Skip to main content
. 2012 Nov 8;12:170. doi: 10.1186/1471-2288-12-170

Table 2.

Odds ratios and 95% CIs for multilevel logistic models estimating 30-day in-hospital mortality in the overall sample

  Hierarchical null model Hierarchical model without presence of a cardiac catheterisation lab. Hierarchical model with presence of a cardiac catheterisation lab.
Patients Characteristics
 
 
 
Gender (male vs. female)

1.10 (0.90–1.36)
1.09 (0.89–1.35)
Age (years)

1.09 (1.08–1.10)
1.09 (1.08–1.10)
History of COPD

1.99 (1.31–3.01)
1.91 (1.26–2.88)
History of heart failure

1.47 (1.07–2.02)
1.46 (1.06–2.00)
History of cerebrovascular diseases

1.49 (1.04–2.14)
1.49 (1.04–2.14)
Cerebrovascular diseases

1.45 (1.01–2.09)
1.42 (0.99–2.04)
History of tumours

2.65 (1.73–4.05)
2.55 (1.67–3.90)
ST-segment elevation (STEMI vs. NSTEMI)

2.26 (1.83–2.78)
2.31 (1.88–2.84)
Hospital Characteristic
 
 
 
Presence of cardiac catheterisation lab.


0.71 (0.58–0.87)
Hospital Variance
 
 
 
σ2 (p-value)*
0.12 (<0.001)
0.05 (0.084)
<0.01 (1.000)
Goodness of fit
 
 
 
Pseudo R2

0.31
0.32
Wald χ2 (p-value)

335.25 (<0.001)
350.58 (<0.001)
AIC
3,261.08
2,843.00
2,836.27
BIC 3,264.30 2,859.11 2,853.99

* p-value from LR (likelihood ratio) test vs. logistic regression of σ2 = 1.

CI confidence interval, AIC Akaike Information Criterion, BIC Bayesian Information Criterion.