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OBJECTIVE —The central nervous system mechanisms of defenses against falling plasma
glucose concentrations, and how they go awry and result in iatrogenic hypoglycemia in diabetes,
are not known. Hypoglycemic plasma glucose concentrations of 55 mg/dL (3.0 mmol/L) cause
symptoms, activate glucose counterregulatory systems, and increase synaptic activity in a net-
work of brain regions including the dorsal midline thalamus in humans. We tested the hypoth-
esis that slightly subphysiological plasma glucose concentrations of 65 mg/dL (3.6 mmol/L),
which do not cause symptoms but do activate glucose counterregulatory systems, also activate
brain synaptic activities.

RESEARCH DESIGN AND METHODS —\We measured relative regional cerebral blood
flow (rCBF), an index of synaptic activity, in predefined brain regions with ['>O]water positron
emission tomography, symptoms, and plasma epinephrine and glucagon concentrations during
a 2-h euglycemic (90 mg/dL) to hypoglycemic (55 mg/dL) clamp (n = 20) or a 2-h euglycemic to

slight subphysiological (65 mg/dL) clamp (n = 9) in healthy humans.

RESULTS —Clamped plasma glucose concentrations of 65 mg/dL did not cause hypoglycemic
symptoms, but raised plasma epinephrine and glucagon concentrations and increased rCBF (P =

0.007) only in the dorsal midline thalamus.

CONCLUSIONS —Slightly subphysiological plasma glucose concentrations increase synap-
tic activity in the dorsal midline thalamus in humans.

atrogenic hypoglycemia is the limiting
factor in the glycemic management of
diabetes (1). It causes recurrent mor-
bidity in most people with type 1 diabetes
and many with advanced type 2 diabetes,
and is sometimes fatal (2). Indeed, as
many as 1 in 10 people with type 1 dia-
betes may die of treatment-induced hypo-
glycemia (3). In addition, hypoglycemia
per se causes a vicious cycle of recurrent
hypoglycemia and that barrier generally
precludes maintenance of euglycemia
over a lifetime of diabetes.
Hypoglycemia in diabetes is generally
the result of the interplay of therapeutic
hyperinsulinemia and compromised
physiological and behavioral defenses
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against falling plasma glucose concentra-
tions (1). The compromised defenses in-
clude: 1) loss of a decrease in insulin, 2)
loss of an increase in glucagon, and 3)
attenuation of the central nervous system
(CNS)-mediated increase in sympathoa-
drenal activity as plasma glucose levels
fall. The attenuated adrenomedullary
epinephrine response causes defective
glucose counterregulation and the atten-
uated sympathetic neural response is
largely responsible for hypoglycemia un-
awareness. These are the two components
of hypoglycemia-associated autonomic
failure in diabetes (1). The mechanisms
of the normal CNS-mediated sympathoa-
drenal response to hypoglycemia and
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how it goes awry in diabetes are not
known, but it is thought to involve a ce-
rebral network that includes the thalamus
(4-7). It is our premise that insight into the
CNS physiology of the sympathoadrenal
response in nondiabetic humans will
lead to insight into its pathophysiology in
people with diabetes.

There is a hierarchy among the re-
sponses to falling plasma glucose concen-
trations in humans (4). Among the
CNS-mediated responses, the glycemic
threshold for epinephrine secretion is
65-70 mg/dL and for symptoms is 50-55
mg/dL. It is not known if there is a hierar-
chy among the brain synaptic responses.

Measurements of regional cerebral
blood flow (rCBF), an index of synaptic
activity, with [Y°O]water positron emis-
sion tomography (PET) indicate that
frank hypoglycemia (e.g., clamped
plasma glucose concentrations of 50-55
mg/dL) causes increases in rCBF in a net-
work of interconnected brain regions in-
cluding the dorsal midline thalamus and
the medial prefrontal cortex (anterior cin-
gulate) among other sites in humans
(5-7). Indeed, recent antecedent hypogly-
cemia results in a greater increase in synap-
tic activity in the dorsal midline thalamus
during subsequent hypoglycemia (6).
Because slightly subphysiological plasma
glucose concentrations of 65 mg/dL
also stimulate epinephrine secretion
but do not cause symptoms (4), we
tested the hypothesis that such slightly
subphysiological plasma glucose concen-
trations also activate brain synaptic activi-
ties in humans.

RESEARCH DESIGN AND
METHODS

Subjects

Twenty-nine healthy individuals gave
their written consent to participate in
this study, which was approved by the
Washington University Human Re-
search Protection Office and conducted
at the Washington University Clinical
Research Unit (CRU) and Neurology-
Neurosurgery Intensive Care Unit PET
Research Facility. Participants were 14
women and 15 men with a mean (% SE)
age of 26.4 £ 1.2 years and a mean BMI
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0f 24.0 = 0.8 kg/m?. All subjects were in
good health based on a medical history
and physical examination. They were
taking no medications (aside from an
oral contraceptive or a stable dose of thy-
roxine) and had normal fasting plasma
glucose and creatinine concentrations,
hematocrits, and electrocardiograms.
None had a personal or first-degree rel-
ative history of diabetes, or a personal
history of psychiatric, neurologic, or car-
diovascular conditions.

Experimental design

Subjects were admitted to the CRU in the
morning after a 10-h overnight fast. They
remained supine throughout the study.
Two intravenous catheters were inserted
into arm veins (for infusions), and one
intravenous catheter was inserted into a
dorsal hand vein with that hand kept
in a ~55°C Plexiglas box (for arterialized
venous sampling). Twenty subjects
(10 men and 10 women: mean age
27.0 £ 1.4 years; mean BMI 23.8 = 0.8
kg/m?) underwent hyperinsulinemic
(regular human insulin in a dose of 2.0
mU-kg ™ "'min~'; Novo Nordisk, Bags-
veerd, Denmark), euglycemic (90 mg/dL
[5.0 mmol/L] X ~2 h), and then hypogly-
cemic (55 mg/dL [3.0 mmol/L]) X ~2 h)
clamps using variable infusions of 20%
dextrose based on plasma glucose determi-
nations (YSI Glucose Analyzer 2; Yellow
Springs Instruments, Yellow Springs, OH)
every 5 minutes. The other nine subjects (5
men and 4 women: mean age 25.2 = 2.8
years; mean BMI 24.8 + 1.7 kg/m?) under-
went the exact same procedure, but the
lower glucose clamp was 65 mg/dL (3.6
mmol/L) X ~2 h. ['°’O]Water PET mea-
surements of rCBF were performed four
times at 15-min intervals during the sec-
ond hour of euglycemia and four times at
15-min intervals during the second hour
of hypoglycemia and obtained in all 29
subjects. Arterialized venous samples
for the analytes described below were
drawn and blood pressures and heart
rates were recorded every 30 min, and
the electrocardiogram was monitored
throughout. Hypoglycemic symptom
scores were determined every 30 min
during the clamps. Subjects were asked
to score (from 0, none, to 6, severe) six
neurogenic (autonomic) symptoms—nheart
pounding, shaky/tremulousness and
nervous/anxious (adrenergic) and sweaty,
hungry and tingling (cholinergic)—and
six neuroglycopenic symptoms—
(difficulty thinking/confused, tired/

drowsy, weak, warm, faint, and dizzy)

(8). After completion of the glucose
clamps/PET studies, a brain magnetic
resonance imaging (MRI) scan was ob-
tained on the same day.

Analytical methods

Plasma glucose concentrations were
measured with a glucose oxidase method
(YSI Glucose Analyzer, Yellow Springs
Instruments). Plasma insulin concentra-
tions were measured with a two-site
chemiluminescent assay (Immulite
1000; Siemens Corp., Los Angeles, CA),
and plasma glucagon concentrations were
measured with a radioimmunoassay
(Millipore, Temecula, CA). Plasma epineph-
rine and norepinephrine concentrations
were measured with a single isotope de-
rivative (radioenzymatic) method (9). Rele-
vant systemic variables during euglycemia
and hypoglycemia were contrasted with a
t test for paired data. P values less than
0.05 were considered to indicate signifi-
cant differences.

Positron emission tomography (PET)
and MRI

MRI scan acquisition. Each subject also
underwent one session of structural
MRI of the brain with a 1.5 T sys-
tem (Magnetom Sonata; Siemens, Er-
langen, Germany). A three-dimensional
magnetization-prepared rapid gradient
echo (MPRAGE) sequence (1900/1100/
3.9 repetition time/inversion time/echo
time [ms]; flip angle = 15°) was acquired
in a sagittally oriented plane (160 mm
thick, 128 partitions, 256-mm field
of view) and reconstructed into a
256 X 256 matrix (1 X 1 X 1.25 mm
pixels).

PET scan acquisition. Details of the
['°OJwater PET acquisition and anal-
ysis methods at our institution have
been reported in detail in prior publica-
tions (6,10). Studies were acquired
with a Siemens/CTI (Knoxville, TN)
ECAT EXACT HR 47 tomograph using
the two-dimensional mode (interslice
septa extended) (10). Subjects were po-
sitioned in the scanner so that the entire
brainstem was included within the 15-
cm axial field of view, which restricted
the view of the most superior aspect of
the cortex in some subjects as a result. A
transmission scan was collected at each
scan session for PET data reconstruc-
tion. Four rCBF scans were collected
during euglycemia and 4 were collected
during hypoglycemia to measure rela-
tive rCBF with multiple 40-s emission
scans after bolus intravenous injection
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of 50 mCi of [’O]water (1.85 GBq)
(11-13).

PET scan analyses. PET images were
reconstructed using filtered back projec-
tion. Attenuation correction for individ-
ual scans was created by forward
projection from coregistered transmis-
sion images. Reconstructed images were
smoothed with a three-dimensional
Gaussian filter to a resolution of 10 mm
full width at half maximum. All individ-
ual PET images were normalized using
mean whole-brain counts. Relative rCBF
was calculated as the ratio of regional PET
counts to mean whole-brain PET counts.
Each subject’s eight rCBF PET scans and
their single MPRAGE image were coregis-
tered to each other (14), and then
coregistered to a standard mean blood
flow image in Talairach atlas space
using a nine-parameter fit (15). The
four euglycemic and the four hypoglyce-
mic images for each subject were aver-
aged for each condition to increase
statistical precision (16). Location of re-
gions of interest with significant change
were expressed in x, y, and z stereotactic
coordinates in millimeters with positive
values representing right, anterior, and
superior, respectively.

Whole-brain, voxel-wise PET analyses.
To explore the entire PET image space
and determine if other brain regions other
than our a priori defined set were differ-
entially activated by levels of hypoglyce-
mia, we ran a voxel-wise analysis with
SPM8 (Statistical Parametric Mapping,
Version 8) (http://www fil.ion.ucl.ac.uk/
spm/software/spm8/) using a random-
effects model with multiple-comparisons
correction for the entire volume. This ap-
proach searches all of the image space
without regard for anatomical boundaries
and determines if there are any regions
with statistically reliable effects. SPM
computes T values and P values at each
voxel for the comparison of interest (e.g.,
hypoglycemia vs. euglycemia). Clusters
of at least 90 contiguous voxels that
surpassed a threshold of P < 0.005 were
examined. SPM compares these clusters
with the number of possible clusters ex-
pected by chance to determine if they are
statistically significant and decreases the
probability of identifying false-positive
clusters in the analysis (17,18). The coor-
dinates for the center of the regions from
the SPM analyses (matched to the Mon-
treal Neurological Institute [MNI] brain)
were interrogated on the Talairach
Daemon software and corroborated visu-
ally on the Talairach atlas.
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RESULTS

Counterregulatory hormone and
symptom responses

Both low glucose levels (Fig. 1A) in-
creased sympathoadrenal responses (Fig.
1C). They also increased plasma glucagon
levels (Fig. 1D). Hypoglycemic symptoms
were elicited only at the 55-mg/dL glu-
cose level (Fig. 1B).

rCBF

We have used the indirect technique of
measuring changes in rCBF to identify
regions of increased synaptic activity dur-
ing hypoglycemia (11-13,19). A signifi-
cant increase in rCBF was confirmed in
the dorsal midline thalamus (x = 0, y =
—21,2=8)(P=0.002) and medial prefron-
tal cortex (x=0,y=33,z=15) (P=0.014),
but not the lateral orbital prefrontal cortex,
at the 55 mg/dL glucose level when com-
pared with euglycemia as previously iden-
tified (5). At a glucose level of 65 mg/dL, a

significant increase in rCBF was found in
the dorsal midline thalamus (P = 0.007)
when compared with euglycemia
(Fig. 1E), but not in the other regions of
interest such as the medial prefrontal
cortex (P = 0.85) (Fig. 1F) or lateral
orbitoprefrontal cortex (x = 32, y = 38,
z=4) (P =0.14). We also interrogated the
amygdala (x = +22,y = —6, 2= —16), but
failed to find a change in blood flow at a
glucose level of 65 mg/dL or 55 mg/dL
(P=0.7 and P = 0.5, respectively).
SPM8 analysis identified statistically
significant areas of rCBF increase in the
bilateral thalamus (right: voxels: 243, T:
6.99,P <0.001,x=11,y=—33,2=12,
left: voxels: 92, T: 5.01, P < 0.001,
x=—3,y=—19, z=12) and brainstem
region (right: voxels: 248, T: 5.73, P <
0.001,x=9,y=—31, 2= —14; left: vox-
els: 123, T: 438, P < 0.001,x =5,y =
—19, z = —2) at the 55-mg/dL glucose
level, but only in the thalamus at a glucose
level of 65 mg/dL (voxels: 102, T = 8.12,
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P=0.007,x=—9,y=—21,z=4). The
absence of a detectable rCBF change in
the medial frontal prefrontal cortex at 55
mg/dL with this methodology should not
be interpreted as evidence against activa-
tion of this region, because this method of
analysis is less sensitive for detecting
changes on a priori identified regions be-
cause it corrects for multiple comparisons
and a factor of multiple thresholding
across the entire brain space.

CONCLUSIONS —These measure-
ments of rCBF with [*>O]water PET doc-
ument that a slightly subphysiological
plasma glucose concentration of 65 mg/dL
(3.6 mmol/L) increases synaptic activity at
least predominantly, perhaps selectively,
in the dorsal midline thalamus in humans.
This novel finding extends the evidence
that the thalamus is involved in the
physiology of glucose counterregulation
to a slight reduction in plasma glucose
that activates glucose counterregulatory
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Figure 1—Mean (£ SE) plasma glucose concentrations, symptom scores, plasma epinephrine and glucagon concentrations, and relative rCBF (as
measured by PET counts) in the dorsal midline thalamus and in the medial prefrontal cortex during hyperinsulinemic-euglycemic 90 mg/dL and
hypoglycemic clamps at 65 mg/dL, “65,” and 55 mg/dL, “55.” P < 0.01%* or < 0.05**, euglycemia (black bar) to hypoglycemia (white bar). The
glucose values (A) are means over the second hour of each of the euglycemic and hypoglycemic clamps. The symptom scores (B), plasma epinephrine
concentrations (C), and plasma glucagon concentrations (D) are means over the second hour of each euglycemic and hypoglycemic clamp when the
PET scans are being obtained. The rCBF data (E and F) are based on averages of the four [>O]water PET studies during the second hour of each
euglycemic and hypoglycemic clamp.
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systems, including epinephrine secretion,
but is not low enough to cause symptoms
of hypoglycemia. Thus, the dorsal midline
thalamus is potentially relevant to the
pathogenesis of iatrogenic hypoglycemia
in diabetes (6).

The dorsal midline thalamus and the
medial prefrontal cortex are part of an
integrated cerebral network that mediates
autonomic responses to various visceral
stimuli (20-22) and may mediate hypo-
thalamic activity and sympathoadrenal
outflow from the brain during hypoglyce-
mia. Inamodel of hypoglycemia-associated
autonomic failure in diabetes produced
in nondiabetic humans, we found that
the effect of recent antecedent hypogly-
cemia to attenuate sympathoadrenal and
symptomatic responses to subsequent
hypoglycemia was associated with in-
creased synaptic activation in the dorsal
midline thalamus, and only in that brain
region, during subsequent hypoglycemia
(6). Based on that finding, and the phe-
nomenon of habituation of responses to
recurrent stress (23), we suggested that
the thalamus may exert an inhibitory ef-
fect on hypothalamic sympathoadrenal
outflow during recurrent hypoglycemia
(6) and that mechanism might result in
hypoglycemia-associated autonomic fail-
ure in diabetes (6).

The dorsal midline thalamus may
function as a relay to modulate the hypo-
thalamic response to falling plasma glu-
cose levels based on previous physiological
experience. It receives both internal and
external sensory inputs that can provide
influence over visceral and autonomic
functions (20,21,24). There are both di-
rect and indirect outputs from the dorsal
midline thalamus to the hypothalamus. It
can project indirectly to the hypothalamus
via the medial prefrontal cortex and amyg-
dala (20,21,25-27), or the paraventricular
nucleus of the thalamus can project di-
rectly to the ventromedial hypothalamus
(25). Given the neuroanatomical connec-
tions of the dorsal midline thalamus
within the postulated network involved
in responses to hypoglycemia, the tha-
lamic activation could be due to excitatory
or inhibitory input. However, the present
finding of synaptic activation by only
slightly subphysiological plasma glucose
concentrations further indicates that the
dorsal midline thalamus may be involved
in the pathogenesis of hypoglycemia-
associated autonomic failure in diabetes.

In conclusion, these data suggest
that there is a hierarchy among the
brain responses to falling plasma glucose

concentrations with synaptic activation in
the dorsal midline thalamus coinciding
with activation of glucose counterregulatory
systems as plasma glucose concentrations
drift just below physiological levels.
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