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Abstract

Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are
expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein
can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular
crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and
potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are
intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and
how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several
IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTa, TC1, and a-synuclein) with
different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD
simulation of ProTa. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the
alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least
partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has
differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization
of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under
crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular
environments.
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Introduction

Macromolecular crowding and confinement can have signifi-

cant impacts on the behaviors of proteins in cellular environments.

Inside of cells, the concentration of macromolecules can reach up

to 400 g/L [1,2]. The cumulative excluded volume from all

macromolecules inside of cells is commonly referred to as

macromolecular crowding [3,4]. The large volume occupied by

macromolecules in the cellular environment exerts nonspecific

forces on surrounding molecules [3]. It is well documented that

these forces can have significant effects on the behaviors of

proteins [5–7].

Experimental studies have demonstrated that molecular crowd-

ing can affect protein structure and function. For example, at low

pH, cytochrome c adopts an unfolded form. When the crowding

agent dextran is added to the sample, the protein transitions into

a near-native molten globule state [8]. Crowding has also been

shown to enhance the activity of phosphoglycerate kinase (PGK)

in vitro. At a mild concentration of Ficoll 70 (100 g/L), the

enzymatic activity of PGK was found to increase by more than 10

fold (after the viscosity effect was taken into account), possibility

due to the large-scale of conformational changes induced by the

crowders [9]. In another study, Stagg et al. [10] investigated

effects of crowding on the structure and stability of both the native

and denatured states of Flavodoxin. Interestingly, their experi-

mental and computer simulation results indicate that the presence

of a high concentration of Ficoll 70 in solution increased the

thermal stability and secondary structure content of the native-

state ensemble, but had relatively minor effects on the denatured

state [10].

The crowded environment in cells also alters the diffusional

behavior of proteins, and thus their rates of folding, association

with other molecules and intracellular transport [11,12]. A recent

work by Leduc et al. [13] suggested that different motor proteins,

such as kinesins, process distinct molecular properties in order to

operate effectively in the crowded cellular environments. Macro-

molecular crowding has also been proposed to be one of the

possible factors that regulate the phosphorylation of ERK kinase

in cells. Aoki et al. [14] demonstrated that under crowded

conditions, the phosphorylation of ERK could switch from the

distributive to processive mode. Further, experimental and

molecular simulation studies suggested that crowding plays a key

role in human diseases that are related to protein aggregation and

fibril formation [15–17]. For instance, the amyloid formation of

human and bovine prion proteins are significantly enhanced even

at mild concentration (150–200 g/L) of Ficoll 70. Intriguingly, the
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amyloid formation of rabbit prion protein is inhibited by crowding

agents [17,18].

The effects of macromolecular crowding on the structure and

dynamics of IDPs, on the other hand, are less explored. These

proteins lack stable tertiary structures and can be very flexible

under non-denaturing conditions. The functions of IDPs are

intimately related to their dynamics [19]. It has been proposed

that proteins with disordered regions have larger capture radius for

targets, therefore, enhancing the binding rates by the so-called

‘‘fly-casting’’ mechanism [20]. Flexibility of IDPs also governs the

affinity of target recognition. The high entropic cost of disorder-to-

order transition upon binding needs to be compensated by specific

interactions formed in the interface with target. Therefore, IDPs

frequently associate with binding partners through low affinity but

highly specific interactions, which are important for their functions

in signal transduction and cell cycle control [21,22]. Another

important link between protein flexibility and function is the rate

of inter-conversion between conformers. An IDP exists as an

ensemble of conformers in equilibrium [23–25]. Different

structures in the ensemble can participate in the interactions with

distinct targets; therefore, the rate of exchange between con-

formers can have significant impact on the protein function

[26,27]. Further, recent studies show that some IDPs employ

multiple linear motifs to engage in a dynamic equilibrium with

a target, resulting in ultra-sensitivity of binding [28–30]. Un-

doubtedly, protein flexibility plays a critical role in this polyvalent

mode of binding [29].

There are several studies of macromolecular crowding effects on

the structure of IDPs. The results, however, are not conclusive. For

instance, FlgM is disordered in dilute buffer solutions, but gains

structure in its C-terminal half when studied in cells or in solutions

with high concentration of glucose [31]. On the other hand,

Flaugh and Lumb reported that neither the disordered C-terminal

activation domain of c-Fos nor the kinase-inhibition domain of

p27Kip1 undergo any significantly conformational change in the

presence of dextran or Ficoll [32]. By using small-angle neutron

scattering techniques, Johansen et al. [33] demonstrated that the

disordered N protein of bacteriophage l adopts more compact

conformations even in the presence of relatively low concentration

of crowding agents (,65 g/L of BPTI protein). A recent work by

Tompa and co-worker [34], however, shows that molecular

crowding caused only minor structural changes to three IDPs (a-
casein, MAP2c and p21Cip1). The authors suggested that retaining

dynamics under crowded conditions is a functional requirement of

IDPs.

Further experimental studies of the macromolecular crowding

effects on IDPs are important for increasing our understanding of

how these proteins behave in cellular environments. These studies

will also facilitate the development of computational models that

can be used to explain and predict the behaviors these proteins

under crowded conditions [5,34,35]. We focus on assessing the

effects of macromolecular crowding on the dynamics of IDPs in

residue-specific manner using NMR spin relaxation experiments.

Three IDPs with different extents of residual structure under dilute

buffer conditions were studied. Further, by using one of the IDPs

(ProTa) as a representative case, based on an MD simulation, we

proposed a model to correlate the observed changes in relaxation

rates to the possible alteration in protein motions under crowding

conditions. ProTa is a ubiquitously expressed, highly acidic IDP

that is involved in multiple biological functions [36–38]. Our

recent studies demonstrated that ProTa is largely disordered with

minimal residual structure present under non-denaturing condi-

tions [39,40]. Although ProTa adopts an extended structure, it

can convert to more compact conformations in the presence of

zinc ions [40]. Another IDP used in this study is Thyroid Cancer 1

(TC-1), which was first found to be overexpressed in thyroid

cancer [41,42]. TC-1 is a basic protein and is a positive regulator

of the Wnt/b-catenin signaling pathway [42–44]. It competes with

b-catenin on binding to Chibby (Cby) and therefore inhibits the

antagonistic action of Cby on b-catenin mediated transcription

[44,45]. Even though TC-1 is classified as an IDP, structural

characterization shows that while the N-terminal half of the

protein is largely unstructured, high helical propensity is present in

the C-terminal part [42,46]. a-synuclein, a well-studied IDP that

has been found to be the main structural component of Lewy body

fibrils found in patients with Parkinson’s disease [47], was also

included in this study to add additional depth to our approach. a-
synuclein is natively disordered in its soluble form, but is able to

self-associate to form insoluble aggregates that have considerable

structure [47]. In-cell NMR experiments have shown that the

periplasmic environment in Escherichia coli prevents a-synuclein
from undergoing a conformational change that is detected in

dilute buffer conditions, indicating that the crowding acts to keep

a-synuclein disordered [48]. In addition to the IDPs mentioned

above, we also assessed the crowding effect on a well-studied

globular protein, Ubiquitin, for comparison. By performing NMR

relaxation measurements on these proteins we aim to determine

how the dynamics of IDPs with different structural characteristics

can be affected by macromolecular crowding.

Materials and Methods

Protein Expression and Purification
Uniformly 15N labeled ProTa (human isoform 2), TC-1

(human) and a-synuclein (human isoform 1) were expressed in

Escherichia coli BL21 (DE3) cells grown in minimal M9 medium

containing 15NH4Cl (Cambridge Isotope Laboratories) as the sole

nitrogen source. 15N/13C labeled TC-1 was expressed as above

except with 13C6-D-glucose (Isotec) as the sole carbon source.

ProTa was purified using the method described by Yi et al. [39].

The N-terminally His tagged TC-1 protein was extracted from

inclusion bodies using 6 M guanidine hydrochloride and purified

by affinity chromatography using Ni SepharoseTM 6 Fast Flow

beads (Amersham Biosciences) [46]. The plasmid carrying the a-
synuclein cDNA was kindly supplied by Dr. Pielak at the

University of North Carolina-Chapel Hill. The protein was

purified by osmotic shock, using a procedure similar to the one

reported by Shevchik et al. [49], followed by boiling and cooling

steps similar to [39]. The protein was then precipitated out of

solution with 60% saturated solution of ammonium sulfate.

Lyophilized 15N labeled human Ubiquitin was kindly supplied

by Dr. Gary Shaw’s lab at the University of Western Ontario.

NMR Spectroscopy
All NMR experiments were performed at 25uC on a Varian

Inova 600 MHz spectrometer (UWO Biomolecular NMR Facility)

with an xyz-gradient triple resonance probe. The experiments

were performed in the presence and absence of 160 g/L, and

several used 400 g/L, Ficoll 70 (Sigma) or Dextran 70 (Sigma).

Each NMR sample contained 10% D2O and trace sodium 2,2-

dimethyl-2-silapentane-5-sulfonate (DSS, Sigma) for chemical shift

referencing. Data was processed with NMRPipe [50] and spectra

were visualized with NMRViewJ [51].
1H-15N HSQC spectra were collected using 0.2 mM 15N-

labeled ProTa, TC-1 and a-synuclein samples and 1 mM

Ubiquitin samples in the presence or absence of crowding agent.

Backbone amide resonance assignments of ProTa, TC-1, a-
synuclein and Ubiquitin were obtained from [40,46,52,53]. The

Crowding Effects on Disordered Proteins
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triple-resonance CBCA(CO)NH experiment was carried out using

0.3 mM TC-1 samples in the presence and absence of 160 g/L

Ficoll 70 (Sigma) for 13C chemical shift assignments.

Backbone 15N longitudinal relaxation rate (R1), relaxation rate

in rotating frame (R1r), and steady-state 1H-15N NOE experiments

were performed using 0.2 mM of 15N-labeled ProTa, and TC-1

samples and 1 mM Ubiquitin sample in the presence and absence

of crowding agent in their corresponding buffers. R1 experiments

were performed with delay times 10–640 ms for ProTa and TC-1

and 10–500 ms for Ubiquitin. R1r experiments employed delay

times between 10 and 150 ms for all proteins. The relax program

[54,55] was used for two-parameter exponential curve fitting of

peak intensities from the R1 and R1r data, and the calculation of

R1 and R1r relaxation rates and their associated errors. 15N

transverse relaxation rate (R2) values were calculated using the R1

and R1r rates and the offset between the resonance and carrier

frequency (Dv) in hertz, using the equation.

R2~(R1r{R1 cos
2 h)= sin2 h ð1Þ

where tanh=BSL/Dv. BSL ( = 1.5 kHz) was the spin-lock field

used in the R1r experiments. 1H-15N steady-state NOEs were

obtained from the ratio of peak intensities of spectra recorded with

and without proton saturation. Seven and 12 s delays between

scans were used for the saturated and non-saturated spectra

respectively and 5 s saturation periods were used. Errors were

estimated based on the ratios of background noise to the signals in

the spectra.

MD Simulations
We conducted an atomistic MD simulation of ProTa in its free

state in order to help to interpret the NMR relaxation

measurements. The starting structure was generated based upon

the amino acid sequence of ProTa (human isoform 2) by simulated

annealing using the Crystallography & NMR System (CNS)

software package [56].

The simulation was performed using GROMACS (GROningen

MAchine for Chemical Simulations) version 4 [57] with the

GROMOS96 53a6 united atom force-field parameter set [58,59].

This force field has been shown to perform well in simulations of

disordered proteins and membrane proteins [60–62]. Protonation

states of ionizable residues were assigned to their most probable

state at pH 7. The starting structure was centered in a cubic box

with a side length of 20 nm and periodic boundary conditions

were applied. The system was solvated with simple point charge

(SPC) water [63]. Sodium (Na+) and chloride (Cl
-) ions were added

to make the system charge neutral and bring the salt concentration

to 0.1 M. The system contained 265474 water molecules, 525

sodium and 482 chloride ions. MD simulations were performed at

constant number of particles, pressure and temperature (NPT

ensemble). Protein and non-protein atoms were coupled to their

own temperature baths, which were kept constant at 310 K using

the Parrinello-Donadio-Bussi algorithm [64]. Pressure was main-

tained isotropically at 1 bar using the Parrinello-Rahman barostat

[65]. The time constants for temperature and pressure coupling

were 0.1 and 0.5 ps, respectively. Prior to the production run, the

energy of the system was minimized using the steepest descents

method, followed by 2 ps of position-restrained dynamics with all

non-hydrogen atoms restrained with a 1000 kJ mol21 force

constant. The timestep was set to 2 fs. Initial atom velocities were

taken from a Maxwellian distribution at 310 K. All bond lengths

were constrained using the LINCS algorithm [66]. Cut-off of

1.0 nm was used for Lennard-Jones interactions and the real part

of the long-range electrostatic interactions, which were calculated

using the Particle-Mesh Ewald (PME) method [67]. For a recent

review on the different methods and the importance electrostatics

in simulations of biological systems, see [68]. Dispersion correc-

tions were applied for energy and pressure. 0.12 nm grid-spacing

was used for PME. The MD simulation was run for 427 ns and the

last 400 ns were used for analysis. During this time, temperature,

pressure and potential energy values remained stable and

fluctuated around their averages, without systematic drift, in-

dicating that the system was well equilibrated.

MD Simulation Analysis
Autocorrelation functions of backbone 1H-15N bond vectors of

ProTa were extracted from the MD trajectory (region 27–

427 ns) (without the removal of overall tumbling) using the

g_rotacf tool in GROMACS [57]. Each autocorrelation function

was fitted to two-, three-, or four-exponential decay curves [69–

71] as shown in equation (2):

C(t)~
Xn
i~1

ai exp ({t=ti) ð2Þ

where C(t) is the autocorrelation function at time t, n = 2, 3, or 4,

ai and ti are the amplitude and time constant of the ith

exponential decay term. The fitted autocorrelation functions

were then used to calculate the spectral density J(v) by analytical

Fourier transformation [69–71]:

J(v)~
2

5

ð?
0

cos (vt)C(t)dt~
2

5

Xn
i~1

aiti

1zv2
i t

2
i

ð3Þ

To evaluate whether the multi-exponential model j with more

parameters statistically outperforms model i in fitting the

autocorrelation functions, the F-ratio of statistical F-test were

calculated using the following equation:

Fij~
(x2i {x2j )=x

2
j

(D2
i {D2

j )=D
2
j

ð4Þ

where x2i (x
2
j ) and Di (Dj) are the sum of square deviations and

degrees of freedom of model i (model j), respectively.

Results

IDPs Remain Disordered Under Crowded Environments
To study the effect of macromolecular crowding on the

structure and dynamics of IDPs, Ficoll 70, a commonly used

crowding agent, was added to the protein samples to mimic the

cellular environment [6]. First, 1H-15N HSQC spectra of ProTa,
TC-1, a-synuclein, and Ubiquitin, acquired in the absence and

presence of 160 g/L of Ficoll 70, were compared. Intriguingly, the

spectra of the three IDPs all display narrow peak dispersions along

their 1H dimension in the presence of Ficoll 70 (Figure 1),

indicating these proteins remain disordered under this crowded

condition. 1H-15N HSQC spectra of ProTa and TC-1 in the

presence of 400 g/L crowding agent had similar extents of peak

dispersion as those collected in buffer or 160 g/L Ficoll conditions

(Figures S1 and S2). Minor peak shifts between dilute and crowded

conditions of some residues in TC-1 were observed (Figure 1B). To

investigate the possibility that these spectral changes were due to

the crowding agents binding to TC-1, we performed isothermal

Crowding Effects on Disordered Proteins
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calorimetry (ITC) experiments, titrating 0.1 mM TC-1 into

160 g/L crowder solutions (Figure S3). These measurements were

not indicative of specific interactions between TC-1 and Ficoll or

Dextran 70 [72].

To determine if the chemical shift changes observed in the
1H-15N HSQC spectrum of TC-1 with 160 g/L of Ficoll 70 were

the result of alteration of secondary structure, site-specific

secondary structure propensities were determined based on the

observed 13Ca and 13Cb chemical shifts in the absence and

presence of crowding agents using the SSP program [46,73].

Residues in well-formed b-strand/extended or a-helical conforma-

tions are expected to yield SSP scores close to -1 and 1,

respectively. Figure 2 shows the SSP score profiles of TC-1. While

the N-terminal half of the protein is largely unstructured, three

regions (D44-R53, K58-A64 and D73-T88) with high helical

propensities (i.e. SSP scores .0.2) were found in the C-terminal

part under both conditions. The results are consistent with our

previous SSP analysis of TC-1 [46]. Based on the SSP scores

reported here, it is apparent that the presence of crowding agents

only leads to a minor increase in the helical propensity of the

second helical region (K58-A64), while the other parts of the TC-1

structure are largely unaffected (Figure 2).

Backbone 15N Spin Relaxation Measurements Under
Crowded Conditions
The effects of macromolecular crowding on the dynamics of

ProTa, TC-1, a-synuclein, and Ubiquitin were investigated with

backbone 15N spin relaxation and 1H-15N NOE measurements.

The results are shown in Figure 3. For the well-folded Ubiquitin,

significant increases (decreases) in R2 (R1) of residues are observed

in the presence of 160 g/L of Ficoll 70. Because crowding does not

alter the structure of Ubiquitin, judging from the 1H-15N HSQC

spectra (Figure 1D), the changes in R2 and R1 are expected to be

due to the increase in viscosity of the solution. Based on the R1 and

R2 values, the overall rotational correlation time of Ubiquitin is

estimated to increase from 4.3 to 8.0 ns upon addition of crowding

agents [74]. Even though the molecular tumbling time was

increased, crowding does not seem to have significant effects on

Figure 1. 1H-15N HSQC spectra of ProTa, TC-1, a-synuclein and Ubiquitin in the absence and presence of 160 g/L Ficoll 70. ProTa (A),
TC-1 (B), a-synuclein (C) and Ubiquitin (D) spectra were collected in 40 mM HEPES pH 6.8, 10 mM sodium acetate pH 5, 50 mM sodium phosphate
pH 7 and 10 mM sodium acetate pH 5 respectively in the absence (black) and presence of 160 g/L Ficoll 70 (red).
doi:10.1371/journal.pone.0049876.g001

Figure 2. Secondary structure propensity (SSP) scores for TC-1
in the absence (black) and presence (red) of 160 g/L Ficoll 70.
SSP scores were calculated on the basis of the assigned 13Ca and 13Cb
chemical shifts [46] using the SSP program [73]. The CBCA(CO)NH
spectra was collected in 10 mM sodium acetate pH 5 in the absence
and presence of 160 g/L Ficoll 70.
doi:10.1371/journal.pone.0049876.g002

Crowding Effects on Disordered Proteins
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the fast internal motion of this globular protein since the values of

NOE were mostly unaffected by the addition of crowders.

Unlike Ubiquitin, however, the increase in viscosity upon

addition of 160 g/L of Ficoll 70 does not lead to dramatic changes

in the observed R1, R2 and NOE values of ProTa and a-synuclein
(Figure 3). In particular, the value of R2, which is sensitive to the

rotational correlation time, remains unchanged for most of the

residues of ProTa upon addition of crowding agents. On the other

hand, residues in different regions of TC-1 show differential

responses to crowding. In particular, residues in the high helical

propensity regions of TC-1 generally have decreased R1 and

increased R2 relaxation rates in the presence of 160 g/L Ficoll 70

(Figure 3A and B), while R1 and R2 values of residues in the flexible

N-terminal region show only minor changes. In addition, most of

the residues in TC-1 also display slightly higher NOE values in the

presence of 160 g/L of Ficoll 70 (Figure 3C). To ensure the

observed changes in relaxation rates are not due to the particular

crowding agent used, 15N relaxation experiments for TC-1 were

also repeated with Dextran 70 as a crowder and the results were

similar to that aforementioned (Figure 4). Figure S4 contains the

R1, R2 and NOE values for TC-1 in buffer and 160 g/L Ficoll and

Dextran 70 plotted by residue number.

Considerable changes in the relaxation rates were observed for

ProTa when the extremely high concentration of crowding agent

(400 g/L Ficoll 70) was used (Figure 5). In particular, most

residues show higher R2 values in the presence of 400 g/L Ficoll

70 compared to buffer conditions (Figure 5B). The largest changes

are observed in the region around residues I12-R31. Interestingly,

residues in that region also have less negative 1H-15N steady-state

NOE values in buffer conditions, suggesting this segment is

intrinsically more restricted in motion compared to the rest of the

protein in the absence of crowders. Furthermore, NOE values

were systematically higher for all residues under this crowded

condition (Figure 5C).

Model for Interpreting the Observed Relaxation Data
For well-folded globular proteins, the 15N R1, R2, and NOE

measurements are commonly fitted to the Lipari-Szabo (LS)

model-free model in order to extract the amplitude and correlation

time of internal motion as well as the overall molecular tumbling

time, which are denoted by the order parameter (S2), te and tm in

the spectral density function, respectively [75]. A modified LS

model was later proposed by Clore and co-worker to fit the

relaxation rates observed from flexible loop regions of a folded

protein [76]. In this model, an extra term was introduced to the

spectral density function of the original LS model to describe the

internal motion occurring on a slower timescale. For disordered

proteins, however, the timescale of large-amplitude local segmen-

tal motions can be close to the overall tumbling time, making the

separation of these two contributions to the relaxation rates

challenging [71,77].

To establish a simple model to describe the dynamic behaviors

of IDPs and correlate them to the observed relaxation parameters,

autocorrelation functions of the backbone amide bond vectors

were extracted from a 427-ns atomistic MD trajectory of ProTa.
Autocorrelation functions of each residue (except the N-terminus

and P34) were fitted to models with different numbers of

exponential decay terms. Instead of using these models to back

calculate the observed backbone 15N relaxation rates, which have

been shown by many others to be a challenging task [78,79], our

aim is to establish a simple model to interpret the relaxation data

we obtained.

Autocorrelation functions of individual amide bond vectors

extracted from the MD simulation were fitted to the sum of two,

three, or four exponential decay terms (Equation 2) in order to

determine the best LS-like model that can be used to describe the

Figure 3. Backbone 15N relaxation measurements for ProTa,
TC-1, a-synuclein and Ubiquitin in the absence and presence of
160 g/L Ficoll 70. Longitudinal relaxation rate, R1 (A), transverse
relaxation rate, R2 (B) and steady-state 1H-15N NOE (C). ProTa (black), TC-
1 (red), a-synuclein (green) and Ubiquitin (magenta) relaxation
measurements were collected in 40 mM HEPES pH 6.8, 10 mM sodium
acetate pH 5, 50 mM sodium phosphate pH 7 and 10 mM sodium
acetate pH 5 respectively in the absence and presence of 160 g/L Ficoll
70. The blue line indicates a unitary slope.
doi:10.1371/journal.pone.0049876.g003

Crowding Effects on Disordered Proteins
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backbone dynamics of highly disordered proteins such as ProTa.
The autocorrelation functions of several residues are shown in

Figure 6. In general, quick decreases in the autocorrelation

functions are observed in the beginning, which are likely

contributed from the librational motions (fast internal motions)

[71,75]. The fast decay is then followed by more gradual decreases

in the autocorrelation functions, reflecting the existence of local

motions on slower timescales (Figure 6). However, it is clear that

residues in different positions of the protein display distinct

autocorrelation profiles. Figure 6 (inset) shows typical fits of the

autocorrelation functions to 2-, 3-, and 4-exponential decay terms.

We found that for most of the residues, the equation with three

Figure 4. Backbone 15N relaxation measurements for TC-1 in
the absence and presence of 160 g/L Dextran 70. Longitudinal
relaxation rate, R1 (A), transverse relaxation rate, R2 (B) and steady-state
1H-15N NOE (C). The sample contained 10 mM sodium acetate pH 5 in
the absence and presence of 160 g/L Dextran 70.
doi:10.1371/journal.pone.0049876.g004

Figure 5. Backbone 15N relaxation measurements for ProTa in
the absence and presence of 400 g/L Ficoll 70. Longitudinal
relaxation rate, R1 (A), transverse relaxation rate, R2 (B) and steady-state
1H-15N NOE (C). The sample contained 0.3 mM ProTa in 50 mM NaPO4

pH 7, 100 mM NaCl and 1 mM DTT in the presence of 400 g/L Ficoll 70.
For the sample without crowder, 40 mM HEPES pH 6.8 was used as the
buffer.
doi:10.1371/journal.pone.0049876.g005

Crowding Effects on Disordered Proteins
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exponential decay terms fits the autocorrelation function statisti-

cally better than that with only two terms. Increasing the number

of exponential decay terms further (i.e. n=4) does not result in

dramatic decreases in the root mean square deviation of fitting

(Figure S5). Additionally, for many residues, different ti values
obtained from the four-exponential fit are very close, indicating

that the motion described by these terms cannot be discriminated.

Because of these reasons, our analyses were focused on the three-

exponential decay model (LS3 model; n=3 in Equation 3), which

is very similar to the modified LS-model described by Clore and

coworkers [76].

The results of fitting the amide bond vector autocorrelation

functions to three-exponential decay terms are summarized in

Table 1. To illustrate how the fluctuations in amplitude and

timescale of motions translate to the observed relaxation rate

changes, 15N R1, R2, and
1H-15N steady-state NOE values were

calculated using the LS3 model with different values of ai and ti.
We first apply this model to Ubiquitin. To simulate the relaxation

rates of Ubiquitin, we assumed that the fast internal motion of this

rigid protein is not altered upon crowding. By fixing the amplitude

and correlation time of fast internal motion (a1 and t1) to 0.15 and

10 ps, respectively, the significant increase (decrease) in the

measured R2 (R1) relaxation rates of Ubiquitin in the presence of

160 g/L of Ficoll 70 can be reproduced by changing t3 (the overall
tumbling time) from 4.3 to 8 ns, assuming that the slower

segmental motion can be neglected (i.e. a2 , 0; blue arrows)

(Figure 7).

We have also simulated the dependence of the 15N R1, R2, and

steady-state NOE values of ProTa on the values of ai and ti. Since
ProTa remains disordered under crowded conditions and the

observed NOEs are significantly smaller than what are expected

for a folded protein of similar molecular weight (Figure 5), it is

reasonable to assume that large amplitude of fast internal motion

persists. Figure 8A illustrates that with a1=0.37, t1=7 ps, t2
,500 ps, and t3=3.4 ns, a wide distribution of NOE values can

be expected with the variation of the amplitude of segmental

motion (value of a2). Meanwhile, R2 is predicted to be not very

sensitive to the fluctuation in a2 (R2 , 2–4 s-1). These observations

agree qualitatively with the distributions of experimental re-

laxation rates measured under buffer conditions (Figure 5).

On the other hand, almost all residues of ProTa have the R2

and NOE increased at the high concentration of crowding agents

Figure 6. Correlation functions of selected backbone 1H-15N amide bond vectors (red: residue 2; green: residue 10; blue: residue 48;
magenta: residue 57; cyan: residue 102) extracted from a 400 ns MD trajectory of ProTa. The inset shows the fitting of the
autocorrelation function (solid black line) of residue 31 to 2- (red dash line), 3- (blue dash line), and 4-exponential decay curves (green dash line) as
indicated in Equation 2. The blue and green dash lines overlay remarkably, and only start to deviate when t .15 ns.
doi:10.1371/journal.pone.0049876.g006

Table 1. Averaged values and the standard deviations of
fitted parameters of LS-3 model.

i=1 i=2 i=3

ti (ps) 769 4196454 340065700

ai 0.3760.09 0.3660.12 0.2760.17

average6standard.
doi:10.1371/journal.pone.0049876.t001
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Figure 7. 15N Relaxation parameters calculated using the LS-3 model with (a) a1=0.15, t1=10 ps, t3=4.3 ns, a3=12 a1–a2 (b)
a1=0.15, t1=10 ps, t3=8.0 ns, a3=12 a1–a2. t2 and a2 values are indicated along the x and y axes, respectively. The slower internal
motion is negligible when a2 , 0 (blue arrows).
doi:10.1371/journal.pone.0049876.g007
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(,400 g/L of Ficoll 70), while the variation of R1 along the protein

sequence diminished. Based on the LS3 model, these trends can be

explained by the increase in the correlation times of the slow local

segmental motions. With t2 increases from 500 to 1000 ps and the

value of t3 doubled (Figure 8B), R2 values can increase to ,6 s21

and many NOEs will turn positive. The simulated relaxation rates

further match the experimentally observed values, especially for

the R1 values, if we assume that the amplitude of fast internal

motion is reduced in a highly crowded environment (i.e. a1=0.2;

Figure 8C).

Finally, based on the amplitudes and correlation times of

motions on different timescales (fitted ai and ti values of

autocorrelation functions) extracted from the MD simulation, we

have simulated the 15N R1, R2, and steady-state NOE values of

ProTa. The relaxation parameters in the presence of 160 g/L of

Ficoll 70 were then predicted by scaling the correlation time of the

slow motions (t2 and t3) by the same factor (i.e. 1.86) as the

Ubiquitin tumbling time changes to account for the increase in

viscosity. Figure 9 shows the plots of the simulated relaxation data

before and after the correlation time adjustments. The result

indicates that in the presence of 160 g/L of Ficoll 70, the R1, R2,

and NOE of ProTa were expected to systematically increase if the

correlation times of the slow motions were increased by viscosity.

However, these changes were observed experimentally only in the

presence of 400 g/L of Ficoll 70. Again, the simulated data suggest

that the timescale of local segmental motions were slowed down

only at a very high concentration of crowders.

Discussion

We have investigated the effects of macromolecular crowding

on the dynamics of three IDPs, ProTa, TC-1 and a-synuclein,
with different extents of residual structure using NMR spectros-

copy. This complements several recent studies of macromolecular

crowding effects on the structure and dynamics of IDPs

[34,35,80]. We used Ficoll 70 and Dextran 70 as crowding

agents, which are commonly used to mimic excluded volume

effects [7,17,18,72]. These polymers are inert and do not interact

Figure 8. 15N Relaxation parameters calculated using the LS-3 model with (a) a1=0.37, t1=7 ps, t3=3.4 ns, a3=12 a1–a2 (b) a1=0.37,
t1=7 ps, t3=6.8 ns, a3=12 a1–a2 and (c) a1=0.20, t1=7 ps, t3=6.8 ns, a3=12 a1–a2, respectively. t2 and a2 values are indicated along the x
and y axes, respectively.
doi:10.1371/journal.pone.0049876.g008
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nonspecifically with proteins. In contrast, the use of polyethylene

glycol as a crowding agent is discouraged, due to attractive

interactions with proteins [7,72].

The IDPs examined here all had narrow dispersion of peaks

along the 1H dimension in the 1H-15N HSQC spectra compared

to the well-folded Ubiquitin, both in the absence and presence of

crowding agents, suggesting that they remain disordered in the

crowded environments. Interestingly, for the partially disordered

TC-1, a minor increase of the helical propensity was observed only

in the relatively structured region in the presence of Ficoll 70. This

indicates that the crowded environment may have differential

effects on the partially structured regions and the highly disordered

parts of the protein. Increased helical content in the presence of

crowding agent has also been observed for the Flavodoxin [10].

Stagg et al. reported that the far-UV CD signal of Flavodoxin at

the helical signature wavelength (222 nm) increases by about 10%

in the presence of 200 g/L of Ficoll 70; however, a less dramatic

effect of crowding in the denatured state was observed.

Site-specific changes in the protein flexibility of ProTa and TC-

1 have been characterized by using 15N NMR spin relaxation

experiments. In particular, we focused on the highly disordered

ProTa since this protein produces NMR data with reasonable

signal to noise ratio even at high concentration of Ficoll 70 (400 g/

L). It is noteworthy that besides the excluded volume effect, the

presence of high concentrations of crowding agents also inevitably

increases the viscosity of the solution [12,34]. This adds a layer of

complexity to the interpretation of spin relaxation data. The

viscosity effect is reflected in the systematic increase in the 15N R2

rates of Ubiquitin in the presence of 160 g/L Ficoll 70, while the

values of NOE were mostly unaffected. Similar results were

obtained by Simorellis & Flynn [81]. They showed that

encapsulation of Ubiquitin in a confined environment only has

very minor effects on the protein backbone dynamics.

Intriguingly, the increase in viscosity did not cause significant

changes in the 15N R2 of intrinsically disordered ProTa under the

same conditions. To have a better understanding of our relaxation

data, we performed an MD simulation (,400 ns) on ProTa to

investigate its dynamic behaviors. Although MD simulations in the

presence of atomistically represented crowders are not currently

practical (because of the large number of atoms these molecules

contain and the long time scales such molecules need for diffusion),

our simulation facilitated the development of a simple model to

correlate the observed changes in relaxation rates to the alteration

in protein motions under crowding conditions. While the LS3

model proposed here might not be sufficient to represent the

complicated dynamics of IDPs, it provides insights into interpret-

ing the relaxation measurements.

Based on the experimental and simulation results, we conclude

that even though crowded environments can slow down the

timescale of local segmental motions in the highly disordered

ProTa, it still retains a certain level of flexibility at high

concentrations of Ficoll 70. Based on the observed R2 rates

(Figure 5B), however, it is apparent that a few regions of ProTa
become more structured at high concentration of crowders.

Interestingly, some of these regions overlap or are close to known

target-binding motifs of ProTa. For instance, residues 39–54 are

involved in mediating the interaction with the Kelch domain of

Keap1 in the oxidative stress response [82] while the caspase-3

cleavage site of ProTa is located around residue 100 [83]. Because

the dynamics of IDPs can have significant impacts on their target

recognitions [60], this observation has a strong biological

implication of how this class of proteins functions in crowded

cellular environments.

Figure 9. Plots of the simulated relaxation data of ProTa before
and after correlation time adjustments. 15N R1, R2, and steady-
state NOE values of ProTa were simulated based on the amplitudes and
correlation times of motions extracted from the MD simulation using
the LS3 model. R1*, R2*, and NOE* are the relaxation data predicted by
scaling the correlation times of the slow motions (t2 and t3) by the
same factor as the Ubiquitin tumbling time changes to account for the
increase in viscosity.
doi:10.1371/journal.pone.0049876.g009
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We are aware that while Ficoll and Dextran may be suitable

agents to mimic the crowded cellular environment, combining

different crowding agents with varying physical characteristics

(sizes, shapes, charges, etc) may more accurately represent the

in vivo environment [2,7,84,85]. Therefore, extending the current

studies by using other crowding agents with different sizes and

chemical properties are required to further our understanding of

the macromolecular crowding effects on IDPs. These in vitro

studies together with the recently developed in cell NMR

techniques [86–92] will hopefully provide further insights into

understanding the environmental effects on IDP structure and

functions.

Supporting Information

Figure S1 1H-15N HSQC spectrum of ProTa in 400 g/L
Ficoll 70. The sample contained 0.3 mM ProTa in 50 mM

NaPO4 pH 7, 100 mM NaCl and 1 mM DTT.

(PDF)

Figure S2 1H-15N HSQC spectra of TC-1 in 400 g/L
Ficoll 70 and Dextran 70. The samples contained 0.2 mM TC-

1 in 10 mM sodium acetate pH 5 and 400 g/L Ficoll 70 (A) or

Dextran 70 (B).

(PDF)

Figure S3 ITC profiles of TC-1 titrations into crowded
solutions. Buffer (10 mM sodium acetate pH 5) alone or

containing 0.1 mM TC-1 was titrated into the cell, containing

160 g/L Ficoll (A) or Dextran 70 (B) in the same buffer. 10 mL
injections were used with 120-second delays.

(PDF)

Figure S4 R1, R2 and NOE values for TC-1 in buffer and
160 g/L Ficoll 70 and Dextran 70 plotted by residue
number. The samples contained 10 mM sodium acetate pH 5 in

absence and presence of 160 g/L Ficoll 70 or Dextran 70.

(PDF)

Figure S5 Comparison of the fitting of autocorrelations
to 2-, 3-, and 4-exponential decay curves. Blue: F-ratios

calculated from the x2 and degrees of freedom of 2- and 3-

exponential models; Red: F-ratios calculated from the x2 and

degrees of freedom of 3- and 4-exponential models (Equation 4).

(PDF)
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