMed: 11278628]
- 21. Gonzalez AM, Gonzales M, Herron GS, Nagavarapu U, Hopkinson SB, Tsuruta D, Jones JC. Complex interactions between the laminin α4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc Natl Acad Sci USA. 2002; 99:16075–16080. [PubMed: 12454288]
- 22. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, Copeland NG, Sanes JR. The laminin a chains: expression, developmental transitions, and chromosomal locations of a1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel a3 isoform. J Cell Biol. 1997; 137:685–701. [PubMed: 9151674]
- Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002; 12:197–207. [PubMed: 12083850]

- Boado RJ, Kazantsev A, Apostol BL, Thompson LM, Pardridge WM. Antisense-mediated downregulation of the human huntingtin gene. J Pharmacol Exp Ther. 2000; 295:239–243. [PubMed: 10991985]
- Minakawa T, Bready J, Berliner J, Fisher M, Cancilla PA. In vitro interaction of astrocytes and pericytes with capillary-like structures of brain microvessel endothelium. Lab Invest. 1991; 65:32– 40. [PubMed: 2072663]
- Nielsen PE. Peptide nucleic acid targeting of double-stranded DNA. Methods Enzymol. 2001; 340:329–340. [PubMed: 11494857]
- Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002; 1:347–355. [PubMed: 12489851]
- Summerton J, Weller D. Morpholino antisense oligomers: Design, preparation and properties. Antisense Nucleic Acid Drug Dev. 1997; 7:187–195. [PubMed: 9212909]
- Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA. 2000; 97:9591–9596. [PubMed: 10944225]
- Taylor MF, Paulauskis JD, Weller DD, Kobzik L. Comparison of efficacy of antisense oligomers directed toward TNF-α in helper T and macrophage cell lines. Cytokine. 1997; 9:672–681. [PubMed: 9325016]
- Arora V, Knapp DC, Smith BL, Statdfield ML, Stein DA, Reddy MT, Weller DD, Iversen PL. c-Myc antisense limits rat liver regeneration and indicates role for c-myc in regulating cytochrome P-450 3A activity. J Pharmacol Exp Ther. 2000; 292:921–928. [PubMed: 10688605]
- 32. Khazenzon NM, Ljubimov AV, Lakhter AJ, Fujiwara H, Sekiguchi K, Sorokin LM, Petäjäniemi N, Virtanen I, Black KL, Ljubimova JY. Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol Cancer Ther. 2003; 2:985–994. [PubMed: 14578463]
- Albini A, Iwamoto Y, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987; 47:3239–3245. [PubMed: 2438036]
- Kleinman HK, McGarvey ML, Hassell JR, Star VL, Gannon FB, Laurie GW, Martin GR. Basement membrane complexes with biological activity. Biochemistry. 1986; 25:312–318. [PubMed: 2937447]
- 35. Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet. 2000; 356:1728–1733. [PubMed: 11095261]
- 36. Shi N, Boado RJ, Pardridge WM. Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci USA. 2000; 97:14709–14714. [PubMed: 11106372]
- 37. Knott JC, Mahesparan R, Garcia-Cabrera I, Bolge Tysnes B, Edvardsen K, Ness GO, Mork S, Lund-Johansen M, Bjerkvig R. Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int J Cancer. 1998; 75:864–872. [PubMed: 9506531]
- Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 2004; 64:6503–6510. [PubMed: 15374961]
- Ljubimova JY, Fujita M, Khazenzon NM, Das A, Pikul BB, Newman D, Sekiguchi K, Sorokin LM, Sasaki T, Black KL. Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer. 2004; 101:604–612. [PubMed: 15274074]
- Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int J Cancer. 2002; 98:362–369. [PubMed: 11920587]
- Zagzag D, Capo V. Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/vascular permeability factor and tenascin-C. Common molecular effectors in cerebral neoplastic and non-neoplastic "angiogenic diseases". Histol Histopathol. 2002; 17:301– 321. [PubMed: 11813879]
- Qin H, Sun Y, Benveniste EN. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem. 1999; 274:29130–29137. [PubMed: 10506168]

- MacDonald TJ, DeClerck YA, Laug WE. Urokinase induces receptor mediated brain tumor cell migration and invasion. J Neurooncol. 1998; 40:215–226. [PubMed: 10066093]
- 45. Tsuj T, Kawada Y, Kai-Murozono M, Komatsu S, Han SA, Takeuchi K, Mizushima H, Miyazaki K, Irimura T. Regulation of melanoma cell migration and invasion by laminin-5 and α3β1 integrin (VLA-3). Clin Exp Metastasis. 2002; 19:127–134. [PubMed: 11964076]
- 46. Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL, Nirmala C, Lakka SS, Adachi Y, Kyritsis AP, Ali-Osman F, Sawaya R, Fuller GN, Rao JS. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 2000; 60:6851–6855. [PubMed: 11156378]
- 47. Fujita M, Khazenzon NM, Bose S, Sekiguchi K, Sasaki T, Carter WG, Ljubimov AV, Black KL, Ljubimova JY. Overexpression of β1 chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res. 2005; 7:R411–R421. [PubMed: 15987446]

Figure 1.

Double immunofluorescent staining of brain tissues for laminin-8 ($\alpha 4\beta 1\gamma 1$) and laminin-9 ($\alpha 4\beta 2\gamma 1$) chains, and for von Willebrand factor (vWF) specific for endothelial cells. N, Normal brain, where microvessels are positive for vWF, and $\alpha 4$ and $\beta 1$ laminin chains are barely visible. At the same time, $\beta 2$ laminin chain is prominent in vessel walls positive for vWF. This pattern is compatible with small amounts of laminin-9. AS II, Astrocytoma grade II with stronger staining for laminin $\alpha 4$ chain in brain microvessels. Expression of laminin $\beta 1$ chain is higher than in normal brain and $\beta 2$ is still strong. This pattern is compatible with predominance of laminin-9.GBM, glioblastoma multiforme with very bright staining of $\alpha 4$ and $\beta 1$ laminin chains but very weak $\beta 2$ chain in brain vessels. This pattern is compatible with predominance of laminin-8. Reproduced with permission from *Cancer* 101, 604–612 (2004)

Figure 2.

Laminin $\alpha 4$, $\beta 1$, and $\beta 2$ chain staining of co-cultures. Live co-cultures were exposed to Ac-LDL (green color, to reveal endothelial cells) and then fixed and simultaneously stained for select laminin chains (red color) and nuclei (DAPI, blue color). In endothelial-normal astrocyte co-cultures (HBMVEC+HAST040) $\alpha 4$ and $\beta 2$ chains are expressed in Ac-LDLpositive endothelial cells only but not in Ac-LDL-negative astrocytes (arrows). $\beta 1$ chain is largely absent. In endothelial-glioma co-cultures (HBMVEC+M059K), $\alpha 4$ chain is expressed by both cell types and $\beta 2$ chain, only by endothelial cells. Importantly, $\beta 1$ chain is now expressed not only by Ac-LDL-negative glioma cells (arrowheads) but also by Ac-LDL-positive endothelial cells. Reproduced with permission from: *Mol Cancer Ther* 2, 985– 994 (2003)

Figure 3.

Measurement of invasion in co-cultures after antisense treatment. The Matrigel invasion assay was carried out as described in Materials and Methods. Note significant decrease in the fraction of cells that invaded through Matrigel in antisense-treated cultures. A more pronounced effect is seen with a combination of antisense oligonucleotides. Similar results were obtained with M059K and U-87MG glioma cell lines. *, p<0.04; **, p<0.001 by ANOVA. Invasion in sense-treated cultures was taken as 100%. Reproduced with permission from: *Mol Cancer Ther* 2, 985–994 (2003)

Recurrence-free time

Figure 4.

Laminin-8 associates with decreased time of recurrent tumor development and decreased survival of GBM patients compared to laminin-9. Statistical analysis was done using Kaplan-Meier test. p=0.0002 for tumor recurrence, and p<0.015 for patient survival. Reproduced with permission from *Cancer* 101, 604–612 (2004)