Skip to main content
. 2012 Nov 26;7(11):e50441. doi: 10.1371/journal.pone.0050441

Table 2. Summary of the best-performing ordinary least squares (OLS) model.

Variable Year Estimate SE t P Signif.
(Intercept) −16760 9687 −1.73 0.087 .
NDVI (early summer) 1 13.96 5.02 2.78 0.007 **
NDVI (late summer) 4 7.77 5.15 1.51 0.135
NDVI (early summer) 0 6.85 4.81 1.43 0.158
Air temperature 4 1.03 1.66 6.21 <0.001 ***
NDVI (late summer) 1 −1.53 4.96 −3.08 0.003 **
Precipitation 0 0.70 0.34 2.05 0.043 *
Year 8.51 4.84 1.76 0.082 .
Air temperature 0 −55.19 22.81 −2.42 0.017 *
Mean annual precip. −0.58 0.20 −2.90 0.005 **
NDVI (annual) 1 −14.43 6.31 −2.29 0.025 *
NDVI (fall) 0 9.21 3.35 2.75 0.007 **

Potential parameters of the best OLS model (RMSE = 156.9 g C m−2 yr−1 on 94 d.f., adjusted R2 = 0.61, P<0.001) were selected by the CI-RF algorithm before OLS was performed (see Methods and Table 1). Columns include variable included in OLS regression, year of data stream (0 = current year, 1 = previous year, etc.); OLS estimate and standard error (SE); t-value; P-value; and significance (“.” <0.1; “*” <0.05; “**” <0.01; “***” <0.001).