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Abstract
Aims—The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many
studies have assessed volume, cortical thickness, and neuronal densities or numbers in these
regions. Available data however are rather conflicting and no clear cortical alteration pattern has
been established. Changes in oligodendrocytes and white matter have been observed in
schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease
development.

Methods—We investigated the dorsal anterior cingulate cortex (dACC) in 13 males with
schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC
volume, neuronal and glial densities, total neuron and glial numbers, and glia/neuron (GNI) ratios
in both layers II-III and V-VI.

Results—We observed no differences in neuronal or glial densities. No changes were observed
in dACC cortical volume, total neuron numbers, and total glial numbers in schizophrenia. This
contrasts with previous findings and suggests that the dACC may not undergo as severe changes in
schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI
than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-
specific effects on oligodendrocyte distribution during development.

Conclusions—Using rigorous stereological methods, we demonstrate a seemingly normal
cortical organization in an important neocortical area for schizophrenia, emphasizing the
importance of such morphometric approaches in quantitative neuropathology. We discuss the
significance of subregion- and layer-specific alterations in the development of schizophrenia, and
the discrepancies between post-mortem histopathological studies and in vivo brain imaging
findings in patients.
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INTRODUCTION
White matter deficits and oligodendrocyte pathology have gained increasing interest in
schizophrenia research, in light of findings that showed changes in expression levels of
myelin and oligodendrocyte-related genes [1–3], and previous imaging findings showing
alterations in the white matter [4, 12]. The myelin hypothesis in schizophrenia has been
extensively reviewed in [13–18]. In the present study, we further investigate the role of a
myelin deficit, in the context of possible neuropathology of the anterior cingulate cortex
(ACC) in schizophrenia.

The ACC has been much studied in schizophrenia. It is known to play a role in the
regulation of cognition, attention, emotions, and in social interactions. In the human brain,
the ACC can be subdivided along its rostrocaudal and dorsoventral axes, through which
there exist gradients in cytoarchitecture and topography in its afferent and efferent
projections [19–22]. The ACC consists of areas 24 and 25 surrounding the genu of the
corpus callosum. Some authors also include the paracingulate area 32 in the ACC.
Cytoarchitecturally the ACC is complex and can be divided into distinct subregions [19, 21–
23], and displays large individual variability and hemispheric asymmetry in the human brain
[19]. The ACC receives multimodal sensory information from insular, temporal, and parietal
association cortices, and emotional information from the amygdala and the orbitofrontal
cortex [24–28]. It shows extensive connectivity with the dorsolateral prefrontal cortex.
Specifically, the dorsal ACC (dACC, or supragenual part) is connected with the dorsolateral
prefrontal and premotor areas, while the rostral ACC (rACC, or subgenual and pregenual
parts) is connected with the amygdala and the orbitofrontal cortex [29]. These different
connectivity patterns establish two functional ACC domains, a dorsal cognitive subdivision
and a ventral affective subdivision, as demonstrated by imaging studies [30–32]. Based on
its connections with other areas, the dACC (corresponding to subdivisions 24a’b’ and c’) is
involved in attention to action, error detection, and motor functions [30], while the rostral
ACC (corresponding to subdivisions 24abc, area 25 and the paracingulate area 32) is
involved in the evaluation and regulation of emotion [33, 34].

Stereologicalal methods have been used to investigate the oligodendrocyte densities and
distribution patterns in the dorsolateral prefrontal and anterior cingulate regions.
Oligodendrocyte densities have previously been found to be decreased in schizophrenia in
white and grey matter in area 9 [35], and in area 24 [36], but not in area 32 [36], or in the
cingulum bundle [37]. Morphometric studies of neuron densities have been made in a
limited number of cortical regions, and investigators have observed decreases in neuronal
densities in area 24 [38], while increases have been found in areas 9 and 46 [39, 40].
However, using unbiased stereologicalal approaches, these findings have not been
replicated. Moreover, brain imaging findings frequently reporting decreases in cortical or
white matter volumes [41–45] are difficult to correlate to volume estimates from
neurohistological methods. To investigate further the neuropathology of neurons and glia in
schizophrenia in the ACC region, we studied the dACC using stereologicalal approaches.

MATERIALS AND METHODS
Subjects

This study was performed on the same post-mortem brains (both hemispheres) from 13 male
patients with schizophrenia and from 13 age-matched male controls that were investigated in
our previous studies on neuron numbers in subcortical regions [46], capillary length
densities in the frontal cortex [47], and mean neuron spacing abnormalities in the neocortex
[48].
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All cases with schizophrenia had been patients either in German university hospitals or in
German State psychiatric hospitals and full clinical records were available. All control cases
had been patients either in German university hospitals or in German local district hospitals.
Patients with schizophrenia and controls were similar in terms of ethnic background. In all
of the cases, autopsy was performed after consent was obtained from a relative according to
the laws of the Federal Republic of Germany. The use of autopsy cases for scientific
investigations was approved by the relevant institutional review boards and ethics
committees. Records from autopsy (including a summary of the medical history) were
available for all patients with schizophrenia, and for all controls. All patients with
schizophrenia met the diagnostic criteria of the Diagnostic Statistical Manual, DSM-IV [49]
and International Statistical Classification of Diseases and Related Health Problems, ICD-10
[50]. All patients with schizophrenia were subjected to long-term treatment with typical
neuroleptics. However, due to the fact that most of the patients were not hospitalized
throughout the duration of their illness, the clinical records did not cover fully the entire
medication histories and it was therefore not possible to calculate lifetime medication
exposures. The clinical notes were assessed by two experienced clinical psychiatrists for
clear evidence that the diagnosis of patients with schizophrenia was concordant with DSM-
IV criteria for schizophrenia, and to ensure that the brains from the controls were free from
psychopathology.

All pathologists involved in the autopsies were instructed by H.H. and adhered to identical
handling and processing conditions of the brains. Brains were fixed by immersion in 4%
formalin (one part 40% aqueous formaldehyde in nine parts H2O) ranging from three
months to ten years prior to histological processing as previously described [51]. The age of
the patients, clinical diagnoses, illness duration, causes of death, the post-mortem interval
and the fixation time are summarized in Table 1. The patients with schizophrenia did not
differ from the controls with respect to mean age (two-tailed Student’s t-test; P = 0.946),
mean post-mortem interval (P = 0.581) and mean fixation time (P = 0.089). The mean age at
onset of the patients with schizophrenia was 22.9 ± 1.5 years.

Exclusion criteria for both patients with schizophrenia and the controls comprised
neurological problems that required intervention or interfered with cognitive assessment
(e.g., stroke with aphasia), history of recurrent seizure disorder, history of severe head injury
with loss of consciousness, history of other psychiatric illness, history of self-administered
intoxication, and diabetes mellitus with free plasma glucose >200 mg/dl. After histological
processing of the brains, each section was coded and verified for the absence of tumours,
infarcts, heterotopias, signs of autolysis, staining artefacts and gliosis. In addition, from all
the brains of the schizophrenic patients and controls older than 40 years, sections through
the central portion of the entorhinal and transentorhinal cortex that were not stained with
gallocyanin (see details below) were labelled with the Gallyas method to detect
neurofibrillary changes [52]. Neurofibrillary tangles were very rarely detected in the
transentorhinal and entorhinal cortex on Gallyas-stained sections, compatible with Braak’s
stage I [53].

Tissue processing
The brainstem with the cerebellum was separated from the forebrain at the level of the
rostral pons, and the hemispheres were divided medio-sagittally. Both hemispheres were
then cut into serial 600–700µm-thick coronal sections as previously described [51]. Briefly,
the hemispheres were cryoprotected in a mixture of 2% glycerol-dimethylsulfoxide/ 4%
formaldehyde/ 10–20% glycerol after carefully removing the meninges and the pial vessels,
embedded in gelatin or agarose (15% gelatin or 3% agarose) hardened at 4°C over night
creating a 5–10mm-thick mantle surrounding the brain, further hardened in 4%
formaldehyde at 4°C for up to 3 days, deeply frozen at -60°C and serially sectioned using a
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cryomicrotome (Jung, Nussloch, Germany). One brain (C7) was embedded in celloidin as
recently described [54] and was cut into serial 440-500µm-thick coronal sections using a
sliding microtome (Polycut, Cambridge Instruments, UK). From each hemisphere, every
second or third section was stained with gallocyanin (a Nissl stain) as previously described
[51]. Fixation and tissue processing were performed at the Morphological Brain Research
Unit, University of Wuerzburg (Germany) under identical conditions for all brains (except
for brain C7 that was embedded in celloidin instead of gelatin).

Stereological analyses
Stereological analyses were performed with a stereology workstation equipped with a Zeiss
Axioplan II microscope (Carl Zeiss MicroImaging, Thornwood, NY, USA), Plan-Neofluar
objectives 2.5x (N.A. = 0.075) and 40x (N.A. = 1.30), Fluar objectives 10x (N.A. = 0.5) and
20x (N.A. = 0.75), a Microfire CCD camera (Optronics, Goleta, CA, USA), a motorized
stage (Ludl Electronics, Hawthorne, NY, USA), and stereology software
(StereoInvestigator, Version 10, MBF Bioscience, Williston, VT, USA).

The left hemispheres were selected and the regions of interest were delineated at low
magnification (using the 2.5x objective) according to established criteria in the literature
[19]. The regions of interest (ROI) were layers II-III and layers V-VI of the dACC region,
corresponding to Brodmann’s area 24, subregions 24a’, 24b’ and 24c’ as described by Vogt
[19]. Grossly, the most anterior section started from the crossing of the corpus callosum, and
extended approximately 2 cm posteriorly to the border with area 23. Every 6th section was
sampled in a consistent and unbiased manner, generating a serial section series of 5–7
sections within our ROIs. Actual section thickness after histological processing was
determined as described in [55].

The volumes of the dACC region (layers II-III and layers V-VI) were analyzed using the
Cavalieri principle [56]. Briefly, the area of the delineated ROIs was multiplied by the serial
section interval and the actual measured section thickness. Estimation population of total
neuron and total glial cell (astrocytes and oligodendrocytes) numbers in layers II-III and
layers V-VI separately was evaluated using the Optical Fractionator method, see [56].
Starting with a random section number, a systematic random sampling throughout the ROI
was performed. Pilot experiments were conducted to select appropriate counting frames and
grid sizes, generating approximately 500 counted objects (either neurons or glia) in a total
series, consistently generating coefficient of errors (CE) <0.1, see [56]. Details of the final
counting procedures are summarized in Table 2. Neurons were identified by their
characteristic morphology with dark and recognizable nucleoli, a large soma with a distinct
cell nucleus surrounded by fainter cytoplasm, and dendrites emerging from the soma. Glial
cells were identified by their smaller size, lack of processes, and dark homogenous staining.
Astrocytes are nearly indistinguishable from oligodendrocytes in gallocyanin-stained
materials [51], and were pooled together as glial cells. The neuron and glial cell densities
were calculated as the ratio of the total cell number (either neuron or glia) and the Cavalieri
volume of the ROIs. The glia/neuron index (GNI) was calculated as the ratio of the glial cell
density to the neuron density.

Statistical analysis
For both patients with schizophrenia and controls, means and standard error of the mean
(SEM) were calculated for age at death, age at onset of illness, post-mortem interval (PMI),
and fixation time (Table 1). Means and SEM were also calculated (separately for patients
with schizophrenia and controls) for the analyzed variables, dACC volume, total neurons,
total glia, neuron density, glial density and GNI (separately for layers II–III and V-VI).
Comparisons between patients with schizophrenia and controls were performed using
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generalized linear model multivariate analysis (MANOVA), with diagnosis as fixed factor
and the following variables as covariates: post-mortem interval (PMI), fixation time, age of
controls or adjusted illness duration (AID) of patients with schizophrenia (AID is calculated
as individual age at death minus age at onset plus the mean age at onset of all patients with
schizophrenia). Note that use of the actual individual illness duration of the patients with
schizophrenia instead of the adjusted ones as covariate would have caused invalid results of
the MANOVA model because there was no illness duration of the controls. The mean illness
duration of the patients with schizophrenia was significantly different from the mean age of
the controls (two-tailed Student’s t-test; p < 0.001) whereas the mean adjusted illness
duration was not (p = 0.974). For each investigated variable, the two investigated regions of
interest (layers II-III and V-VI) were tested simultaneously. In all analyses an effect was
considered statistically significant if its associated p-value was <0.05. Calculations were
performed using SPSS (Version 18.0.1 for Mac, PASW, Chicago, IL, USA). Graphical
analysis was done with GraphPad Prism (Version 4 for Macintosh; GraphPad Software, La
Jolla, CA, USA).

Photography
Photomicrographs of full brain sections were scanned at high resolution (600 dpi) using an
Epson Perfection 2450 Photo scanner (Figure 2A). Photomicrographs of magnified regions
were produced by digital photography using the stereology workstation with the
StereoInvestigator software described above. Figures 2B and 3CD were generated using the
Virtual Slide module, using either a 2.5x objective and a grid size of approximately 5x6
(Figure 2B), or a 10x objective and a grid size of 1x4 (Figure 3CD), grid size adjusted to the
size of the area acquired. Figure 3AB was generated using the Deep Focus module with the
40x objective, acquiring images every 3–5µm through a section thickness of 20–30µm. All
editing was performed using Adobe Photoshop CS4.

RESULTS
The region of interest

The region of the dACC used in our study encompassed the areas 24a’b’c’, as delineated by
Vogt and coworkers [19, 30], corresponding functionally to the cognitive subdivision of the
ACC, as discussed by Bush et al. [31] (Figure 1). A representative coronal section through
the dACC is shown in Figure 2. The investigated ROI extended from the rostralmost to the
caudalmost levels of areas 24a’, b’, and c’ (supplementary Figures 1–2). The ROI was also
subdivided into superficial (layers II-III) and deep (layers V-VI) cortical layers because of
known differences in cortical layer development and connectivity patterns [57]. The
cytoarchitecture and the cellular features of the representative area 24b’ is shown in Figure 3
(and supplementary Figure 3).

In human post-mortem Nissl-stained materials, oligodendrocytes may be difficult to
distinguish reliably from astrocytes. However, it is known that astrocytosis (which is
indicative of glial scarring and a gliotic reaction) is not present in schizophrenia [58], thus
changes in glial cell numbers would suggest underlying changes in oligodendrocyte
numbers. For histological analyses, no histochemical or immunohistochemical marker for
specific for oligodendrocytes is sufficiently specific and reliable for quantification purposes
on human postmortem tissue. As a consequence, in our Nissl-stained materials, we counted
astrocytes and oligodendrocytes together as glial cells.

Observations in controls versus patients with schizophrenia
In the dorsal anterior cingulate region, we analyzed the dACC volume, the estimated
population of total number of neurons, the estimated population of total number of glial
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cells, the estimated neuron density, the estimated glial cell density, and the glia/neuron index
(GNI), in layers II-III and layers V-VI of area 24a’b’c’. These variables were analyzed
between groups (controls versus patients with schizophrenia) and against age and adjusted
illness duration.

Using rigorous anatomical and stereological criteria, we found no differences between
groups in either cortical volume, total neuron numbers, or total number of glial cells in the
dACC (supplementary Figure 4). Similarly, we found no differences between groups in
neuron density, glial density, or GNI values (Figure 4), as well as between groups when
adjusting for illness duration, showing (not shown). These findings of an apparent intact
dACC cytoarchitecture in schizophrenia stand in contrast to other observations of decreases
as well as increases in neuronal densities in the cingulate or prefrontal cortex in patients with
schizophrenia (see Discussion). Glial cell densities appeared to decrease with age and illness
duration in both superficial and deep layers. However, as white matter volume generates an
inverse U-shaped developmental pattern in healthy patients [59], regression analysis was not
used to assess this apparent decrease (see Discussion).

Observations in superficial versus deeper cortical layers
In contrast to the lack of differences between groups, we found anticipated differences
between cortical layers in both patients with schizophrenia and in controls (Figure 4).
Overall, the neuron densities were higher in superficial layers, whereas the glial densities
were higher in the deep layers. This was also reflected in the calculation of the glia/neuron
ratios, the GNI in layers II-III was approximately 1.5 in both groups, and the GNI in layers
V-VI was approximately 2.3 in both groups. We found differences in the superficial layers
versus the deep layers in glial densities in the dACC, in both controls and patients with
schizophrenia, reflecting that there were more glial cells in the deep layers.

DISCUSSION
Using rigorous anatomical and stereological criteria, we observed no changes in neuronal or
glial cell densities in the dACC in patients with schizophrenia compared to controls from a
cohort of age- and gender-matched subjects, spanning from 20 to70 years of age. Neither did
we detect any changes in the volume, total neuron numbers, or total glial cell numbers in the
dACC between patients with schizophrenia and controls. These findings do not support
previous observations of apparent changes in neuron densities in prefrontal and cingulate
regions in patients with schizophrenia. We did however find expected differences between
superficial and deep layers in both neuron and glial cell densities, as well as the GNI, in the
dACC in both controls and patients with schizophrenia. These observations can be attributed
the importance of subregion- and layer- specificity when addressing neuropathological
changes in schizophrenia. Differences in histopathological changes in post-mortem human
tissue may reflect several methodological and technical differences (such as sample size,
age-matched cases, left and right hemispheres, stereological versus two-dimensional
analyses, section thickness, staining procedures, regional delineation, etc.). The present
results emphasize the necessity to provide meticulously detailed methodological and
analytical information in quantitative neuropathological studies.

Previous morphological data on cortical thickness and imaging data on regional volumes
have suggested that different areas in schizophrenia may have a reduced volume [41, 44, 45,
60–63]. Despite the abundance of imaging data suggesting reduced volume of various
cortical regions, these findings have been difficult to correlate with post-mortem
histopathological data. Both subregion delineation as well as analytical differences between
imaging and histopathological data may lie behind these difficulties. When investigating
particular subregions of the anterior cingulate and prefrontal cortex, for example, Koo and
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colleagues found volume differences in the subgenual and rostral ACC, but no volume
differences in the dorsal ACC or in the posterior cingulate cortex [45]. A study by Narr and
colleagues [43] found decreases in ACC thickness in women, whereas in men only slight
decreases in dACC thickness in the right hemisphere were observed, with an overall
increase in prefrontal cortical thickness. In histological materials, the reduction in brain
volume in select areas has primarily been attributed to a reduction in neuronal size and in
reduced neuropil, rather than a loss of neurons [64, 65]. Others have found indications of a
decreased cortical thickness and smaller pyramidal soma size in area 24abc as well as in area
25 in schizophrenia, but with no changes in neuronal densities [66].

Studies on neuronal densities in the prefrontal cortex and the anterior cingulate cortex have
led to inconclusive outcomes because rigorous stereological approaches have not been
employed, different Brodmann areas have been pooled, or generalized theories have been
presented from the results of only a few cortical regions. For these reasons, some authors
find no changes in neuronal densities in schizophrenia, some find decreases in neuronal
density, while others found increases in neuronal density. For methodological purposes in
quantitative neuroanatomy, we discuss some examples of these inconclusive findings below.

Pakkenberg and coworkers employed stereology but found no changes in neuronal densities,
yet these studies pooled several Brodmann areas from the prefrontal and cingulate cortex
[67, 68]. In contrast, Stark and colleagues found no differences in neuronal densities in area
24 or 32 [36], and Bouras and coworkers found no differences in neuronal densities in area
24abc [66]. Benes and coworkers employed a 2D counting approach and found lower
densities of neurons in the cingulate cortex while subregions were not specified [69, 70].
These reductions in neuron densities in the cingulate have not been replicated by others
using stereological methods. Selemon and coworkers employed stereology and found higher
neuronal densities in the prefrontal cortex, yet mainly focused on area 9 and 46 [39, 40].
They also found smaller soma sizes [71] and smaller frontal grey matter volume [60] and
extrapolated these results to a generalized view of changes in the prefrontal cortex in
schizophrenia [64]. In the ACC, Chana and colleagues also found increased neuronal
densities and smaller soma sizes using stereologicalal methods [72]. Despite these
discrepancies, these findings have supported the altered circuitry hypothesis of
schizophrenia [64, 73]. However, the difficulty in comparing and evaluating these reports
remains, as they contain methodological limitations that may have had influence the
outcome.

Not as many studies have investigated glial density changes in schizophrenia. This may be
due to the fact that there were apparently no astrogliotic changes occurring in schizophrenia
[58], and the influence of potential oligodendrocyte changes was perhaps overlooked. In the
prefrontal and cingulate regions, Hof and colleagues found decreased oligodendrocyte
densities in area 9 [35], and Stark and coworkers found decreased oligodendocyte densities
in area 24 but not in area 32 in schizophrenia [36]. In comparison, Segal and coworkers
found no differences in oligodendrocytes densities in the cingulum bundle [37]. Reductions
in glial densities have also been found in the subgenual anterior cingulate cortex in
depression [74, 75]. These observations have previously suggested that changes in
oligodendrocyte numbers may be indicative of aberrant wiring and conduction abnormalities
in schizophrenia.

In assessments of neuropathological changes in cortical and subcortical architecture and
histology, crucial components are to specify the region and subregions studied, since subtle
changes may be present within one region [19,30, 31, 76]. For example, using the same
cases as in this study, Kreczmanski et al. [46] found reduced volume and total neuron
numbers, but not densities, in the putamen and lateral nucleus of the amygdala, but not in
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other striatal or amygdala subregions. Within the ACC, the pregenual and subgenual regions
have been shown to be relevant to emotional functions [77] and are strongly connected with
the amygdala [78], and have primarily been implicated in depression [34, 79]. However the
rACC has mainly been studied with imaging, as reliable morphometric or stereological
investigations of the pregenual cortex are notoriously difficult in view of its curved
morphology. Lastly, layer specificity in schizophrenia studies is particularly important
considering that schizophrenia is also considered to be a neurodevelopmental disorder [86,
87, 88]. In this context, it is noteworthy that deep layers myelinate before superficial layers
during development [80]. This may be the reason for higher numbers of oligodendrocytes in
the deep layers, as found in this study. Any aberrations in cortical layering may be of
substantial importance for the development of schizophrenia.

The theories on the aetiology and psychopathology of schizophrenia are multifaceted, from
neurochemical to wiring and development. The fact that a myelination deficit potentially
represents a substrate for the clinical symptoms seen in patients with schizophrenia merits to
be reviewed in the context of developmental aberrations [81, 82] and altered cortical
circuitry [65, 75, 83–86]. The myelin theory on schizophrenia originated from the finding of
myelin pathology and downregulation of the expression of myelin-related genes in
schizophrenia [1]. Myelin and oligodendrocyte integrity are required for adequate
functioning of neurons and hence of circuitry. It has been shown that both white matter
volume and grey matter volume changes during development and aging [59]. Sowell and
coworkers found that the white matter development followed and inverted U-pattern, with
white matter volume increasing until midlife and then declining, whereas the grey matter
volume progressively decreases with age [59]. Therefore, a myelination deficit in
schizophrenia, which has gained much support in recent years from white matter
architecture and tractography imaging studies [85, 87–90], may be directly linked to both the
theories of development and circuitry.

Our results, however, suggest that any neuropathological and neurohistological changes are
highly region- and layer-specific. Myelin changes previously observed may perhaps be
specifically localized to other areas of the prefrontal cortex, such as area 9 [35]. This is an
intriguing outcome that points to fact that the dACC may not undergo as severe changes in
its cellular makeup in schizophrenia as has been generally believed, and stresses the need for
further detailed postmortem investigations, at the level of identified and specific domains of
grey and white matter.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) The anterior cingulate region (ACC) as delineated by Vogt, encompassing the rostral
areas 24a-c and the dorsal areas 24a’-c’, bordering the paracingulate area 32 and 32’ and the
subgenual area 25. Modified from [19]. (B) The rostral (blue/affective) and dorsal (red/
cognitive) anterior cingulate regions depicted on a reconstructed MRI, of the medial surface
of the right hemisphere of a human brain. Modified from [31].
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Figure 2.
Inset: A mid-sagittal photograph of the left hemisphere of a human brain showing the
cingulate gyrus. The vertical line corresponds to a representative coronal section that
contains the region of interest. Scale bar = 1 cm. (A) Gallocyanine-stained coronal section
showing the localization of the investigated region, the dorsal anterior cingulate (dACC,
within dashed box) in a control subject. Scale bars = 1 cm. (B) Photomontage of the dACC
corresponding to areas 24a’-c’, illustrating the cytoarchitectonic features at each level from a
control subject. Arrowheads indicate borders among areas 33, 24a’, 24b’, 24c’, and 32’,
respectively, moving dorsally from the corpus callosum. Scale bar = 1 mm.
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Figure 3.
Photomicrographs depicting typical cellular features in layer V of area 24b’ in a control
subject (A) and in a patient with schizophrenia (B). Note the many satellite oligodendrocytes
surrounding pyramidal cell perikarya. Scale bar = 25 µm. Photomicrographs depicting the
six cortical layers in area 24b’ in a control (C) and in a patient with schizophrenia (D). Scale
bar = 100 µm.
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Figure 4.
Figure 4. (A-D) Variations in neurons in controls (open circles) and in patients with
schizophrenia (filled circles), in superficial (II-III) and deep (V-VI) layers of the dACC
volume (corresponding to area 24a’-c’). Estimated neuron densities between groups (A, C),
and across age (B, D).
(E-H) Variations in glial cells (oligodendrocytes and astrocytes) in controls (open circles)
and in patients with schizophrenia (filled circles), in superficial (II-III) and deep (V-VI)
layers of the dACC volume (corresponding to area 24a’-c’). Estimated glial densities
between groups (E, G), and across age (F, H).
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(I-L) Variations in GNI ratios (glial density/neuron density) in controls (open circles) and in
patients with schizophrenia (filled circles), in superficial (II-III) and deep (V-VI) layers of
the dACC volume (corresponding to area 24a’-c’). GNI ratios between groups (I, K), and
across age (J, L).
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Table 2

Details of the stereological parameters.

Section periodicity 6

Section z-intervals (µm) 4200

Objective 1 2.5x

Objective 2 40x

Guard zone (µm) 5

Counting frame (µm) 75×75

Grid (µm) 1250×1250

Disector height (µm) 25

Disector volume (µm3) 140 625
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