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Growth-promoting and nutrient/
mitogen-sensing pathways such as 

mTOR convert p21- and p16-induced 
arrest into senescence (geroconversion). 
We have recently demonstrated that 
hypoxia, especially near-anoxia, sup-
presses geroconversion. This gerosup-
pressive effect of hypoxia correlated with 
inhibition of the mTOR/S6K pathway 
but not with modulation of the LKB1/
AMPK/eEF2 pathway. Here we further 
show that mTOR inhibition is required 
for gerosuppression by hypoxia, at least 
in some cellular models, because deple-
tion of TSC2 abolished mTOR inhibition 
and gerosupression by hypoxia. Also, in 
two cancer cell lines resistant to inhibi-
tion of mTOR by both p53 and hypoxia, 
hypoxia did not suppress geroconversion. 
Therefore, the effects of hypoxia on the 
oxygen-sensing mTOR pathway and 
geroconversion are cell type-specific. We 
also briefly discuss replicative senescence, 
organismal aging and free radical theory.

Hypoxia can cause cell cycle arrest. 
However, reversible cell cycle arrest is 
not yet irreversible senescence.1 Indeed, 
hypoxia did not cause senescence in sev-
eral cell lines tested by us, and we did 
not find well-documented reports of 
hypoxia-induced senescence. This may 
seem puzzling given that hypoxia activates 
hypoxia-inducible factor (HIF) and HIF-
dependent secretion of VEGF, PAI, IGF-I 
and other cytokines. And hyper-secretory 
phenotype or senescence-associated secre-
tory phenotype (SASP) is one of the hall-
marks of cellular senescence.2-5

Possibly, while inducing some mani-
festations of senescence such as secretory 
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phenotype, hypoxia suppresses the under-
lying senescence-driving (gerogenic) 
process. Thus, a senescent program (con-
version from cell cycle arrest to senes-
cence or geroconversion) depends in 
part on the nutrient-sensing and growth-
promoting mTOR (target of rapamycin) 
pathway. Activation of the mTOR path-
way is involved in secretion of numerous 
cytokines as a part of hypersecretory phe-
notype of senescent cells.6-8 Importantly, 
the mTOR pathway is responsible for a 
large-cell morphology and irreversible 
loss of regenerative (replicative) poten-
tial. Rapamycin suppresses geroconver-
sion during cell cycle arrest.9-17 Hypoxia 
inhibits mTOR.18-27 This may not only 
explain why hypoxia does not cause 
senescence, but also why it suppresses 
geroconversion caused by senescence-
inducing agents. For example, induc-
tion of ectopic p21 by IPTG causes cell 
cycle arrest without inhibiting mTOR, 
thus leading to senescence in HT-p21 
cells.28 These cells acquired a large-flat 
morphology and lost regenerative (rep-
licative) potential, becoming unable to 
resume proliferation after p21 is switched 
off. If p21 was induced under hypoxia, 
cells were arrested but did not become 
large and retained regenerative (replica-
tive) potential, forming colonies upon 
IPTG removal.28 Using several induc-
ers of senescence, we demonstrated this 
phenomenon in a variety of cell lines. In 
all cases, suppression of geroconversion 
coincided with the inhibition of mTOR 
by hypoxia. It was independent from p53, 
HIF-1 and AMPK. Although hypoxia 
exerted multiple other effects, it seems 
that inhibition of mTOR was sufficient to 
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explanations. Instead of accumulation of 
random damage caused by free radicals, 
oxygen can activate oxygen-sensing path-
ways such as TOR (Fig. 6). Interestingly, 

embryonic fibroblasts (MEFs) observed by 
Campisi and coworkers.32 In fact, hypoxia 
inhibits mTOR in MEF cells.20 Rapamycin 
can also suppress senescence in MEFs; 
however, its effect is limited by its cyto-
static effect.33 We can speculate that mild 
hypoxia slightly inhibited mTOR without 
inhibiting cell proliferation, thus creat-
ing a condition for avoidance of mTOR-
dependent senescence. Since hypoxia is a 
normal physiological condition inside an 
organism, this may explain why gerocon-
version of normal cells may take decades 
in humans.

Our study has one startling implica-
tion. Thousands of experiments with 
oxygen and hypoxia were interpreted as 
the evidence for the free radical theory of 
aging. Yet, these data can have alternative 

suppress senescence, because rapamycin 
was even more effective than hypoxia as 
a gerosuppressor (in the same cell lines) 
and did not have additive effects with 
hypoxia.28 Here we further showed that, 
at least in HT-p21 cells, the inhibition of 
mTOR was required for gerosuppression. 
We infected these cells with lentivirus 
expressing shRNA for TSC2 (shTSC2), 
which decreased levels of TSC2, a nega-
tive regulator of mTOR (Fig. 1A). TSC2 
knockout prevented inhibition of mTOR 
by hypoxia, as evidenced by persistent 
phosphorylation of S6K and S6 (down-
stream targets of mTOR complex 1) and 
Akt (a downstream target of mTORC2) 
under hypoxia (Fig. 1A). Notably, both 
inhibition of pS6 phosphorylation28 and 
Akt phosphorylation (Fig. 2A) were 
HIF-1 independent. In contrast, rapamy-
cin increased Akt phosphorylation in the 
same cell line10 (Fig. 2B and C). Hypoxia 
partially prevented loss of replicative/
regenerative potential (RP), meaning 
that some cells could resume proliferation 
after IPTG was washed out (Fig. 1B). In 
contrast, hypoxia failed to prevent loss of 
RP in HT-p21 cells with depleted TSC2, 
indicating that inhibition of mTOR is 
required for gerosuppression by hypoxia 
at least in these cells.

Furthermore, we have previously iden-
tified cell lines in which hypoxia did not 
inhibit mTOR and geroconversion.28 
This is reminiscent of the effect of non-
genotoxic induction of p53 by nutlin-
3a. Nutlin-3a inhibited mTOR and 
suppressed geroconversion during p21-
induced arrest in HT-p21 cells and in nor-
mal cells.29,30 Yet, it did not inhibit mTOR 
in some cancer cell lines and MEFs.31,30 
Next, we chose cell lines (A549 and 
MCF-7) in which low concentrations of 
nutlin-3 did not inhibit mTOR (Fig. 3). 
These cells become senescent following 
treatment with nutlin-3a (Figs. 4 and 5). 
Unlike rapamycin, hypoxia did not 
inhibit mTOR in A549 and MCF-7 cells 
(Fig.  3). In agreement, hypoxia did not  
suppress morphological senescence  
caused by nutlin-3a, whereas rapamycin 
did (Figs. 4 and 5). Thus, inhibition of 
mTOR by hypoxia seems to be a prerequi-
site of gerosuppression by hypoxia.

Our studies can explain abrogation of 
replicative senescence by hypoxia in mouse 

Figure 1. TSC2 is required for gerosup-
pression in HT-p21–9 cells. HT-p21–9 cells, 
infected with lentivirus vector pLKO or pLKO-
shTSC2 (see ref. 31), were treated with IPTG 
in normoxia or 0.2% O2 hypoxia. (A) After 
24 h, cells were lysed, and immunoblotting 
was performed with the indicated antibod-
ies as described previously.28 (B) After 4 d, 
cells were washed and allowed to regrow. 
Colonies were stained with Crystal Violet as 
described previously.28

Figure 2. Hypoxia inhibits AKT phosphoryla-
tion in HIF-1-independent manner in HT-
p21–9 cells. (A) HT-p21–9 cells, mock-trans-
fected or transfected with siRNA for HIF-1α, 
were incubated under normoxia or hypoxia 
(0.2% O2) as described in (see ref. 28). After 
3 d, cells were lysed and immunoblotting was 
performed as described28 using anti-pAkt (Ser 
473) antibodies. The other proteins are shown 
in the PNAS paper (Fig. 2B in ref. 28). (B) Hy-
pothetical schema of the effects of hypoxia 
on pS6 and pAkt in HT-p21–9 cells. In TSC2-
dependent and HIF-1-independent manner, 
hypoxia inhibits mTORC1 and mTORC2 and 
thus inhibits phosphorylation of S6 and Akt. 
(C) Hypothetical schema of the effects of 
rapamycin on pS6 and pAkt in HT-p21–9 cells. 
Rapamycin inhibits mTORC1 and stimulates 
Akt phosphorylation via a feedback loop.
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Figure 3. The effect of hypoxia and nutlin-3a on MCF-7 and A549. A549 and MCF7 cancer cells were treated with 5 uM of nutlin-3a (N) with or without 
10 nM (A549) or 100 nM (MCF7) rapamycin (R) under normoxia or 1% O2 hypoxia. C, control. After 24 h, cells were lysed, and immunoblotting was per-
formed with the indicated antibodies (see ref. 28).

Figure 4. The effect of hypoxia and rapamycin on nutlin-3a-induced senescence in A549 cells. A549 cells were treated with 5 uM nutlin-3a (Nut) and 
10 nM rapamycin (Rapa) under normoxia or 1% O2 hypoxia (Hyp) for 4 d and stained for β-Gal. Bar = 100 um.
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Figure 5. The effect of hypoxia and rapamycin on nutlin-3a-induced senescence in MCF-7 cells. MCF-7 cells were treated with 5 uM nutlin-3a (Nut) and 
100 nM rapamycin (Rapa) under normoxia or 1% O2 hypoxia (Hyp) for 4 d and stained for β-Gal. Bar = 100 um.

Figure 6. The relationships between hypoxia, HIF-1, mTOR and geroconversion. (A) Under normoxia, when the cell cycle is arrested, still active mTOR 
drives cellular senescence. mTOR is activated by nutrients, mitogens, cytokines and oxygen. As a part of geroconversion, mTOR stimulates cytokine 
secretion. Black lines: stimulatory and inhibitory effects. Blue lines: inactive under normoxia. (B) Under severe hypoxia, the mTOR pathway and gero-
conversion are partially inhibited. Hypoxia-inducible factor (HIF) is accumulated. HIF-1-dependent cytokine secretion may activate the mTOR pathway 
in neighboring oxygenated cells. Blue lines, inactive under hypoxia.

NAC (the most commonly used agent to 
decrease free radicals) turned out to inhibit 
the mTOR pathway in some cells too.34 
In our experiments, the gerosuppressive 
effect of hypoxia depended on whether 
it inhibited the mTOR pathway. Slight 

genetic alterations, differences between 
cell lines and levels of oxygen may deter-
mine the effect of oxygen on geroconver-
sion. This is difficult to reconcile with 
the free radical theory. Also, free radical 
theory of aging does not fit observations in 

model organisms.35-48 In agreement, inhi-
bition of TOR prolongs lifespan in model 
organisms,49-61 supporting the notion that 
mTOR-driven cellular hyper-functions 
(cellular aging) lead to age-related diseases 
and organismal death.62-65
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