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Abstract
PACE, a hybrid force field which couples united-atom protein models with coarse-grained (CG)
solvent, has been further optimized, aiming to improve itse ciency for folding simulations.
Backbone hydration parameters have been re-optimized based on hydration free energies of
polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom
force fields were combined with PACE in order to provide a more realistic description of
interactions between charged groups. Using replica exchange molecular dynamics (REMD), ab
initio folding using the new PACE has been achieved for seven small proteins (16 – 23 residues)
with different structural motifs. Experimental data about folded states, such as their stability at
room temperature, melting point and NMR NOE constraints, were also well reproduced.
Moreover, a systematic comparison of folding kinetics at room temperature has been made with
experiments, through standard MD simulations, showing that the new PACE may speed up the
actual folding kinetics 5-10 times. Together with the computational speedup benefited from
coarse-graining, the force field provides opportunities to study folding mechanisms. In particular,
we used the new PACE to fold a 73-residue protein, 3D, in multiple 10 – 30 μs simulations, to its
native states (Cα RMSD ~ 0.34 nm). Our results suggest the potential applicability of the new
PACE for the study of folding and dynamics of proteins.

Introduction
Molecular dynamics (MD) has become an indispensable tool for revealing the molecular
mechanism of biological processes.1,2,3 Despite ever-growing computing power and better
sampling methods,4,5,6 all-atom MD simulation cannot achieve for the modeling of large
biomolecular systems over time-scales long enough to be of biological interest. To
overcome the challenge, coarse-grained (CG) models, in which multiple atomistic sites are
grouped into one site, have been developed for proteins, solvent and membrane,
significantly enhancing the speed of simulation.7,8,9 However, due to inherent
simplification, many CG simulations of proteins rely on information from native protein
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structures through biased methods such as elastic network models10 or Gõ-type potentials.11

The CG models are limited, therefore, in their use in studies of folding, aggregation, large
conformational change of proteins or conformational features of intrinsically disordered
proteins.12

To alleviate the reliance on native structures, several CG protein models have been
parameterized to reproduce peptide folding13,14,15,16 or have been built on knowledge-based
statistical potentials,17,18,19,20 achieving even in some cases predictive
capabilities.21,22,23,24,25 Nevertheless, it may be more advantageous to combine atomistic
and CG models so that protein models contain enough atomistic detail to obviate the need
for information on native structures while environments such as water and membrane are
still coarse-grained. Such multiscale approaches have been practiced in numerous
studies.26,27 For example, in an early study,28 a small portion of a protein was modeled with
an all-atom force field while the rest of the protein was coarse-grained with a Gô model. The
model developed by Shi and coworkers29 combined all-atom protein force fields with
multiple-site lipid and single-site water. A key element in their model is to parameterize
interactions between sites of different resolutions by matching the forces calculated from
actual atomistic simulations, allowing the model to maintain the stability of small membrane
proteins without any biased constraint. Rzepiela and coworkers30 have recently proposed a
mixed model of all-atom and MARTINI CG force fields,31,32 the latter of which has proven
to be efficient for lipid and solvent simulations.33,34 In their model, all-atom/CG interactions
are replaced by CG interactions through dummy sites, such that need for re-parametrization
of cross-resolution terms does not arise. The model has been tested for the case of partition
of dialanine in different solvents, showing promising results.30

In the present study we focus on another hybrid force field, namely PACE,35 in which a
unitedatom protein model has been developed in conjunction with MARTINI CG
water35,36,37 and re-cently also with some of MARTINI CG lipids.38 In PACE, cross-
resolution parameters were optimized through a thermodynamic-based approach, i.e.,
through reproducing experimental thermodynamic quantities, which is in line with the
parameterization scheme of MARTINI. Moreover, in the context of the hybrid force field,
the interactions of atomic sites in proteins were parameterized by using different data as
references, such as potential of mean force (PMF) profiles of polar interactions from
atomistic simulations and statistical backbone potentials from a PDB coil library.39

Comprising such different ways of parametrization, PACE has successfully folded several
model peptides, not relying on information of their native structures.40 However, the
stabilities of the native structures were generally underestimated by PACE, suggesting that
further improvement of PACE is needed.

Hydration of the backbone is known to be critical for controlling the balance between
unfolded and folded states of proteins.41,42 In PACE, backbone and side-chain amide groups
shared the same set of hydration parameters to describe interactions between amide groups
and CG water, optimized by fitting hydration free energy of N-methylacetamide (NMA).35

Although NMA was referred to as a model compound for amide groups in early studies,43

both theoretical44,45,46 and experimental47 studies have demonstrated that NMA favors
hydration too much to furnish a suitable model for an internal amide group in longer
polypeptides, owing to the well-known end-group effects in polymers. It was assumed that
in PACE the hydration parameters obtained with NMA could be used for peptide backbone
hydration, but such an assumption had not been examined. Therefore, the hydration
parameters need to be investigated and, very likely, re-optimized by using model
compounds other than NMA. We chose polyalanyl peptides as model compounds, the
hydration free energies of which are experimentally unavailable but can be obtained from
atomistic simulations.
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We also investigated the parameters for electrostatic interactions. In PACE, electrostatic
interactions were modeled by effective potentials35 other than Coulomb potentials. Such
approach reduced the number of parameters needed for PACE, but renders PACE less
compatible with MARTINI that uses Coulomb potentials for interactions between charged
groups31 and, thereby, potentially complicates actual parametrization of cross-resolution
terms. Also, the physical meaning of the approach is less clear, which may lead to
difficulties in interpreting simulation results related to electrostatic interactions.
Accordingly, we added Coulomb potentials back to PACE for interactions between charged
groups. The parameters for Coulomb potentials, i.e., atomistic partial charges, were directly
taken from all-atom force fields, as is done for most of the hybrid force fields.28,29,30 The
transferability of the atomistic charges was then evaluated through comparison between
PMFs from PACE and atomistic simulations.

The new PACE was validated by ab initio folding simulations of a series of peptides and
proteins, as summarized in Table 1. These peptides and proteins have a wide spectrum of
structural motifs including α-helix (Fs48,49,50), β-strands (GB1p51 and its mutants52,53), α-
PPII (Trp-cage54), ββα (BBA555) and ααα (α3D56) systems, providing a robust test of
whether the force field is balanced among different structures. Using an enhanced sampling
method, namely replica exchange molecu-lar dynamics (REMD),4 we were able to perform
extensive conformational sampling and, thereby, could compare systematically the
simulated results with thermodynamic and structural quantities measured in experiments.
We show that the force field has been significantly improved in reproducing experimental
observations. Also, standard MD simulations were carried out to demonstrate the ability of
the force field to fold small peptides and proteins at physiological temperature, including the
73-residue α3D. Therefore, our force field is potentially useful to study folding and
dynamics of whole protein systems.

Models and Methods
In the following we introduce the terms in the PACE force field as well as describe briefly
the simulation conditions and the secondary structure analysis applied to folding trajectories.

PACE force field
The details of PACE and its parametrization have been discussed in previous studies.35,37

Only a brief introduction will be given here. PACE preserves all heavy atoms in proteins as
well as their backbone and side-chain amide hydrogen atoms.35 The overall potential energy
of PACE is expressed as

(1)

where the first four terms account for generic bonded interactions (Elocal) mediated through
covalent bonds, Eϕ, ψ, χ1 accounts for local interactions involved with rotamers of backbone
(ϕ, ψ) and side chains (χ1), and the remaining terms account for non-bonded interactions.
Specifically, the first four terms describe the energy associated with molecular geometries

(2)

In Eq 2, bonds and angles are governed by harmonic potentials with respective force
constants Kbond = 1.25×105 kJ·nm−2 and Kangle = 300 kJ·mol−1rad−2. The equilibrium bond
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lengths r0 and angle values θ0 were taken from optimized geometries by quantum mechanics
(QM) calculations.37 Dihedral potentials consist of both a cosine function of a dihedral, and
the Lennard-Jones (LJ) potentials for 1-4 atom pairs associated with the dihedral. The
dihedral parameters were obtained by fitting QM dihedral potential profiles of small
molecules.37 Improper terms, imposing constraints (Kimp = 300 kJ·mol−1rad−2) on four sites
of a dihedral angle, are used to maintain planarity or chirality of groups.

PACE is designed to provide correct description of conformational distributions of backbone
(ϕ, ψ) and side chains (χ1) (Figure 1a) for all amino acids. Previous statistical studies39,82

have shown that the same amino acid assumes significantly different backbone (ϕ, ψ)
conformations for distinctly different side chain conformations, such as rotamers gauche+,
gauche− and trans (Figure 1b), the difference arising from conformationally specific
interactions between side chain and adjacent backbone. The dependence between backbone
and side-chain conformations is accounted for in PACE through the terms Eϕ, ψ, χ1,35 which
are expressed as

(3)

As shown in the equation, cosine functions with different multiplicities (n) are applied to the
dihedral ϕ, ψ, or χ1 for a more accurate description of dihedral potentials. Furthermore,
certain short-range atom pairs, analogous to the pairs with 1-4 relationship, but separated by
more than three covalent bonds, have separate parameters (εshort, ij and σshort, ij) to model
the interactions between a side chain and its adjacent backbone. An example of such pairs in
Phe is illustrated in Figure 1c, as indicated by arrows. The parameters Kdihn, ζ0n, εshort, ij
and σshort, ij in Eq 3 were optimized, through iterative equilibrium simulations,35 against
side-chain rotamer distributions and rotamer-dependent backbone conformations from a coil
library.39

In PACE (Eq 1), LJ 12-6 potentials are used for the interactions ECGW-CGW between CG
water, ECGW-UA between CG water and protein sites, and EvdW between non-polar protein
sites, namely,

(4)

The parameters of MARITINI water for ECGW-CGW are εCGW-CGW = 5.0 kJ·mol−1 and
σCGW-CGW =0.47 nm; the cross-resolution terms ECGW-UA were optimized by fitting
experimental hydration free energies (HFE) of 35 compounds that cover 11 types of
functional groups;37 EvdW parameters were optimized based on densities of liquid states and
free energies of evaporation of eight organic compounds.35

PACE handles polar interactions Epolar between protein sites through a set of effective LJ
potentials which are necessary for directionality of polar interactions.35 For example, Figure
1d illustrates the interaction scheme of backbone hydrogen bonds (HB), the potential energy
functions of which are expressed as

(5)
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where i and j denote reside numbers. The polar interaction parameters were optimized by
fitting potential of mean force (PMF) profiles from atomistic simulations.35 As pointed out
already, we re-model polar interactions between charged groups with Coulomb potentials

(6)

where qi and qj are atomistic charges on atom pair i and j, rij is pair distance, and ε0 and εr
are vacuum permittivity and relative permittivity, respectively. εr takes the same value (15)
as used for MARTINI.31

Finally, all the parameter files for the re-optimized PACE force field as well as the original
PACE are available via http://www.ks.uiuc.edu/~whan/PACE/.

Simulation Details
NAMD 2.9,83 with a minor modification for using PACE parameters, was used to conduct
folding simulations. Switching functions were applied to Coulomb potentials from 0.0 to 1.2
nm, and to LJ potentials from 0.9 to 1.2 nm. We used a 4 – 5 fs timestep through increasing
mass of hydro-gen atoms to 5 au by re-partitioning mass in H-containing groups, which
should not a ect energy conservation.84 Temperature was maintained by Langevin dynamics
with a damping coe cient of 0.1 ps−1; pressure was maintained by a Nosé-Hoover Langevin
piston barostat83 with period of 200 fs and decay rate of 100 fs. To study folding of
peptides, PDB structures were solvated in cubic boxes of CG waters with 1.5 nm bu er
clearance from the solutes, subject to 10-ns heating simulations at 700 K after optimization.
The denatured structures, randomly selected from the heating simulations, were used for
both standard MD and replica exchange MD (REMD) simulations.4,85 REMD simulations
were performed at constant NVT conditions. For each system, 18 replicas, ranging from 300
K to 480 K, started with different denatured structures. Attempts to exchange between
replicas were made every 2 ps. The exchange ratio between the replica was on average 25 –
35%. All the folding simulations in this study are summarized in Table 2.

Parameterization of PACE required calculation of hydration free energies (HFE) of solutes
and potential of mean force (PMF) of interacting pairs. By following previous studies,35,37

we cal-culated HFEs and PMFs through thermodynamic integration (TI) methods.86

GROMACS 3.387 was used here in order to be consistent with the parametrization
procedure employed previously for PACE.35,37 Details about HFE and PMF calculations are
presented in Supporting Information Figure S1 and Table S1.

Structure Analysis
Following Sorin and Pande,59, we considered a residue to be α-helical only if this residue
and both of its neighbors have their (ϕ, ψ) angles within (−60±30°, −47±30°). Similarly, we
considered two residues to be involved in β-sheets if their (ϕ, ψ) angles are within
(−135±45°, 135±45°), and also if there is at least a HB between the backbone amide groups
adjacent to the two residues; we note that a HB is considered to be formed when a donor-
acceptor distance is shorter than 0.35 nm and a donor-hydrogen-acceptor angle is larger than
120.0°.

An iterative clustering algorithm proposed by Daura et al.88 was used to group
conformations based on their root mean square distances of selected atoms. In each iteration,
a cluster with the largest number of neighbors that are within a given cutoff of RMSD to the
center of the cluster is removed from a pool of conformations. The remaining pool is used
for the next iteration. The algorithm ends when the pool becomes empty.
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Results and Discussions
In the following sections, we will first present how we improved the PACE force field by
reoptimizing hydration parameters of protein backbones and incorporating Coulomb
interactions into the force field. Then we will verify these improvements by examining
performance of the new PACE in reproducing thermodynamics and kinetics in folding
processes of series of small proteins.

Re-optimizing backbone hydration parameters
As models for backbone hydration, blocked polyalanyl peptides (Ace-Alan-NMe) have been
investigated already in several computational studies.44,45,46 Nevertheless, available HFE
data from atomistic simulations were still inadequate for the purpose of parametrization.
Therefore, we performed thermodynamic integration (TI) simulations86 to calculate HFEs of
polyalanyl peptides from 1 to 4 alanyl group long, using the OPLS-AA force field89 and
TIP3P water model.90 An anti-parallel β-conformation (ϕ = −139°, ψ = 135°)46 was chosen
as a model for extended and exposed backbones of polypeptides (Table S1).

Figure 2a shows that HFEs of polyalanyl peptides, calculated with OPLS-AA, decreases
linearly with the number of alanyl groups. Each individual internal amide group contributes
similarly to overall HFEs of polypeptides, independent of peptide length, consistent with
previous computational studies.45,46,91 The HFE of an internal amide group was estimated,
according to an average over all incremental change of the calculated HFEs, to be −20±2.3
kJ·mol−1. Our result is comparable to the results from previous explicit-solvent simulations,
such as −17 ± 1.3 kJ·mol−1 for extended polyalanly peptides46 and about −23 to −25
kJ·mol−1 for extended polyglycyl peptides.91,92

In the original PACE, hydration parameters for amide groups were optimized based on
methylacetamide (NMA), producing a HFE of −42 ± 1.5 kJ·mol−1 for NMA,35 close to the
experimental value (~ −42 kJ·mol−1).43 However, our calculations (Figure 2a) show that
these parameters lead to a HFE of −41.4 ± 1.4 kJ·mol−1 for internal amide groups in peptide
backbones, similar to the HFE of NMA, but significantly stronger than −20±2.3 kJ·mol−1 for
internal amide groups obtained from the atomistic simulations. Several factors may
contribute to the discrepancy between HFEs of internal amide groups from the CG and
atomistic simulations. 1) Previous Poisson-Boltzmann calculations45 demonstrated that
adjacent amide groups in peptide backbones could a ect electrostatic solvation free energies
of each other, significantly reducing HFE of internal amide groups compared to an isolated
amide group. However, the CG solvent here is lacking in regard to electro-static solvation.
2) Detailed amide-water hydrogen bonding (HB), which could also be important for
backbone hydration,46 is missing due to coarse-graining of the water model. 3) Comparative
studies between CG and atomistic simulations93 have shown that coarse-graining could lead
to a considerable loss of configurational entropy associated with atomistic details. Thus,
HFEs obtained with PACE may also be a ected by loss of entropy due to the CG water
model. Considering the above factors, it is difficult to adopt only one set of hydration
parameters for both internal and isolated amide groups in the current PACE. Therefore, we
turned to different parameter sets for the two types of amide groups.

By fitting the HFEs of polyalanyl peptides from the atomistic simulations, we re-optimized
the parameters for hydration of internal amid groups, including εCGW-H/O and σCGW-H/O for
the interactions between CG water and backbone nitrogen and hydrogen atoms, assuming
σCGW-O = σCGW-H (Eq 4) to simplify the optimization. The new parameters are listed in
Table S2. The HFEs of polyalanyl peptides, calculated with the new parameters (Figure 2,
the dashed line), deviate from the all-atom HFEs by ~ 3.8 kJ·mol−1. With these parameters,
the HFE of an internal amide group becomes −23 ± 2.0 kJ·mol−1.
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We also examined the effect of change of hydration parameters on HBs between backbone
amide groups through comparison of potential mean force (PMF) profiles of interacting
amide groups. As shown in Figure 2b, the interaction strength of backbone HBs, estimated
as free energy minimum values in the PMFs, is ~ −8.2 kJ·mol−1 for the original PACE, close
to the value (~ −9 kJ·mol−1) from atomistic simulations. Since the new parameters
significantly reduce magnitude of backbone hydration, the desolvation penalty of backbone
HBs should also be reduced. As expected, with the new parameters, the HB strength
increases to ~ −14.0 kJ·mol−1, indicating that backbone HBs become too strong. Therefore,
we need to re-optimize the parameters for backbone HBs by referring to atomistic PMFs.
For the same reason, the parameters for HBs involved with backbone amides also need to be
examined and, if necessary, re-optimized. We also noticed that change of the backbone
hydration parameters a ected backbone conformational distributions. Accordingly, we re-
optimized the terms in Eq 3 to reproduce statistical (ϕ, ψ, χ1)-distributions from a coil
library.39 The details of all the re-optimizations are discussed in Supplementary Information
(Figures S2 and S3) and the new parameters are summarized in Tables S2 and S3. The new
parameters were optimized in the same way as previous studies did,35 except that
parametrization for backbone amide HBs no longer relies on structural features of any
specific peptide, but only on an amide-amide PMF obtained through atomistic simulation
(Figure S4), thereby rendering the new parameters more general than the original ones.

Incorporation of all-atom charges in PACE for charged side chains
We combined atomistic partial charges, taken from OPLS-AA (Figure S5), with PACE to
replace effective LJ potentials for interactions between charge pairs. The choice of atomistic
force fields is not particularly important as other all-atom force fields, such as
CHARMM2294 and AMBER03,95 have partial charges for charged groups very close to
those of OPLS-AA. To calculate partial charges for PACE, we combined OPLS partial
charges on a heavy atom and its attached hydrogen atoms and applied the sum to the
corresponding atom in PACE. To see how well PACE and the atomistic partial charges work
together, the PMFs of charge pairs, generated by the combined parameters, were compared
with respective all-atom PMFs reported by Masunov and Lazaridis.96

The comparisons (Figure 3) reveal four key features of charge interactions modeled by the
combined parameters. First, the Lys+…Asp−/Glu− PMF has a contact pair minimum (CPM)
of −9.2 kJ·mol−1 at rN-C = 0.34 nm, matching the same minimum in the atomistic PMF (−9.6
kJ·mol−1 at rN-C = 0.32 nm) (Figure 3a). The charges on Lys+ and Asp−/Glu− were
repartitioned in sev-eral arbitrary ways (Figure S6a), but no better match could be obtained
with the repartitioned charges than with those from OPLS-AA. Second, the atomistic CPM
of Arg+…Glu−/Asp− (Figure S6b) could not be reproduced by the combined parameters
alone, no matter how the charges on Arg+ were rearranged, probably due to the lack of
details of H atoms on Arg+. Thus, we turned to a set of effective LJ potentials (Figure S5
and Eq. S3) that had been used for this charge pair in the original PACE.35 Together with
the atomistic charges, these effective LJ potentials improve the description of the Arg+…
Glu−/Asp− CPM (Figure 3b). Third, despite electrostatic repulsion between a like-charge
pair, such as Lys+…Lys+ and Glu−/Asp−…Glu−/Asp−, the combined parameters capture
water-mediated minima present in the atomistic PMFs (Figures 3c and d). But the pairs at
these minima are farther away by 0.2-0.3 nm than those in the atomistic PMFs, owing to the
large size of CG water. Fourth, at intermediate distances (0.35 – 0.6 nm), the PACE PMFs,
compared to their atomistic counterparts, are more attractive for opposite-charge pairs, and
more repulsive for like-charge pairs (Figure 3).

As MARTINI CG water is unable to screen electrostatics through dielectric properties, an
empirical dielectric constant εr = 15 is often introduced to account for dielectric screening.31

Also, solvation of charged solutes in CG water are parametrized to partly account for the
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screening. Considering the difference between the CG and all-atom water models, we do not
expect a perfect match between the PMFs from PACE and all-atom simulations. For
example, charge-pair interactions are overestimated by PACE when the pairs are separated
at intermediate distances. However, even a more sophisticated solvent model, such as the
Generalized Born (GBHCT) model developed by Hawkins and coworkers,97,98 renders, for
example, Lys+…Lys+ and Glu−/Asp−…Glu−/Asp− interactions too repulsive (cf. Figures
13a and 16 of ref96). Accordingly, we need to further assess the applicability of the
combined parameters. In this regard we note that peptide folding is sensitive to description
of charge-charge interactions, incorrect description could significantly distort free energy
landscapes of peptides, thereby leading to misfolding.61,62,67,68 Indeed, peptide folding has
been recognized as an important opportunity for improvement of force fields such as the GB
model.63,68 As will be shown later, the current charge parameters seem to be applicable for
folding simulations, at least for the model peptides studied in this work.

Folding simulations of helical peptides AK17 and Fs
AK17 is a 17-residue polyalanine-based model peptide (Table 1), known through CD
measurements48 to have 30 – 35% helical content at 300 K. AK17 has been used to
parametrize backbone HB in the original PACE.35 A REMD simulation (200 ns/replica) for
AK17 shows that the new PACE predicts too high a helical content (72 ± 2%) at 300 K. To
reduce helical content of pep-tides, one approach is to adjust (ϕ, ψ) dihedral potentials in
order to ameliorate the preference for α region in each residue, as done in previous
development of AMBER-GS58 and AMBER99ϕ59 for helix folding. However, having been
parameterized to fit the coil library, the (ϕ, ψ) dihedral parameters in the new PACE could
not be altered further. We fine-tuned, therefore, the stability of local helical turns by
changing the strength of all short-range backbone HBs between residue i and residue i + 3 or
i + 4, while leaving the other HB parameters untouched. With a reduction of εattr, Oi-Ni+3/i+4
(Eq 5 and Table S2), the new PACE produces 42 ± 5% helical content for AK17,
comparable to experimental data. For consistency, all folding simulations below were
performed with the same parameters, including the reduced εattr, Oi-Ni+3/i+4 and all the new
parameters discussed in previous sections.

Another 20-residue helical peptide, known as Fs peptide49,50 (Table 1), was used to examine
the new PACE through a REMD simulation (200 ns/replica) and a 3-μs standard MD
simulation at 300 K. The average helical contents from the 300 K replica and the standard
simulation are 42±5% and 45 ± 1.8%, respectively, similar to ~ 43% of the original PACE;
the result from the new PACE agrees with ~ 50% helical content of Fs found in CD
measurement at 300 K.80 The trajectory (t > 50 ns) from the standard simulation was
clustered according to a 0.25 nm cutoff of backbone root mean square distance (RMSD) (see
Methods). Top 5 clusters among 547 identified are shown in Figure 4. The most stable
cluster (cluster 1, 21.5%) is a single full helix (SFH); in contrast, SFH was only marginally
stable (~ 1%) in the simulation with original PACE.35 On the other hand, the most stable
cluster predicted by the original PACE is a reversed helix-turn-helix structure (HTH) with
PHTH = 14.6%,40 but the same structure is much less stable with the new PACE (cluster 5).
The new PACE results agree also more closely with previous all-atom simulations which
showed that Fs has ~ 17% SFH.59

Since radii of gyration (Rg), which reflect overall shapes of proteins, are experimentally
available for both AK17 and Fs,57,59 we computed protein Rgs for both peptides to examine
the ability of the new PACE to describe shapes. The average Rgs for AK17 and Fs are 0.78
± 0.05 nm and 0.90 ± 0.06 nm, respectively, close to the experimental values (~ 0.82 nm and
~ 0.9 nm) and the values (0.78 ± 0.06 nm and 0.85 ± 0.07 nm) calculated with the original
PACE.35 The analysis of Rg suggests that the shapes of both helical peptides are described
reasonably well by both the original and the new PACE.
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Folding simulations of β-hairpin GB1p and its mutants
β-hairpin GB1p (Table 1), derived from residues 41-56 in the C-terminus of protein G B1
domain, has been well characterized experimentally.51,52,53,99 Due to its fast folding kinetics
(τ = 6 ~ 20 μs),53,99 GB1p has also been intensively studied in folding
simulations.21,40,60,61,62,63,64,66 GB1p is known to be marginally stable, having a melting
temperature Tm < 273 K.52 The stability of GB1p can be increased to different extents
through mutations in its loop such as D47P53 or the replacement of DDATKT by NPATGK
(GB1m2)52 (Table 1).

We performed REMD simulations for GB1p and its D47P and GB1m2 mutants with the
new PACE. We took region 41-56 of the NMR structure (PDB ID: 1gb1) as a reference
(Figure 5a) for a folded state. A simulated structure was considered folded if its RMSD of
backbone and Cβ atoms is less than a certain cutoff. To choose a proper cutoff, we
calculated the folded populations of the three peptides by varying the RMSD cutoff from 0.1
to 0.34 nm (Figure S7), and looked for points after which the populations level off. Such
points, as shown in the figure, turned out to be at 0.2 nm which was then chosen as the
RMSD cutoff. For GB1m2 and D7P, the folded structures appeared early (t < 50 ns) in the
REMD simulations and the population of folded peptides converged after t > 200 ns (Figure
S8). Thus, we extended the simulations of GB1m2 and D47P to t = 350 ns and extracted the
last 150 ns of simulations for analysis. On the other hand, GB1p was found to fold only after
t > 400 ns; the percenage Pfold of folded states converged only after t > 600 ns. Indeed, a
previous folding study with GB solvent involving REMD simulations also found that GB1p
folded more slowly than its loop mutants.63 Garcia and co-workers suggested that there are
high barriers dividing folded and unfolded states for GB1p.100 Therefore, we carried out
extended (750 ns) REMD simulations for GB1p and analyzed the last 150 ns of simulations.

At 300 K, the folded populations Pfold of GB1p, D47P and GB1m2 were estimated to be 31
± 9%, 54 ± 7% and 79 ± 7%, respectively, in good agreement with Pfold (~ 30%, ~ 50% and
~ 75%) measured at 298 K by NMR experiments.52,53 In particular, the stability of folded
GB1m2 is better reproduced by the new PACE than by the original one (Pfold =~ 40 -
45%).40 The clustering (rRMSD = 0.2 nm) results show that all the peptides have their most
stable cluster folded (Figure 5a). The other clusters are only marginally stable (< 10%).
Melting curves were plotted by calculating Pfold(T ) for all replicas (Figure 5a). The melting
curves shows that the melting temperature Tm of GB1p should be below 300 K and that the
Tms of D47P and GB1m2 are 300 ~ 308 K and 324 ~ 332 K, respectively, in close
agreement with the experimental Tm values (299 ~ 311 K and 318 ~ 322 K).52,53 Therefore,
the new PACE not only folds GB1p and its mutants into their native structures, but also
reproduces the delicate stability difference among the peptides. Reproducing relative
stabilities of GB1p and its mutants has also been reported by other groups. Chen and Brooks
showed that their CHARMM22/GBSW force field was able to differentiate stabilities of
GB1p and its β-hairpin enhancing or retarding mutants63 as did the implicit solvent force
field developed by Irback and Mohanty.64 However, these force fields were optimized
purposely for folding of GB1p and its mutants, which is in contrast to the new PACE here
that did not incorporate any information of those β-hairpin peptides when it was optimized.

Folding simulations of Trp-cage
Trp-cage (Table 1) is a de novo designed 20-residue mini-protein which behaves in several
respects like large globular proteins.54 Tp-cage exhibits a compact hydrophobic core,
centered around the Trp6 side chain that is caged by side chains of Tyr3, Leu7, Pro12 and
Pro18 (Figure 6a). Due to its small size and fast kinetics (τf =~ 4.1 μs),69 Trp-cage has been
computationally studied in numerous folding simulations which reproduced its NMR
structures with high accu-racy.21,63,64,67,68,69,70,71,72,73,74 The original PACE is also able to
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fold Trp-cage (Pfold = 30 - 35 %) with its representative folded structure exhibiting a
backbone RMSD of 0.2 nm from the NMR structure.40 But the original PACE
underestimates Pfold of Trp-cage compared to Pfold (~ 70% with a 0.24 nm RMSD cutoff)
measured by CD and NMR experiments.54

Pfold of Trp-cage with the new PACE was calculated through 200 ns REMD simulations,
using a 0.24 nm RMSD cutoff of backbone (residue 3-19). This cutoff was calculated in the
same way as earlier discussed (Figure S7). The second halves of simulations, which showed
the converged Pfold (Figure S8), were used for analysis. Pfold at 300 K was estimated to be
68±9%, consistent with the experimental value (~ 70%). We clustered the 300 K ensemble
with a RMSD cutoff of 0.2 nm. The representative structure of the most stable cluster (69%)
has a RMSD of 0.13 nm, which is even better than the one (backbone-RMSD ~ 0.16 nm)
from previous OPLS-AA/SPC simulations.74

The melting curve of Trp-cage is plotted in Figure 6b. For comparison, we also plotted the
melting data from NMR and CD experiments,54 and from previous ~ 40 μs REMD
simulations with AMBER99SB101 and TIP3P water for converged sampling.70 As shown in
Figure 6c, the melting curve generated by the new PACE agrees closely, for the entire
temperature range of the REMD simulations, with that from the all-atom simulations. Tm
measured from the PACE simulations is ~ 324 K, close to ~ 321 K from the all-atom
simulations, and slightly higher than the experimental value (315 K), but much lower than
those from other all-atom simulations with OPLS-AA in TIP3P (440 K)74 and
AMBER94102 in GBHCT (~ 400 K).67 Both the AMBER99SB melting curve and ours are in
overall agreement with the experimental melting data, but depart noticeably (~ 15% folded
population) from the experimental data for extreme temperatures.

We also calculated inter-proton NOE pair distances and compared them with the reported
data from NMR experiments.54 We first added all missing H atoms back to each frame of

the simulations, and then evaluated NOE pair distances as  which was
averaged over the whole ensemble (t > 100 ns). As suggested by Zhou,74 a simulated NOE
pair was considered in disagreement with the NOE observations if its distance is 0.025 nm
or more below the lower bound or beyond the upper bound in the NOE distance range.54 For
83% of 169 reported NOE pairs, the simulated distances are within the NOE distance range,
comparable to the results from OPLS-AA/SPC simulations in which 92% of NOE pairs
showed correct distances.74 Of 17% pairs in violation, only three had a distance > 0.5 nm, a
typical distance limit for observing NOE signals. We further looked into 28 long-range NOE
pairs which are separated by at least five residues (i/i + n with n ≥ 5). These long-range NOE
pairs provided key constraints to define topology and tertiary structures of Trp-cage.54 As
shown in Figure 6b, only 3 of 28 long-range pairs violate NMR NOE distances, while there
were also 4 long-range pair violation in the OPLS-AA/SPC simulations.74 The three pairs
with violation include: (1) the pair between Y3 HD1 and W6 HH2, suggesting a less tight
packing between Y3 and W6 (Figure 6a); (2) pairs between W6 HZ2 and P12 HA and (3)
between D9 HB1 and S14 HB2, which have also violated NOE distances in the OPLS-AA/
SPC simulations.74 Despite the three distance violations, all the long-range pair distances are
still within the 0.5 nm limit. Therefore, we conclude that the PACE simulations reproduced
well the NMR structures for Trp-cage.

Folding simulations of BBA5
De novo designed BBA5 (Table 1) is characteristic of globular proteins, namely having a
well defined tertiary structure composed of all types of elementary structures, including a β-
hairpin (residues 1-8), an α-helix (residues 12-20) and a connecting loop (Figure 7a).55,103

Folding of BBA5 has been achieved in all-atom simulations with both explicit76 or
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implicit75,77,104 solvent models. We examined folding of BBA5 through REMD simulations
with the new PACE. To achieve a converged sampling, the simulation lasted for 500 ns
(Figure S8), the last 300 ns of which was taken for analysis.

We tried to use backbone RMSD to define folded states for calculation of Pfold, but we were
unable to choose a definite RMSD cutoff as Pfold was found to increase linearly with RMSD
cutoff, without any inflection point (Figure S7), unlike in the case of GB1p or Trp-cage.
Thus, we set the cutoff as 0.3 nm, the same as used in previous simulations of BBA5,76,77

and Pfold was calculated to be 27 ± 9% at 300 K. A BBA5 double mutant with enhanced
stability, as shown in previous CD and fluorescence experiments,75 has only Pfold of ~ 20%.
Since the folded structures are marginally stable in the simulation, it is necessary to know if
the lowest free energy minimum is still folded. The simulated ensemble was therefore
clustered using a 0.25 nm backbone RMSD cutoff. The most stable cluster (28%) turned out
to be folded, as reflected by a low RMSD (0.19 nm) for its representative structure (Figure
7a).

The β-hairpin and α-helix in BBA5, on the other hand, show considerable stabilities. The
probability Pβ of the β-hairpin is 77%. The helical content Pα in region 12-18 is 80%. The
high Pβ and Pα values agree with values determined in previous folding simulations of
BBA5 with OPLS/GBSA.104 Our results reveal that a large fraction of unfolded states have
considerable native secondary structures. However, the hairpin adopts various orientations
relative to the helix in the unfolded states, as demonstrated by a structural overlay of
randomly selected conformations from the entire ensemble (Figure 7b). Previous simulations
had shown that even at 278 K the relative orientation of the hairpin in the folded states is
flexible.75 NMR studies have also demonstrated that certain mutations on the BBA5 hairpin
could alter relative orientation of the hairpin or even lead to multiple structures with
different hairpin orientations.55

To further validate the marginal stability of BBA5 and its flexibility, we calculated NOE
pair distances for the entire ensemble and compared them with NMR data.55 Of 347
reported NOE pairs, five pairs violate NMR NOE constraints. Of 60 long-range (i/i + n with
n ≥ 5) NOE pairs, only one pair (R2 HA and D7 HB*) violates its constraint, showing a
calculated NOE distance 0.03 nm above the experimental upper bound (0.34 nm) for this
pair (Figure 7c). We noticed that the good agreement between the simulated and
experimental NOE distances may be partly due to large upper bounds of certain
experimental NOE constraints, some of which are even beyond 0.8 nm. To see if the good
agreement relies on those large upper bounds, we also compared all the NOE pair distances
with the 0.5 nm distance that is the typical distance limit for observing NMR signals. The
comparison showed that 25 of 347 NOE pair distances exceed the 0.5 nm distance limit.
Among the 25 NOE pairs, only six involve long-range NOE pairs, mainly between Y1 and
L14 and between Y1 and A15. The majority of the experimental constraints are, according
to the calculation, predicted to be observable in NOE spectrum. Therefore, the
conformational ensemble of BBA5 generated by the new PACE reproduces the NMR
structural data.

Folding Simulations of α3D
3D (Table 1) is a de novo designed three-helical-bundle protein that contains 73
residues.56,105 Owing to its length folding of α3D requires tremendous conformational
sampling such that ab initio folding with atomistic detail represents a great computational
challenge. Indeed, computational folding of α3D has only been achieved in few studies.
Using an AMBER96/GBSA model, Ozkan and coworkers folded α3D with a Cα RMSD of
0.46 nm by combining a conformational search algorithm with REMD.78 Recently,
Lindorff-Larsen and coworkers, using a modified CHARMM force field,106 achieved ab
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initio folding of α3D for multiple times in a simulation extending beyond 700 μs.79 As a
final test, we employed the new PACE to fold α3D at T = 310 K. Starting with denatured
α3D, folding of α3D was observed in three extended (10 – 30 μs) standard MD simulations.
The average Cα RMSD of representative folded structures are 0.34 ± 0.02 nm for the three
simulations, close to the result (0.31 nm) achieved by Lindorff-Larsen and coworkers.79

Our α3D folding simulations lead to several interesting results. First, unfolded states of α3D
were found to be disordered with radius of gyration exhibiting large fluctuations (Figures 8b
and S9), yet these states exhibit significant (~ 25%) residual helical content. A residual
helical content of 20% had also been reported for unfolded α3D in the atomistic
simulations.79 Second, for the three helices in α3D, namely H1 (residue 1-18), H2 (residue
28-44) and H3 (residue 54-73), H1 and H2 form the native two-helical bundle earlier than
H2 and H3 do, as reflected by our RMSD calculation of H1-H2 and H2-H3 (Figures 8b and
S9). Our results are in contrast to a previous folding study107 which, using an Ising-like Gô
model, suggested that H3 involves the native topology first. Third, in two of the simulations,
folding completed after H3 packed itself to the pre-formed H1-H2 complex with correct
native contacts (Figure S9); in a third simulation emerged intermediates with native-like
topologies but a non-native hydrophobic core (8 μs < t < 13 μs, Figures 8b), which
eventually transited to the folded structure. Such a scenario of multiple folding pathways is
expected for α3D according to experiments.105

Folding Kinetics with New PACE
Since several peptides have been folded successfully with the new PACE, it is natural to in-
spect the kinetics of the simulated folding. For this purpose, additional multi-μs simulations
were conducted for D47P, Trp-cage and BBA5. Alongside the simulations for Fs and α3D,
these stan-dard MD simulations, summarized in Table 2, cover all the structural motif
investigated in this work. The folding time τf was estimated as the average timespan of
folding starting when the simulations began or when the peptides unfolded, and ending
when the peptides reached folded states (Figures S9-13). As shown in Table 3, the simulated
τf’s are 5-10 fold shorter than the experimental ones, except for the case of α3D which is
probably due to different pH conditions, i.e., neutral pH in our simulations and pH 2.2 in the
experiments.105 Acidic pH can lower Tm of α3D from > 363 K to 343 K;105 recent single-
molecule FRET experiments also show that the folding kinetics of α3D around room
temperature becomes ~ 10 folds faster at low pH compared to neutral pH.108 Compared to τf
from the atomistic simulations,79 our τf is 2 – 3 times shorter (11 ± 4 μs vs. 27 ± 8 μs),
though measured at a lower temperature (310 K vs. 370 K). Altogether, for the systems
tested here, folding modeled by the new PACE is about 5-10 fold faster than seen in
experimental measurements.

The 5-10 fold acceleration of folding by the new PACE could be attributed to multiple
factors, such as coarse-graining of the solvent model and simplified potentials for protein-
protein and protein-solvent interactions, both smoothing energy landscapes of folding. For
instance, the CG water model becomes less viscous and allows solutes to diffuse faster by 4
– 5 times than atom-istic models, as demonstrated in previous studies.31 However, the
observed factor of acceleration of folding may not be enough for estimation of the time scale
of CG simulations since protein dynamics includes events on multiple time scales, each of
which could be a ected to a different extent through coarse-graining of atomistic models.
Also, we have re-distributed mass of hydrogen-containing groups for a larger time step,
which could a ect hydrogen-bonding dynamics84 and, thereby, complicate the meaning of
the time scale of simulations. Therefore, one should be cautious to use the observed
acceleration factor for folding to interpret the time scale of CG simulations.
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Conclusion
We have presented a further optimization of the PACE multiscale model and validated it
through folding several proteins. We demonstrated that the original PACE will overestimate
backbone hydration and render small proteins, such as GB1m2, a GB1p mutant, and Trp-
cage, less stable than seen in experiments. The new PACE, optimized for HFEs of peptide
backbone, not only reproduces correct stabilities for GB1m2 and Trp-cage, but also for other
proteins, such as GB1p and its D47P mutant and BBA5, bringing calculated Tm and NOE
distances in close agreement with experiment. We also explored the possibility to combine
atomistic charges from atomistic force fields with PACE for interactions between charged
groups. We showed that with only minor modification of PACE, the combined parameters
recall in satisfactory PMFs for charge pairs and work well in folding simulations. We expect
that the treatment of electrostatic interactions will be significantly improved by further
combining atomistic charges, PACE and recently developed polarizable CG water
models.111,112 The new PACE accelerates folding of the proteins tested by 5-10 times, as
demonstrated in a systematic comparison between simulations and experiments. Finally, we
were able to fold the 73-residue α3D into its native structure through standard MD
simulations, indicating the potential of the new PACE for the study of protein folding and
dynamics of large proteins.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Schematic representation of dihedral angles ϕ, ψ and χ. (b) Schematic representation of
three side-chain rotamers gauche+, gauche− and trans. (c) Schematic representation of short-
range pairs (arrows) in Phe for calculation of Eϕ, ψ, χ1. (d) effective interaction potentials for
backbone HB, with the dashed line for an attractive potential and the thick lines for the
repulsive ones.
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Figure 2.
(a) Hydration free energies of extended (ϕ = −139°, ψ = 135°) polyalanyl peptides having
1-4 alanyl groups, calculated with the OPLS-AA, the original PACE (PACEold) and the
new PACE (PACEnew) force fields. The error bars are estimated with three independent
simulations. (b) Potential mean force (PMF) profiles of two interacting amides in water,
calculated with the OPLS-AA force field (thin line), the new PACE (thick line), the original
PACE (dashed line) and the original HB potentials with the new hydration parameters (dot-
dashed line).
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Figure 3.
PMFs of Lys+…Asp−/Glu− (a), Arg+…Asp−/Glu− (b), Lys+…Lys+ (c) and Asp−/Glu−…
Asp−/Glu− (d). The solid lines denote PMFs by OPLS-AA force field in TIP3P water and
the dashed lines (PACEnew) denote those by PACE with the all-atom charges.

Han and Schulten Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2013 November 13.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 4.
Structures of the first five of the most stable Fs clusters with their respective probability
indicated below the structures. The structures were drawn by VMD113.
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Figure 5.
(a) Representative structures of the most stable clusters in simulations of GB1p and its D47P
and GB1m2 mutants with their respective RMSD values indicated below. (b) Melting curves
obtained through REMD simulations of GB1p (dot-dashed), D47P (dashed) and GB1m2
(solid).
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Figure 6.
(a) NMR structure of Trp-cage (model 1 in PDB ID: 1L2Y) and representative structure of
the most stable cluster in the 300K simulation. (b) NOE pair distances from NMR
experiments (filled diamond)54 and the simulation by the new PACE (empty diamod) for
long-range pairs (i/i + n with i ≥ 5). Error bars show reported upper and lower bounds for
NOE distance from NMR measurements. The dashed line denotes 0.5 nm distance. (c)
Folded populations of Trp-cage against temperature, calculated with the new PACE (solid
line) and AMBER99SB with TIP3P water (cross) and measured with NMR (filled diamond)
and CD (empty square) methods. Error bars were estimated through block average with
windows of 10 ns.
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Figure 7.
(a) NMR structure of BBA5 (PDB ID: 1T8J) and representative structure of the most stable
cluster in the 300K simulation. (b) Overlay of randomly selected conformations from the
most stable cluster (left), superimposed by residue 1-21 backbone, or from the entire
simulations (right), superimposed by residue 12-19 backbone. (c) NOE pair distance upper
and lower bounds from NMR experiments (vertical line)54 and the simulated NOE distances
by the new PACE (empty diamond) for long-range pairs (i/i + n with i ≥ 5). The dashed line
denotes 0.5 nm distance.
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Figure 8.
(a) Snapshots of the folding simulation of α3D. (b) Cα RMSD to the native structure (PDB
ID: 2A3D) (top panels), Cα RMSDs of H1-H2 (black) and H2-H3 (red) (middle panels) and
radius of gyration (bottom panels) of α3D in the folding simulations. Five fraying residues
in each terminus were discarded when Cα RMSD was calculated. Superimposition of the
representative folded structure (red) and the native structures (blue) is shown in the top
panel.
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Table 2

Summary of system size, simulation time, and MD methods used of folding simulations performed in this
work.

System Number of water molecules Time (μs)
b MD methods

Dipeptide
a 550 0.05 REMD

c

AK17 1600 0.2 REMD

Fs 1850 0.2 REMD

1850 3.0 MD

GB1p 1700 0.75 REMD

D47P 1700 0.35 REMD

1800 1.3; 2.1; 3.5 MD

GB1m2 1700 0.35 REMD

Trp-cage 1800 0.2 REMD

1800 3; 3 MD

BBA5 1800 0.5 REMD

1800 8; 8 MD

α3D 4500 10; 20; 30 MD

a
REMD simulations were carried out for all 20 natural amino acids.

b
For REMD simulations, the simulation time of each replica is listed. For standard MD simulations, the simulation time of each run is listed.

Simulation times of multiple runs are all listed, separated by semi-colons.

c
Each REMD involved has 18 replicas with associated temperatures ranging from 300 K to 480 K.
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Table 3

Number of folding events Nf in the standard MD simulations and comparison of folding time τf,sim (μs) with
experimental τf,expt.

Peptide
a N f τ f,sim τ f,expt τf,expt/τf,sim

Fs 45 0.04 ± 0.01 0.16 – 0.22
b

~ 4.5 – 6.5

D47P 4 0.9 ± 0.3 ~ 13
c

~ 15

Trp-cage 7 0.4 ± 0.13 4.1
d

~ 11

BBA5 13 0.8 ± 0.3 8 ± 3.5
e

~ 9

α3D 3 11 ± 4 3 ± 1.2
f

~ 0.3

a
Standard MD simulations were performed at 300 K for Fs, D47P and Trp-cage and at 310 K for BBA5 and α3D.

b
At 301 K with T-jump CD.109,110

c
At 298 K with NMR.53

d
At 296 K with T-jump CD.69

e
At 298 K with T-jump uorescence.75

f
At 323 K and pH 2.2 with T-jump IR.105
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