Skip to main content
. 2012 Jun 20;12:457. doi: 10.1186/1471-2458-12-457

Table 5.

Predictors of burnout by using binary logistic regression and of EE, DP and PA by using linear regression

Independent variable
Model 1
Model 2
Model 3
Model 4
Model 5
  Odds ratio(95%CI) p-value Odds ratio(95%CI) p-value Odds ratio(95%CI) p-value Odds ratio(95%CI) p-value Odds ratio(95%CI) p-value
Fixed effect
 
 
 
 
 
 
 
 
 
 
My job is stressfulYes (1)
4.64(2.65 – 8.11)
<0.001
5.81(1.01–34.04)
0.05
4.14(1.28–13.40)
0.018
7.08(1.28–39.08)
0.02
6.65(1.21–36.47)
0.03
Age
0.96(0.94–0.98)
<0.001
0.94(0.89–0.94)
0.03
0.95(0.91–0.99)
0.014
0.94(0.89–0.99)
0.03
0.94(0.89–0.99)
0.04
Fatigue
5.10(1.22 – 21.43)
<0.003
7.63 (0.05–11.25)
0.42
4.96(4.37–5.63)
0.1964
-
 
-
-
EE
-
 
0.69(0.61–0.79)
<0.0001
1.38 (1.29–1.49)
<0.001
0.69(0.60–0.79)
<0.001
0.69(0.61–0.79)
<0.001
DP
-
 
0.18(0.11–0.31)
<0.0001
1.58 (1.43–1.76)
<0.0001
0.17(0.1–0.30)
<0.001
0.18(0.11–0.31)
<0.001
EE*DP
-
 
1.08(1.06–1.10)
<0.0001
-
-
1.08(1.05–1.11)
<0.001
1.08(1.06–1.10)
<0.001
Random effect (variances)
 
 
 
 
 
 
 
 
 
 
Gender
0.0494
 
1.6474
 
 
 
1.48
 
0.0046458
 
Gender (within town)Male (1)
 
 
 
 
0.918
 
 
 
0.067340
 
Fatigue (within gender)
 
 
 
 
 
 
0.43
 
0.0050315
 
Deviance
812.9
 
123.6
 
207
 
125.7
 
126.6
 
Null model deviance = 953