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Summary
The rapid development of new biotechnologies allows us to deeply understand biomedical
dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical
systems can be described by a set of differential or difference equations which are similar to
engineering dynamic systems. In this paper, motivated by HIV dynamic studies, we propose a
class of mixed-effects state space models based on the longitudinal feature of dynamic systems.
State space models with mixed-effects components are very flexible in modelling the serial
correlation of within-subject observations and between-subject variations. The Bayesian approach
and the maximum likelihood method for standard mixed-effects models and state space models are
modified and investigated for estimating unknown parameters in the proposed models. In the
Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed
to explore the posterior distributions. For the maximum likelihood method we develop a Monte
Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the
E-step. Simulation studies are conducted to compare the two proposed methods. We apply the
mixed-effects state space model to a data set from an AIDS clinical trial to illustrate the proposed
methodologies. The proposed models and methods may also have potential applications in other
biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory
network modeling.
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1. Introduction
State space modelling has been used mainly in time series data analysis. It has found
application in many areas, such as economics, engineering, biology etc. A state space model
consists of a state equation and an observation equation. The state equation models the
process of the states while the observation equation links the observations to these
underlying states. A standard linear state space model can be written as
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(1)

(2)

where xt is the state vector, yt is the observation vector, Ft is the state transition matrix, and
Gt is the observation matrix. It is assumed that vectors vt and wt are independent and
identically distributed with vt ~ N(0, Q) and wt ~ N(0, R). The system matrices (Ft, Gt) and
the covariance matrices (Q, R) may contain unknown parameters θ and ω, respectively.

In this paper, motivated by HIV dynamic studies, we propose a class of mixed-effects state
space models (MESSM) based on the longitudinal feature of the dynamic systems. In the
models, the system matrices contain random effects, and the dimension and structure of the
system matrices are specified a priori and may be based on a system of differential/
difference equations, which is often used in engineering applications. Two estimation
methods for standard mixed-effects models and state space models, the Bayesian approach
and the maximum likelihood method, are modified and investigated for estimating unknown
parameters in the proposed MESSM. Simulation studies are carried out to assess the finite-
sample performance of the two estimation methods, and the results indicate that both
methods provide quite reasonable estimates for the parameters. The mixed-effects state
space models are applied to a data set from an AIDS clinical trial to illustrate the proposed
methodologies.

The primary interest of state space modelling is to estimate the state variables based upon
the observations. If the parameters are known, the well-known Kalman filter (Kalman, 1960)
yields, under the condition of linearity and normality, the optimal estimates of the states. For
unknown parameters the maximum likelihood method provides efficient estimates under
certain conditions (Schweppe, 1965; Pagan, 1980; Jensen and Petersen, 1999).

The state space model provides rich covariance structures for the observations yt. It indeed
covers the covariance structure of ARMA (Autoregressive Moving Average) models as the
latter can be written into a state space form. Another interesting aspect of the state space
model is its flexibility in modeling the underlying mechanism (state equation) and the
observations (observation equation) separately.

A longitudinal study usually involves a large number of individuals with observations for
each individual taken over a period of time. Variation among the observations consists of the
between-subject variation and the within-subject variation. In the very popular linear
random-effects models (Laird and Ware, 1982)

the random effects bi and errors ei = [ei1, · · ·, eini]′ account for the between-subject and
within-subject variation, respectively. Covariance matrix Ωi may be diagonal or has a
complicated structure (Jones, 1993; Diggle, Liang and Zeger, 1994). In particular, Jones
(1993) considered the ARMA covariance structure for Ωi. In this work ARMA models were
transformed into state space forms, and the Kalman filter was used to compute the
likelihood.

Stochastic models have been used to model longitudinal data. For example, Rahiala (1999)
proposed a random-effects autoregressive (AR) model for a growth curve study in which the
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AR coefficients were treated as random effects. The state space approach was briefly
discussed in Rahiala’s paper for the computation of the likelihood with missing data.

Instead of using the state space approach as a computational tool, we consider the state
space modeling approach to directly model longitudinal dynamic systems in this paper. We
introduce the random effects to the system matrices Ft and Gt in (1)–(2) to account for
between-individual variations in longitudinal studies. It is a stochastic modeling approach,
but is more flexible than the random-effects AR model and can easily handle irregularly
spaced data and missing data. Such modeling approach inherits the modeling power of state
space models for dynamic systems as well as the idea of random effects for longitudinal
studies. Thus it is especially useful in dealing with mechanism-based longitudinal dynamic
systems (Huang, Liu and Wu, 2006).

This paper is organized as follows. In Section 2, we introduce the MESSM, state some basic
assumptions on the system matrices, and give an illustration example based on an HIV
dynamic model. Section 3 presents estimation methods for both the individual and the
population state variables. The Bayesian approach and the maximum likelihood (ML)
method are proposed to estimate unknown parameters in the proposed models in Section 4.
In Section 5 we present results from simulation studies and apply the MESSM to an AIDS
clinical trial data. In Section 6 we summarize the results and discuss possible extensions of
the MESSM and other related issues.

2. Model Specification
A linear MESSM can be written as

(3)

(4)

where yit is the q × 1 vector of observations for the ith (i = 1, …, m) subject at time t (t = 1,
…, ni), xit is the p × 1 state vector, vit is the p × 1 dynamic disturbance vector, and wit is the
q × 1 vector of the observation errors. {vit} and {wit} are assumed to be mutually
independent within themselves and independent to each other. We assume that the initial
values xi0’s are independent and xi0 ~ N(τ, A). This assumption is critical in deriving the
population state in Section 3.2, but not important for the formulation of the parameter
estimation methods in Section 4. The p × p transition matrix F(θi) and the q × p observation-
system matrix G(θi) are parameterized with the r × 1 parameter vector θi, and the p × p
matrix Q and the q × q matrix R with the d × 1 vector of parameters ω. Note that the
parameters for F and G are not necessarily same. They may share some common parameters
or may have different parameters. However, for presentation convenience, we use θi to
denote all the unknown parameters in both F and G. Similar handling is applied for ω.
Recognized as a vector of individual parameters, θi can be modelled as

(5)

where θ is the fixed effect or the population parameter vector (r × 1), and the vectors bi are
the random effects, which are assumed to be i.i.d. random vectors. Model (5) for the mixed
effects can be generalized without much difficulty to more complicated linear or nonlinear
models with covariates (Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1996).
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We give an illustration example for the proposed MESSM based on an HIV dynamic model
proposed by Perelson et al. (1997). This model consists of three differential equations
describing the interaction between the target cells and HIV infection. It was assumed that the
antiviral therapy completely blocked the reproduction of infectious HIV virions, thus the
newly produced virions were all noninfectious. The model was written as

(6)

where VI, VNI, T and T* represented the plasma concentrations of infectious viruses,
noninfectious viruses, uninfected T-cells, and productively infected T-cells, respectively.
Wu, Ding, and DeGruttola (1998) and Wu and Ding (1999) introduced a mixed-effects
model approach for HIV dynamics that was shown to improve the estimation of both the
individual and the population parameters. Because in practice HIV dynamic data were
collected at discrete times (days), difference equations may be considered to replace the
differential equations (6). If the total plasma HIV concentration (V = VNI + VI) and T* were
observed, a mixed-effects state space model for system (6) could be formulated as

(7)

(8)

where yit is the observed (T* V) for the ith patient at time t,

The mixed effects  are assumed to follow

where  are population parameters.

The proposed MESSM in this study is a hybrid of mixed-effects models and the state space
models. It inherits the strengths of both types of models. The mixed effects link all subjects
via the population structure, which establishes the concept of the population dynamics. The
estimation of unknown parameters for individual subjects, especially for those with
insufficient observations, can be improved by borrowing information from other subjects.
State space modelling is especially valuable when the system dynamics can be described by
mathematical models. Irregularly spaced data, common in longitudinal studies, could be
handled easily by state space models. Moreover, state space models can flexibly incorporate
various correlation structures for serially correlated longitudinal data.
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3. Estimation of State Variables
In this section we consider the estimation of both individual state variables and population
state variables in a mixed-effects state space model for given parameters θ and ω.

3.1 The Kalman filter and the estimation of individual states
The estimation of an individual state xit can be classified into three types based on the
amount of information that is available. The estimation of xit is called a one-step-ahead
prediction if {yi1, · · ·, yi,t−1} are observed; it is called a filtered estimation if {yi1, · · ·, yit}
are observed; and a smoothed estimation if {yi1, · · ·, yini(ni > t)} are observed. If the
parameters θi and ω are known in the linear MESSM (3) – (4), then the Kalman filter
(Kalman, 1960) provides the basic solutions to the three types of estimation problems. The
Kalman filter is a recursive algorithm which produces the linear estimators for the state
variables. It is well-known that, under the assumption of normality, these estimators
obtained from the Kalman filter are unbiased and minimize the mean squared error. We
review the iterative algorithm of the Kalman filter in the following discussion. Details of the
Kalman filter can be found in Harvey (1989), Brockwell and Davis (1991), and West and
Harrison (1997).

Let xit|k denote the estimation of the individual state xit given the observations {yi1, …, yik}.
Let Pit|k be the covariance matrix of the estimation error xit|k − xit. Use Fi and Gi to
represent F(θi) and Gi(θi), respectively. The Kalman recursion proceeds as follows,

where  is the Kalman gain matrix, fit is the innovation with covariance
matrix Oit. xit|t−1 and xit|t are the one-step-ahead prediction and the filtered estimation of xit,
respectively.

Let , and . The fixed-
point smoothing algorithm proceeds as follows:

(9)

(10)

with the initial condition, Pit,t = Pit|t−1.

Under the normality assumption, the Kalman estimator xit|k is the mean of xit conditional on
the data {yi1, …, yik}. If the normality assumption does not hold, the Kalman filter may not
produce the conditional means of the states. The Bayesian approach provides an alternative
method for the estimation of the state vectors (Section 4.1).

3.2 Population state variable and the EM algorithm enhanced smoothing
From (3), we can write xit in terms of xi0 and {vis, s ≤ t}:
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(11)

Here Fi = F (θi) is a function of θi. Therefore, under the assumptions that the initial values
xi0’s are i.i.d. and θi’s are i.i.d., Equation (11) implies that xit’s are i.i.d. at a given time
point t. Thus the individual state variables xit (i = 1, · · ·, m) follow a common mean process
xt plus a mean zero process, and can be modelled as

(12)

We call xt the population state variable at time t, which represents the mean response of all
individuals at time t. Vector zit represents the deviation of the individual state xit from the
population variable xt with Bt being the covariance matrix.

If the xit’s were observable, the maximum pseudo-likelihood estimation of xt would then be

the sample mean . However, because in practice the xit’s are usually not directly
observable, we instead use the Kalman smoothing estimate xit|ni(t < ni), denoted by x̃it, to
replace xit in (12). Let ςit = x̃it − xit be the estimation error of x̃it, then ςit has mean 0 and
covariance matrix Σit = Pit|ni as defined in Section 3.1. One can establish a variance-
components model for x̃it

(13)

Treating x̃it as “data”, we maximize the pseudo-likelihood function to estimate the
population state xt and the covariance matrix Bt, that is, to maximize

Note that if we assume normality in model (13), the resulting likelihood function is
equivalent to the pseudo-likelihood function. Thus, the EM algorithm developed by Steimer,
Mallet, Golmard and Boisvieux (1984) to maximize the likelihood function under the
normality assumption can be adapted as follows to maximize the pseudo-likelihood function
for the estimation of xt and Bt:

1.
Initialization: 

2. E-step: Update the individual estimates of state variables:

3. M-step: Update the population estimates of state variable and parameters,
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4. Repeat Steps 2 and 3 until convergence is reached. Estimates of both individual
states and population states are collected at the final step.

We have proposed to estimate the population state variable based on the smoothing
estimates of the individual state variables. In a similar way, the filtered or predicted
individual state variables can be used to estimate the population state variable if the
interested time point t is beyond the last time point of observations. Note that if the
assumption that xi0’s are i.i.d. does not hold, then the population state variable xt is no
longer the mean of xit. In this case, the estimated x̂t using the EM algorithm may be
considered as an average of the estimated individual state variables after adjusting for the
estimation errors.

4. Parameter Estimation
In this section we discuss parameter estimation in MESSM from both the Bayesian and the
likelihood perspectives. The Bayesian approach and the ML method for mixed-effects
models and the state space models have been well established (Harvey, 1989; Davidian and
Giltinan, 1995; Vonesh and Chinchilli, 1996; West and Harrison, 1997). The proposed
estimation methods for MESSM are combinations of these estimation methods.

4.1 Bayesian Approach
The Bayesian approach for state space models has been studied by many authors in recent
years. Linear state space models have been presented in West and Harrison (1997).
Nonlinear non-Gaussian state space models have been studied in, for example, Kitagawa
(1987, 1996), Carlin, Polson, and Stoffer (1992), De Jong and Shephard (1995), and Chen
and Liu (2000). Most of these studies focus on the estimation of state variables, while the
estimation of unknown parameters in the models has not been paid enough attention. For
MESSM we adopt the method proposed by Carlin, Polson and Stoffer (1992), in which the
Gibbs sampler was used to draw samples from the full conditional distributions of state
variables xt and parameters conditional on the observations yt. This approach is
straightforward and easy to implement, and it has produced good results in our simulation
studies. However, our method differs from Carlin et al. (1992) in that (1) independent
individual subjects are involved in the MESSM; (2) we include one more hierarchical
structure on the individual parameters; and (3) we emphasize both parameter estimation and
state variable estimation. For the Bayesian approach, prior distributions are assigned to the
parameters, and the inference is based upon the posterior distributions. Note that, if only one
subject i is considered and the prior distribution N(θ, D) is assigned to θi, then conceptually
θ and D are simply hyperprior parameters for a standard state space model. However, these
hyperprior parameters represent the population parameters when all the subjects are
considered, and thus have their own interpretations at the population level.

When the conjugate prior distributions are carefully chosen, the full conditional distributions
have closed forms and are easy to sample from. The Gibbs sampler can then be used to
explore the posterior distributions of the unknown parameters.

Let W(ϒ, ν) denote a Wishart distribution with the scale matrix ϒ and the degrees of
freedom parameter ν. We use the following prior distributions:
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(14)

As one of the referees pointed out, for dynamic systems, vague and proper priors may lead
to improper posteriors. In order to avoid improper posterior densities, Bates and Watts
(1988) suggested to put a locally uniform prior on the expectation surface to represent a non-
informative prior, instead of putting a locally uniform prior on the parameter space. Under
our model setting, it is possible that vague proper priors on the parameter space can be
translated into informative priors in the state space and can lead to improper posteriors.

The full conditional distributions can be derived as follows:

1. The conditional distributions of the state vectors are

(15)

where for t ≠ 0 or ni

(16)

(17)

for t = 0, Hi0 = Fi′Q−1Fi + A−1, λi0 = Fi′Q−1xi1 + A−1τ; and for t = ni,

, λini = Q−1Fixi,ni−1 + Gi′R−1 y ini.

2. The conditional distributions of θi, θ, and D are

(18)

(19)

where ,

‘⊗’ stands for kronecker product. U1 or U2 has dimension of p2 × r or q2 × r (r is
length of θ) and is defined as follows. Remember that each element of Fi or Gi can
be represented by a linear combination of all elements in θi. If we strip out Fi or Gi
by column and stack them, the formalized vector with length p2 or q2 which we
denote as vec(Fi) or vec(Gi) can be represented by the product of U1 or U2 with θi,
i.e., vec(Fi) = U1θi and vec(Gi) = U2θi.

3. The conditional distributions of the covariance matrices Q and R are
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(20)

(21)

where .

Note that irregularly spaced data can be treated as data with missing observations, and the
full conditional distributions only need slight adjustments at the time points of missing data.
For example, suppose yit is missing, the conditional distribution p(xit|y, xi,k≠t, · · ·) in (15)
depends only on xi,t−1, xi,t+1 and the parameters, but not on yit. Thus, one needs to drop the
terms Gi′R−1Gi in (16) and Gi′R−1yit in (17), which are related to the observation. With the
large number of missing data, the Bayesian approach ran reasonably fast. However, a large
number of missing data can slow down the EM algorithm. It is well-known that the EM
algorithm has a linear convergence rate, which is determined by the information ratio of the
missing data to the complete data. For sparse data, a large amount of information, including
the random effects, the state vectors and many observations, is missing, and therefore the
convergence of the EM algorithm can be quite slow.

The construction of the Gibbs sampler is based on the full conditional distributions. Starting
from an arbitrary set of initial values, samples are drawn from the conditional distributions
sequentially. Let Φ be the collection of all the components involved in the full conditional
distributions, i.e., Φ = (x10, · · ·, x1n1, · · ·, xm0, · · ·, xmnm, θ1, · · ·, θm, θ, D, Q, R). Let Φ −
{u} be the set of all the components except {u}. Here {u} can be any component or a set of

components in Φ. Starting from the initial value Φ(0), the Gibbs sampler draws a sample 

from p(x10| {Φ − {x10}}(0), y), then draws  from , and so
on up to R(1) from p(R| {Φ − {R}}(1), y). Suppose that the Jth iteration produces a sample
Φ(J). When J is large, Φ(J) is a sample from the posterior distribution p(Φ|y) (Geman and
Geman, 1984). The posterior distribution of the kth component of Φ can be approximated by
(Carlin, Polson and Stoffer, 1992)

(22)

The posterior mean can be taken as the point estimate of a parameter if the Bayesian loss
function is chosen to be the squared-error loss.

Assuming that the observations are available up to time ni, the Gibbs sampler constructed
above can produce samples from the posterior distribution p(xit|y) for t ≤ ni. For t < ni this is
a solution to the smoothing problem defined in Section 3.1. For t = ni the posterior
distribution p(xini|y) provides a solution for the filtering problem at time ni. To solve the
prediction problem, i.e. for t > ni, one can treat {yi,ni+1, yi,ni+2, · · ·, yit} as missing and derive
the conditional distributions for the state vectors {xi,ni+1, xi,ni+2, · · ·, xit}, then include these
state vectors in the Gibbs sampler. Compared with the Kalman filter, the Gibbs sampler
approach is more flexible and can be extended to nonlinear and non-Gaussian cases (Carlin,
Polson and Stoffer, 1992), which also provides a unified framework for the state estimation
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and parameter estimation. However, the Gibbs sampler approach is computationally
expensive, and does not provide online solutions to the estimation problems.

4.2 Estimation by the EM algorithm
For the standard Gaussian linear state space models, the ML method for the estimation of
parameters has been well studied (Harvey, 1989). The idea of the ML method is to calculate
the likelihood function via the prediction error decomposition (Schweppe, 1965) in which
the Kalman filter is applied to obtain the innovations and their covariances. Due to the
complexity of the likelihood function of the standard state space model, numerical methods,
specifically the EM algorithm (Watson and Engle, 1983) and the Newton-Raphson
algorithm (Engle and Watson, 1981), are often applied. We can extend the EM algorithm
proposed by Watson and Engle (1983) to find the MLE of unknown parameters for the
MESSM (3)–(5). The variance estimate can be obtained by inversing the observed Fisher
information matrix, which can be used to get the interval estimates for the unknown
parameters under a normal distribution assumption. To save space, we provide the details on
implementation of EM algorithm in the Web Supplementary Appendix.

The EM algorithm proposed here is closely related to the Bayesian approach as both contain
a Gibbs sampling scheme, and the full conditional distributions for the Gibbs sampler are
very similar. The differences are also clear. The EM algorithm is developed for the
likelihood approach, thus the parameters (θ, Q, R, D) are not treated as random and no prior
distributions are needed. Computationally, in the Bayesian approach the parameters (θ, Q,
R, D) are constantly updated by sampling from their conditional distributions, while in the
EM algorithm they remain fixed during the sampling step, and are updated only in the M-
step. Therefore, for one iteration of the EM algorithm, the sampling step is computationally
less expensive than the Bayesian approach, but extra computational costs is needed in the
M-step. From our experience, running one iteration of the EM algorithm is more time
consuming than running the Gibbs sampler in the Bayesian approach, assuming equal
number of Gibbs iterations. The convergence of the EM algorithm is also slow, usually more
than 50 iterations are needed for convergence. Overall the computational cost for the EM
algorithm is much higher. However, an alternative approach, the stochastic approximation
EM (SAEM) approach (Delyon, Lavielle and Moulines 1999) is very efficient and generally
applicable to obtain the maximum likelihood estimates for the unknown parameters in
nonlinear mixed-effects models from longitudinal data, which is worthy more exploring for
potential online estimation.

5. Numerical Examples

To illustrate the usefulness of the proposed MESSM and estimation methods, we carried out
two simulations studies: one is a simple univariate MESSM and another is a more
complicated bivariate MESSM. To save space, we only report the simulation results from
the bivariate model in this section and report the results from the univariate MESSM in the
Web Supplementary Appendix. We also applied the proposed MESSM and estimation
methods to an AIDS clinical data set in this section.

Simulation Study—Consider a MESSM model (3)–(4) with p = 2, q = 1, r = 2,

 and . Let . Set

, and R = 1. The variances Q and R were
selected to make the Filter Input Signal to Noise Ratio (FISNR) (Anderson and Moore,
1979) close to 3:2. We assumed the following priors for the Bayesian approach
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(23)

Here G(., .) stands for the Gamma distribution. We specified the priors by setting β0 = 0.5,
β1 = 0.0001, ν0 = 0.5, ν1 = 0.5, ω0 = 0.5, ω1 = 0.5, τ = 20, and A = 100. Note that the true

value of  is very small (close to zero). If a prior for  is selected to be skewed toward
zero such as the one we used in our simulation, it is easier to identify this variance parameter

as suggested by one of the referees. Otherwise, the estimate of  is poor. We assumed a

normal prior distribution N(η, Δ) for θ with η = (0.5, 0.5)′ and . For this

bivariate MESSM,  contained the known parameters in the system matrix Fi.
A simulation study of 50 replicates was carried out for m = 20 and n = 20. The Gibbs
sampler was run for 20000 iterations for each replicate. The estimation results are shown in

Table 1. In this table  represents the relative error. For both the
Bayesian approach and the EM algorithm the estimates for θ1 and θ2 were close to the true

values. The Bayesian estimates of  and R were better than the EM estimates. However the

EM algorithm provided better estimation for .

Figure 1 shows the histogram of the Gibbs samples for θ1 and θ2 and the estimated marginal
posterior densities for both parameters. Considering θ1, one notices that

 with Φ being the collection of all the parameters and
the state variables. Using the formula (22) the estimated posterior density can be derived as

where η1 is the first element of η, and N(θ1|a, b) stands for the normal density with mean a
and variance b. The histogram shows that the Gibbs samples for θ1 are tightly centered
around 0.3, and agrees very well with the estimated posterior density. The similar plots for
θ2 are also displayed in Figure 1. It can be seen that the Gibbs samples for θ2 are
concentrated around 0.6, the true parameter value of θ2. To monitor the convergence of the
Gibbs samples the trace plots for both parameters are also shown in Figure 1. The trace plots
do not display any signs of patterns, suggesting the convergence to the stationary
distribution. Similarly the Gibbs samples for the other parameters D, Q and R (not shown)
also suggest the convergence of the Gibbs samplers.

HIV Dynamic Application—We applied the MESSM to a data set from the AIDS
Clinical Trial Group (ACTG) Study 315 (Wu and Ding, 1999). In this trial, 53 HIV infected
patients were treated with potent antiviral drugs (ritonavir, 3TC, and AZT). Among those 5
dropped out of the study. Treatments started on day 0 and the plasma concentration of
HIV-1 RNA was repeatedly measured on days 0, 2, 7, 10, 14, 21, 28 and weeks 8, 12, 24, 48
after the initiation of the treatment. Perelson et al. (1997) suggested a two-phase clearance of
viral load. The first phase featured a rapid drop in viral load due to the exponential death
rate of the productively infected cells during the first four weeks of treatment. The decline of
viral load was slower in the second phase due to the slow clearance rate of the long lived
infected T-cells or latently infected T-cells. Here we considered a time-varying MESSM for
the ACTG 315 data assuming the rate of clearance changed at the mid-point of week 4 (i.e.
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day 24). This model is closely related to the simple HIV dynamic model with a constant rate
(Ho et al. 1995). The MESSM is written as

where yit is the base 10 logarithm of the measured viral load from patient i at time t, and xit
represents the base 10 logarithm of the actual viral load. θit indicates the viral clearance rate

for patient i at day . Here  for k = 1, 2,

and  are independent. Note that we may use the log-transformation to guarantee θit to be
positive. For other complicated constraints of parameters, there is no general method to deal
with and we may need to deal with this problem case-by-case. Although this is an simplified
HIV dynamic model, it serves to illustrate the proposed methodologies.

The similar prior distributions as in the simulation studies were utilized for the Bayesian
approach (see the Web Supplementary Appendix). Table 2 gives the estimation values of

both the population parameters and the individual parameters  following the Bayesian
approach. The EM estimation was similar and omitted.

Figure 2 shows the one-step-ahead Kalman forecasts (dotted curves) of the individual states
for the first four patients using the estimated individual parameters. The estimated posterior
means for the individual states using the Gibbs sampler approach are also shown in solid
curves. As expected the posterior mean curves are smooth and close to the observed values.
A Kalman forecast jumps one day after the time point of an observation, indicating an
adjustment based on the observation. The model checking results are shown in Figure S1 in
the Web Supplementary Appendix. The fitted viral loads from both methods match the data
quite well. The normal assumption on measurement errors is validated by QQ plots. The
density estimates of individual parameters show that the normality assumption on random
effects is satisfied for both methods.

6. Discussion
In many biomedical longitudinal studies, the underlying biological mechanisms are well
studied and mathematical representations, usually a set of differential or difference
equations, are available. In this paper, we have proposed a class of mixed-effects state space
models for analysis of longitudinal dynamic systems that may arise from biomedical studies.
With the intention of giving a comprehensive treatment of this subject, we investigated two
methods for estimation of unknown parameters in the proposed models by borrowing ideas
from standard mixed-effects models. The concept of population state was introduced, and
the EM-enhanced smoothing was proposed. Filtering, smoothing and forecasting algorithms
for estimation of individual states were also discussed based on the Kalman filter methods.

The MESSM may be further extended to nonlinear and non-Gaussian cases. It is well-
known that, for nonlinear and non-Gaussian state space models, the Kalman estimates of
states are not optimal in terms of unbiasedness and mean squared errors. Other filters, such
as the extended Kalman filter (Anderson and Moore, 1979), usually involve linear
approximation of the nonlinear functions. Although lacking optimality and often awkward
when handling complicated models, these filters have been applied extensively simply
because there were no other alternative methods. In the past decades, the Bayesian approach
and the Gibbs sampler techniques have provided good solutions for smoothing problems in
nonlinear non-Gaussian state space models (Carlin, Polson and Stoffer, 1992; Carter and
Kohn, 1994 and 1996). Such approach could be adapted to nonlinear non-Gaussian
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MESSM. A major limitation for the Gibbs sampler approach lies in its incapability of online
filtering. Recently sequential Monte Carlo methods (Liu and Chen, 1998), such as the
particle filter (Gordon, 1993; Kitagawa 1996), have provided a general framework for online
filtering for nonlinear and non-Gaussian state space models. However, when the particle
filter approach is extended to MESSM, the extra layer of the mixed effects in the system
matrices of MESSM adds significant computational difficulties that need to be overcome in
practice.

In summary, we have introduced the MESSM which brings together the techniques of
mathematical modelling, time series analysis, and longitudinal data analysis to deal with
longitudinal dynamic systems with many potential applications in biomedical research, such
as hepatitis virus dynamics (Nowak et al. 1996), tumor dynamics in cancer research (Swan,
1984; Martin and Teo, 1994), and genetic regulatory network modeling (Chen, He and
Church, 1999; Holter et al. 2001). However, many theoretical and methodological problems
for MESSM remain unsolved. We expect that our paper can attract more attention and
stimulate more research in this promising research area.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Parameter estimation results for θ1 and θ2 from the Bayes method for the simulation study
(the bivariate MESSM model). (a1) and (a2) are estimated posterior densities, (b1) and (b2)
are histograms of the Gibbs sampler, and (c1) and (c2) are trace plots for the last 5000
samples for θ1 and θ2, respectively.
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Figure 2.
Estimation and prediction of viral load for four patients in the HIV dynamic study (four
subjects with different number of measurements and different response patterns are selected
for illustration). Base 10 logarithm of the viral loads are shown in circles. The smoothing
estimates using the Gibbs sampler approach are shown in black solid curves, and the 95%
error bounds are shown by the shaded grey region. The one-step-ahead Kalman forecasts are
shown in black dotted curves, and the prediction error bounds are in grey dashed curves. The
estimates of population state variable are shown as the gray solid curve.
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