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Abstract

Leber’s hereditary optic neuropathy (LHON) is characterized by retinal ganglion cell (RGC) degeneration with the
preferential involvement of those forming the papillomacular bundle. The optic nerve is considered the main pathological
target for LHON. Our aim was to investigate the possible involvement of the post-geniculate visual pathway in LHON
patients. We used diffusion-weighted imaging for in vivo evaluation. Mean diffusivity maps from 22 LHON visually impaired,
11 unaffected LHON mutation carriers and 22 healthy subjects were generated and compared at level of optic radiation
(OR). Prefrontal and cerebellar white matter were also analyzed as internal controls. Furthermore, we studied the optic nerve
and the lateral geniculate nucleus (LGN) in post-mortem specimens obtained from a severe case of LHON compared to an
age-matched control. Mean diffusivity values of affected patients were higher than unaffected mutation carriers (P,0.05)
and healthy subjects (P,0.01) in OR and not in the other brain regions. Increased OR diffusivity was associated with both
disease duration (B = 0.002; P,0.05) and lack of recovery of visual acuity (B = 0.060; P,0.01). Post-mortem investigation
detected atrophy (41.9% decrease of neuron soma size in the magnocellular layers and 44.7% decrease in the parvocellular
layers) and, to a lesser extent, degeneration (28.5% decrease of neuron density in the magnocellular layers and 28.7%
decrease in the parvocellular layers) in the LHON LGN associated with extremely severe axonal loss (99%) in the optic nerve.
The post-geniculate involvement in LHON patients is a downstream post-synaptic secondary phenomenon, reflecting de-
afferentation rather than a primary neurodegeneration due to mitochondrial dysfunction of LGN neurons.
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Introduction

Leber’s hereditary optic neuropathy (LHON) is a mitochondrial

disease characterized by retinal ganglion cells (RGCs) degenera-

tion due to maternally inherited point mutations in mitochondrial

DNA (mtDNA) that affect the respiratory complex I [1,2].

Characteristically, the degenerative process preferentially involves

the RGCs forming the papillomacular bundle serving central

vision, colour vision and high spatial frequency contrast sensitivity

[3]. LHON affects prevalently young males, who suffer an acute/

subacute loss of central vision that leads to rapid decrease of visual

acuity due to central scotoma. This acute phase consolidates in

a chronic state in about one year after the onset of visual loss,

leaving the patients with optic atrophy and usually permanent

blindness [1,2].

However, some of the patients may experience various degrees

of visual function recovery, with gain of visual acuity and

shrinkage or fenestration of the central scotoma at visual field

[1,2]. This recovery may occur spontaneously, most frequently

with one of the common mutations at position 14484/ND6 and if

the age at disease onset is precocious, irrespectively the mutation

type. Recently, it has been demonstrated that administration of

idebenone may also increase the rate of visual function recovery

[4,5]. Long-lasting chronic cases may suffer further slow rate loss

of RGCs, as documented by a few cases studied post-mortem,

supporting a long-range neurodegenerative activity [1,3].

Most of the mutation carriers along the maternal line remain,

however, unaffected indicating that the mtDNA pathogenic

mutation is a necessary but not sufficient condition to develop

the optic neuropathy. Even in the absence of visual loss, the

unaffected mutation carriers may display subclinical changes at

fundus exam [6], neurophysiological and optical coherence

tomography investigations [7,8], as well as bioenergetic impair-

ment measured by biochemical testing and by in-vivo magnetic

resonance spectroscopy [9].
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LHON is, along with dominant optic atrophy (DOA), a non-

syndromic mitochondrial optic neuropathy, both being character-

ized by visual loss and optic nerve atrophy as the only or at least

prevalent pathological feature [1,2]. Optic nerve involvement may

also occur in more complex syndromes due to mitochondrial

dysfunction such as Friedreich’s ataxia (FRDA), in which diffusion-

weighted imaging (DWI) studies have demonstrated an involve-

ment not only of the optic nerve but also of the retro-geniculate

optic radiation (OR) [10,11]. Recently, two studies applying voxel-

based morphometry (VBM) and DTI approaches, pointed towards

OR abnormalities in LHON patients, suggesting trans-synaptic

degeneration without definitely excluding a primary dysfunction

[12,13]. This was suggested by previous phosphorus MR

spectroscopy (31P-MRS) investigations showing occipital lobes

bioenergetics dysfunction in LHON patients and unaffected

mutation carriers [9,14–16].

The aim of the present study was to better characterize the post-

geniculate involvement in LHON. We used DWI, a technique

demonstrated to disclose increased water diffusivity in the brain

areas where atrophy and/or gliosis occur [17], to investigate the

optic radiations in LHON patients and unaffected mutation

carriers. Furthermore, we studied the lateral geniculate nucleus

(LGN) in post-mortem specimens, comparing average neuron cell

body size and cell density between a LHON patient with severe

axonal loss in the optic nerve and an age-matched control.

Methods

Subjects
Twenty-two molecularly-certified LHON affected patients (17

males; age 33611, mean 6 SD), 11 unaffected mutation carriers

(5 males; age 45615) and 22 healthy controls (16 males; age

37617) were studied between February 2006 and December 2009

at the Functional MR Unit, University of Bologna, Italy. Exclusion

criteria were presence of neurological symptoms or signs not due

to the optic atrophy and evidence of grey/white matter alterations

on conventional MRI scanning. None of unaffected mutation

carriers and controls had a history of neurologic or psychiatric

diseases and conventional MRI scans appeared normal in all cases.

All participants gave their written informed consent and the study

was approved by the institutional review board of the Bologna

Hospital.

MR Examination
Subjects were studied in a 1.5 T General Electrics Medical

Systems (Milwaukee, Wisconsin) Signa Horizon LX whole-body

scanner. Structural imaging included T1- and T2-weighted fast

spin-echo scans. Axial DW images were obtained (slice thick-

ness = 5 mm, inter-slice gap= 1 mm) using a single-shot EPI

sequence (matrix size = 1926192). Orthogonal x, y and z

diffusion-encoding gradients were applied with gradient strengths

corresponding to b-values of 300, 600 and 900 s/mm2. In

addition, images without diffusion weighting were acquired,

corresponding to b= 0 s/mm2 and exhibiting T2-contrast. The

total DWI scan time was 2 min.

Distortions in the DW-EPI images due to gradient-induced

eddy currents were corrected using the image registration software

FLIRT (www.fmrib.ox.ac.uk/fsl). Due to the nature of the

distortions, the degrees of freedom were restricted to translation,

scaling, and shearing along the phase encoding direction [18].

Possible head movements were corrected using image registration

of each volume to the first restricting degrees of freedom to

translation and rotation. Mean diffusivity (MD) was determined

pixel-wise using a least-squares fit using the program DTIFIT. In

order to avoid contamination of the MD values for grey and white

matter by the much higher values of cerebral spinal fluid (CSF)

during further evaluation, pixels containing CSF were masked

from the MD map. This was accomplished using the FAST

algorithm for a two-class segmentation based on the corresponding

T2-weighted EPI images. Regions of interest (ROIs) (Fig. 1A–B)
were determined by segmentation of the left and right ORs on

three slices using the T2-weighted EPI images and were super-

imposed on the MD maps to obtain mean MD values. We also

delineated ROIs at the level of the prefrontal and cerebellar white

matter, as internal controls.

Pathological Examination
The postmortem lateral geniculate nuclei (LGN) from a pre-

viously studied 75 year-old female LHON patient [3] and a 75

year old female control individual were analysed at the Doheny

Eye Institute, Los Angeles, California. The control brain was

acquired from the Alzheimer’s Disease Research Center at the

University of Southern California, having no evidence of either

Alzheimer’s Disease or other neurodegenerative diseases at the

pathological report. The LHON patient had an extremely severe

chronic optic neuropathy and carried the homoplasmic 3460G.A

mutation. The LGNs for both cases were taken from fixed brains

in neutral buffered formalin, dissected in a coronal plane,

processed for and embedded into paraffin blocks, sectioned, and

placed on glass microscope slides. The tissue sections were stained

with hematoxylin for Nissl substance to allow for identification of

the cell bodies and coverslipped using permanent mounting

media.

Image acquisition was performed using the T3 Aperio C3

digital scanning microscope (Aperio Corporation, Vista, CA) with

the ImageScope analysis software package. The two LGN slides

were digitized by the microscope using a 40x objective, which

provides a 0.25 mm per pixel scanning resolution [19]. In each

digitized LGN the two magnocellular and four parvocellular layers

were identified (Figure 2 bottom panel). The six layers were

each further subdivided into nasal, middle, and temporal zones for

analysis purposes providing a total of 18 separate areas. The

average cell size was then calculated using a custom algorithm

built in the ImageScope software package designed to detect all

areas that stained blue with hematoxylin. Only areas of positive

staining that were greater than 100 mm2 were counted, as smaller

areas likely represented intergeniculate or glial cell bodies and not

neuronal cell bodies-. Following the software analysis, each section

was further examined by the same observer for confirmation. Cell

bodies that were not counted or counted in error by the software

were manually corrected.

Postmortem optic nerves were fixed in a mixture of buffered

glutaraldehyde/paraformaldehyde, dissected into cross-sections

from both the LHON patient and the control subject. The tissues

were then processed for and embedded into plastic, sectioned, and

stained with p-Phenylenediamine (PPD) (Figure 2, top panel).
Myelinated axonal profiles were counted as previously detailed

[3,20].

Statistical Analysis
Statistical analyses were performed using SPSS 14.0 for

Windows. Parametric tests were used as Kolmogorov–Smirnov

testing showed that the variables were normally distributed. One-

way analysis of variance (ANOVA) followed by a post-hoc LSD

test was used for comparison between groups. P values less than

0.05 after Bonferroni correction for multiple comparisons were

accepted as statistically significant. To investigate the effect of

genetic, demographic and clinical parameters (gender, type of

Post-Geniculate Involvement in LHON
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mutation, age at onset, disease duration, and history of recovery of

visual acuity) on DWI data, we used a general linear model (GLM)

in which mean optic radiation diffusivity was the dependent

variable, the categorical variables were defined as random factors

and continuous variables as covariates, without interactions. For

pathological examination we performed a descriptive analysis.

Results

Clinical and Genetic Features
All patients had the typical clinical and ophthalmological

features of LHON. Fourteen had the G11778A/ND4, seven the

G3460A/ND1, and one the T14484C/ND6 homoplasmic muta-

tions. Six patients (two with 11778/ND4, three with 3460/ND1

and one with 14484/ND6 mutation) had a history of bilateral

recovery of visual acuity (current visual acuity ranged from 0.125

to 1) whereas the remaining cases did not (current visual acuity

ranged from 0.0025 to 0.075). Patients were considered to have

recovered visual acuity after a gain of at least two lines on Snellen

acuity or a change from ‘‘off chart’’ to ‘‘on chart’’, as previously

established [21,22]. All patients were administered with idebenone

as previously reported [5]. Age at onset ranged from 2 to 44 years

(mean=20 years), and disease duration from 1 to 35 years

(mean=14 years). Unaffected LHON mutation carriers (eight

with the 11778/ND4 and three with the 3460/ND1 mutation) did

not present any visual or neurological symptoms and had normal

visual acuity.

MR Findings
Conventional MRI did not demonstrate abnormalities in both

the LHON patients and carriers.

In DWI analysis right- and left-side MD values were not

statistically different for all ROIs and are reported as mean. One-

way ANOVA detected a group difference (F= 6.8; P,0.01) only

in ORs and post hoc testing revealed an increase in OR MD of

LHON patients compared with both unaffected LHON mutation

carriers (P,0.05) and healthy subjects (P,0.01) (Fig. 1C). Optic

radiation MD values were similar in unaffected mutation carriers

and healthy subjects. In LHON patients GLM analysis disclosed

that lack of visual acuity recovery (B = 0.060; P,0.01) and disease

duration (B= 0.002; P,0.05) were significantly associated with

increased OR MD values (Table 1).

Pathological Findings
Pathologic examination of the LGNs from the LHON patient

showed a marked decrease in the average neuron soma across all

six layers (Figure 2, bottom panel; Figure 3). The average

neuron soma size in the magnocellular layers (layers 1 and 2) of the

LHON LGN was smaller than the control LGN (41.9% decrease).

Also, the average neuron soma size in parvocellular layers of the

LHON tissue was smaller than the average found in any layer of

the control LGN (44.7% decrease). However, because the relative

magnitude of the cell size decrease was similar across all six layers

of the LHON LGN, the ratio between the cell size of the

magnocellular and parvocellular layers was similar in both the

LHON (1.51) and control (1.44) LGNs (Table 2). No consistent

differences were noted in cell size between the nasal, middle

(corresponding to the papillomacular bundle), or temporal zones

or individual layers. Additionally, the average neuron density of

the LHON LGN was decreased across all layers (Table 2). The
two magnocellular layers of the LHON LGN had a reduced

average density by 28.5%, and the parvocellular layers of the

LHON LGN had a reduced average density by 28.7% when

compared with the control LGN.

The post-mortem retrobulbar optic nerve of the LHON patient

stained with PPD showed a dramatic reduction in axonal profiles,

which were counted as 8,200 in the left eye (over 99% decrease) as

compared to the 993,762 axons counted in the age-matched

control (Figure 2, top panel). The counts of this age-matched

control were consistent with previously reported axonal counts of

normal individuals in their 70s [23].

Figure 1. Segmentation of ROIs including prefrontal white matter (A), cerebellar white matter (B) and optic radiation (C) on axial T2
images. D: 3D reconstruction of optic radiation ROIs on a registered T1 volumetric image. E: Box-plot of MD values of optic radiations in controls,
LHON healthy carriers and LHON patients. (Each box shows the median, quartiles, extreme values; * = P,0.01).
doi:10.1371/journal.pone.0050230.g001
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Discussion

In this study we have demonstrated increased diffusivity in the

optic radiations (OR) of patients with LHON using diffusion-

weighted imaging (DWI). No differences were detected for

diffusivity values in the prefrontal and cerebellar white matter.

These results confirm the previous observation of post-geniculate

abnormalities in LHON patients [12,13]. DWI changes in OR of

LHON affected patients were more severe in those who failed to

recover visual acuity and had longer disease duration, whereas

they were not detected in unaffected LHON mutation carriers.

Furthermore, pathological analysis of the LGN showed three

important findings: i) LHON LGN atrophy as evidenced by the

significant decrease in the average neuron cell size; ii) LHON

LGN degeneration shown by a decrease in neuron density; iii) the

changes were consistent across all layers of the LGN as the percent

decrease in density was the same for both magnocellular and

parvocellular layers, with a similar ratio between the magnocel-

lular and parvocellular layers either in the LHON as in control

LGNs.

A previous diffusion-weighted study in LHON found no post-

geniculate changes, but this was probably related to the small

sample size (ten patients) and the smaller ROI size used [24].

Conversely, another magnetisation transfer (MT) imaging and

DWI study from the same group [25] reported significantly lower

MT ratio histogram peak height and a trend towards significant

increase of average diffusivity values in LHON patients, using

histogram analysis of the whole normal appearing white matter,

a technical approach with greater statistical power [11]. The

authors interpreted these findings as a reflection of the tissue loss

and disorganization in the visual pathway or of diffuse and

microscopic brain pathology. Both hypotheses might explain the

small change in the histograms. Our data corroborate the first

hypothesis disclosing changes only in the ORs and not in the

extra-visual white matter. Furthermore, two more recent imaging

studies documented the specific post-geniculate involvement in

LHON patients [12–13]. A VBM study demonstrated significant

reduced grey matter volume in the bilateral primary visual cortex,

and reduced white matter volume in several areas located in the

optic radiations, bilaterally [12]. The same group, using diffusion

tensor imaging, reported significant diffusivity abnormalities at

level of the OR of LHON patients [13]. These studies, unlike the

present study, failed to disclose a correlation with disease duration,

probably due in part to their inferior statistical power (considering

Figure 2. Top panel: optic nerves in cross-section and stained by p-Phenylenediamine for control and LHON patient (25x
magnification). In the LHON patient only a small patch of fibers remains (arrow) in the super-nasal quadrant. Bottom panel: lateral geniculate nuclei
(LGN) of control and LHON patients with all magnocellular (1 and 2) and parvocellular (3–6) layers identified (25x magnification). Insets represent
samples of each zone at 200x magnification.
doi:10.1371/journal.pone.0050230.g002
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12 [12] and 13 [13] patients respectively, compared to the 22 of

the present study) and the different statistical analysis employed

(single correlations [12–13] vs the GLM model in our study).

These studies did not clarify whether post-geniculate damage in

LHON is due to trans-synaptic degeneration or mitochondrial

dysfunction. Indeed, previous 31P MRS studies detected metabolic

abnormalities in the occipital white matter lobes from both LHON

patients and healthy carriers [9,14–16]. These observations may

suggest that the structural changes in OR were primary and

related to degenerative changes due to the mitochondrial

dysfunction. On the other hand, our results showed an absence

of DWI alterations in LHON carriers and an increase of MD

values more evident in LHON patients with longer disease

duration and lack of recovery of visual acuity, who are known to

have fewer optic nerve fibers compared with LHON patients who

recovered [22]. Moreover, extra-visual LHON white matter was

not affected. These observations suggest that in LHON patients,

involvement of the posterior visual pathways is secondary to trans-

synaptic atrophy or degeneration.

Table 1.MD values of optic radiation, prefrontal white matter and cerebellar white matter in LHON patients, LHON healthy carriers
and controls with group comparison results (first two sections).

One-way ANOVA

ROI*
LHON patients MD
(61023 mm2/s)

LHON carriers MD
(61023 mm2/s)

Controls MD
(61023 mm2/s) P#

Optic radiation 0.8660.04 0.8260.04 0.8260.03 ,0.01

Prefrontal WM 0.7560.04 0.7560.02 0.7760.04 n.s.

Cerebellar WM 0.7360.04 0.7360.05 0.7460.05 n.s.

Post-hoc LSD test for optic radiation MD values

LHON patients vs healthy controls ,0.01

LHON patients vs unaffected LHON carriers ,0.05

unaffected LHON carriers vs healthy controls n.s.

GLM (dependent variable: optic radiation MD values in LHON patients)

Disease duration B= 0.002; P =,0.05

Lack of recovery of visual acuity B= 0.06; P =,0.01

The bottom of the table shows the results of GLM analysis used to evaluate the effect of genetic, clinical and demographic data on optic radiation MD values in LHON
patients.
* =mean of left and right MD values.
#= corrected for multiple comparisons.
Values are reported as mean and standard deviation.
MD: mean diffusivity; WM: white matter; n.s.: not significant; GLM: general linear model.
doi:10.1371/journal.pone.0050230.t001

Figure 3. Average neuron soma size of all layers in the LGNs from the LHON patient and the age-matched control.
doi:10.1371/journal.pone.0050230.g003

Post-Geniculate Involvement in LHON
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Trans-neuronal or trans-synaptic degeneration consists of

atrophy or degeneration of post-synaptic neurons deprived of

their afferents and has been described in a variety of neural

systems [26]. In the visual system, such evidence of dysfunction of

the posterior visual pathways, i.e. LGN, OR and calcarine cortex,

has been reported as secondary to loss of retina and/or optic nerve

after enucleation of one eye [27], chronic glaucoma [28,29],

retinal degeneration [30], and optic neuritis [31]. Concerning

optic neuritis and multiple sclerosis, the relevance of trans-synaptic

degeneration is currently debated, with particular reference to the

grey matter involvement [31,32,33]. At the LGN level trans-

synaptic changes have been described as neuronal atrophy (cell

shrinkage) and, in long-lasting conditions as advanced glaucoma,

as neuronal loss [28,29]. This matches well with our pathological

findings in the LGN of a LHON patient with very long disease

duration (53 years) and a particularly severe loss of vision (light

perception), consistent with axonal loss of over 99% in the optic

nerve. We documented mostly neuronal atrophy and, to a lesser

extent, some neuronal loss. These changes were consistent across

both magno-cellular and parvo-cellular layers of the LGN well

fitting the data from trans-neuronal degeneration studies in

glaucoma, reporting a different cell loss between magno-cellular

and parvo-cellular layers when the RGC axon loss is mild and an

equivalent cell loss in all layers when the RGC axon loss is near to

100% (28), as in our LHON patient. Similar results were described

for the LGN in old, pre-molecular, post-mortem histopathological

studies in a few patients affected by optic atrophy compatible with

the LHON diagnosis [34–36]. Accordingly, the in vivo abnormal-

ities of OR observed by DWI in LHON patients with a shorter

disease duration probably reflected neuronal cell and axonal

atrophy (shrinkage) secondary to a reduction of synaptic inputs.

This suggests that if action potentials could be re-established in the

spared axons of the optic nerve, as possibly occurs in those patients

recovering visual acuity after the acute phase [1,2,4,5], the

recovery of the synaptic inputs might lead to recovery of atrophic

but still viable neurons in the LGN and their axons in the optic

radiations. Thus, it is possible that the neuron soma shrinkage

represents a fairly long therapeutic window of opportunity prior to

cell death. The further development of post-geniculate changes

with increasing RGC and axonal loss suggests that any effective

treatment should be early. Nevertheless, treatment could be useful

even in the later stages of the disease, as suggested by the slow

recovery of visual acuity, spontaneous or after idebenone

treatment in LHON [1,2,4,5]. Unfortunately, we could not study

a further group of LHON patients without idebenone therapy in

order to investigate its possible influence on DWI parameters.

However, it should be noted that idebenone has been shown to

increase recovery rate in LHON patients (5), and in our opinion,

recovery of visual acuity was the most powerful variable potentially

impacting on post-geniculate integrity. Future work should directly

investigate this important issue.

A limitation of this study is the use of DWI rather than DTI

(diffusion tensor imaging), not available at our institution when the

study was started, that precluded the measurement of other

parameters such as fractional anisotropy, parallel diffusion, and

radial diffusion, which might have given more information about

the type of degeneration occurring in the long white matter tracts

[37]. Interestingly, the previous DTI study detected decreased

fractional anisotropy and an increased radial diffusivity in the OR

of LHON patients [13], consistent with the DTI changes observed

in the chronic stages of secondary axonal degeneration [38]. At

most the use of DWI should have reduced the sensitivity of the

analyses, creating a bias towards negative results. The limitation of

our use of DWI is partially mitigated by the integration with the

pathological analysis of LGN that provided an independent

confirmation on the changes detected. The latter, despite being

performed in a single case showed histopathological changes that

were very similar to other descriptions of LGN histopathology

performed in LHON patients prior to the availability of molecular

diagnosis [34–36].

A further relative limitation of our study is the lack of retinal

nerve fiber layer (RNFL) data from optical coherence tomography

investigations (OCT) for use in the correlation analysis, as not all

our patients had undergone OCT while others with available

OCT had undergone the examination too far from the MR

acquisition. The finding of a correlation between RNFL data and

OR changes would further support the transneuronal hypothesis.

Notably, such a correlation was found in the previously cited VBM

study [12]. In conclusion, this study extends the results of recent

similar investigations, by using a larger group of well-characterized

LHON patients and adding the rare opportunity to verify on

a single post-mortem specimen the MR finding at the histological

level. Using DWI, we detected microstructural changes in ORs

and not in extra-visual white matter of LHON affected patients.

This was more evident in LHON patients with longer disease

duration and absence of recovery of visual acuity. In contrast, the

unaffected LHON carriers showed no changes despite previous

evidence of metabolic impairment in the same pathway. Patho-

logical examination of the LGN from the single separate LHON

patient with very severe optic atrophy suggested that these

microstructural changes were mainly due to neuronal and axonal

atrophy of the post-synaptic cell. Thus, the post-geniculate

involvement in LHON patients is most likely a downstream

secondary phenomenon, from chronic de-afferentation, rather

than mitochondrial dysfunction associated with primary neurode-

generation.

Table 2. Top: neuron soma size by layer type for LHON and
control LGN.

Lateral geniculate nucleus: cell body size by layer type

Layers Control LHON % decrease

1–2 (magnocellular) 388.54 mm2 225.68 mm2 41.92%

3–6 (parvocellular) 269.77 mm2 149.22 mm2 44.69%

Ratio 1.44 1.51 /

Lateral geniculate nucleus: cell density by layer type

Layers Control LHON % decrease

1–2 (magnocellular) 185.74 cells/
mm2

132.76 cells/
mm2

28.52%

3–6 (parvocellular) 263.46 cells/
mm2

187.80 cells/
mm2

28.72%

Optic nerve: axonal counts

Control LHON % decrease

993,762 8,200 99.17%

The ratio of the magnocellular to parvocellular layers for the two LGN is similar
suggesting that the atrophy seen in the LHON case was consistent across all
layers. Middle: average cell density of the magnocellular and parvocellular
layers for both the LHON and control LGNs. LHON LGN exhibits a decrease in
neuron density consistent across both cell layer types. Bottom: axonal counts
for LHON and control left optic nerve.
doi:10.1371/journal.pone.0050230.t002

Post-Geniculate Involvement in LHON
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