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Abstract Biotin-dependent carboxylases include acetyl-

CoA carboxylase (ACC), propionyl-CoA carboxylase

(PCC), 3-methylcrotonyl-CoA carboxylase (MCC), gera-

nyl-CoA carboxylase, pyruvate carboxylase (PC), and urea

carboxylase (UC). They contain biotin carboxylase (BC),

carboxyltransferase (CT), and biotin-carboxyl carrier pro-

tein components. These enzymes are widely distributed in

nature and have important functions in fatty acid metabo-

lism, amino acid metabolism, carbohydrate metabolism,

polyketide biosynthesis, urea utilization, and other cellular

processes. ACCs are also attractive targets for drug dis-

covery against type 2 diabetes, obesity, cancer, microbial

infections, and other diseases, and the plastid ACC of

grasses is the target of action of three classes of commer-

cial herbicides. Deficiencies in the activities of PCC, MCC,

or PC are linked to serious diseases in humans. Our

understanding of these enzymes has been greatly enhanced

over the past few years by the crystal structures of the

holoenzymes of PCC, MCC, PC, and UC. The structures

reveal unanticipated features in the architectures of the

holoenzymes, including the presence of previously unrec-

ognized domains, and provide a molecular basis for

understanding their catalytic mechanism as well as the

large collection of disease-causing mutations in PCC,

MCC, and PC. This review will summarize the recent

advances in our knowledge on the structure and function of

these important metabolic enzymes.
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Abbreviations

ACC Acetyl-CoA carboxylase

BC Biotin carboxylase

BCCP Biotin carboxyl carrier protein

BT BC-CT interaction

CT Carboxyltransferase

GCC Geranyl-CoA carboxylase

GCD Glutaconyl-CoA decarboxylase

HCS Holocarboxylase synthase

MCC 3-methylcrotonyl-CoA carboxylase

MCG 3-methylcrotonylglycinuria

PA Propionic acidemia

PC Pyruvate carboxylase

PCC Propionyl-CoA carboxylase

PT PC tetramerization

UA Urea amidolyase

UC Urea carboxylase

YCC Acyl-CoA carboxylase (generic name)

Introduction

Biotin-dependent carboxylases are widely distributed in

nature and can be found in bacteria, archaea, fungi, algae,

plants, and animals. They have crucial roles in the metabo-

lism of fatty acids, amino acids, and carbohydrates [1–4]. In

some microorganisms, these enzymes also have important

functions in CO2 fixation [5, 6], methanol assimilation [7],

acetyl-CoA assimilation [8–10], 3-hydroxypropionate

assimilation [11], mycolic acid and methyl-branched fatty
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acid biosynthesis [12], polyketide biosynthesis [13],

metabolism of terpenoids [14], and the utilization of urea as a

nitrogen source [15, 16].

Biotin-dependent carboxylases have two distinct enzy-

matic activities and catalyze their reactions in two steps

[17, 18]. First, a biotin carboxylase (BC) component cat-

alyzes the MgATP-dependent carboxylation of the N10

atom of the biotin cofactor, using bicarbonate as the CO2

donor (Fig. 1a). Biotin is covalently linked through an

amide bond to a lysine side chain in the biotin carboxyl

carrier protein (BCCP) component. In the second step of

the reaction, a carboxyltransferase (CT) component cata-

lyzes the CO2 transfer from carboxybiotin to the acceptor

of the carboxyl group (referred to as the substrate here).

Most of the substrates are coenzyme A (CoA) esters of

organic acids, and the site of carboxylation is on the a
carbon of a saturated acid (acetyl-CoA, propionyl-CoA) or

the c carbon of an a-b unsaturated acid (3-methylcrotonyl-

CoA, geranyl-CoA) (Fig. 1b). In addition, small com-

pounds can also serve directly as the substrate, such as

pyruvate and urea (Fig. 1b). Especially, the urea substrate

is unique in that carboxylation occurs on a nitrogen atom.

Depending on the organism and the enzyme, the BC,

BCCP, and CT components can be separate subunits or part

of a multi-domain protein (Fig. 2). In addition, while the BC

and BCCP components are conserved among these enzymes,

the sequence and structure of the CT component depend on

the chemical nature of the substrate. The CT components of

enzymes that carboxylate CoA esters share recognizable

sequence conservation because they recognize the CoA

segment (Fig. 2). On the other hand, the CT component that

carboxylates pyruvate or urea is entirely different.

Biotin must visit both the BC and CT active sites during

catalysis by biotin-dependent carboxylases. A swinging-

arm model had been the accepted mechanism for this

translocation. The connection between biotin and BCCP

contains eight methylene groups and ten rotatable single

bonds, and is likely to be rather flexible (Fig. 1a). When

fully extended, this flexible arm can approach a length of

*16 Å (the distance from the N10 atom of biotin to the Ca
atom of the lysine). Therefore, it may be expected that

biotin can translocate by up to *30 Å on this swinging

arm [19]. However, recent structures on the holoenzymes

of pyruvate carboxylase [20, 21], propionyl-CoA carbox-

ylase [22], 3-methylcrotonyl-CoA carboxylase [23], and

urea carboxylase [24] showed that the distance between the

BC and CT active sites ranges between 55 and 85 Å

(Fig. 1a). Therefore, the swinging-arm model is not suffi-

cient for biotin to reach both active sites, and hence the

BCCP domain must also translocate during catalysis. This

is referred to as the ‘‘swinging-domain’’ model (Fig. 1a).

Besides biotin-dependent carboxylases, two other clas-

ses of biotin-dependent enzymes exist in nature. Biotin-

dependent decarboxylases couple the decarboxylation of

organic acids (possibly as CoA esters) to sodium ion

transport in anaerobes [25–30], while the biotin-dependent

transcarboxylase of Propionibacterium shermanii transfers

the carboxyl group from methylmalonyl-CoA to pyruvate

[31–33]. These enzymes are distinct from the biotin-

dependent carboxylases in that they lack the BC compo-

nent. They will not be specifically described further here.

Biotin-dependent carboxylases were first discovered

more than 50 years ago. They have been studied inten-

sively due to their important metabolic functions, and also

feature prominently in most biochemistry textbooks. Over

the past few years, there have been significant advances in

our understanding of these enzymes, especially from the

first structural information on several of the holoenzymes

[20–24]. This review summarizes our current knowledge

on the structure and function of biotin-dependent carbox-

ylases, with emphasis on recent studies (over the past

5 years). Space limitations unfortunately prevent detailed

Fig. 1 The biochemical activity of biotin-dependent carboxylases.

a Biotin is carboxylated in the active site of the biotin carboxylase

(BC) component, using bicarbonate as the CO2 donor with concom-

itant ATP hydrolysis. Biotin then translocates to the carboxyl-

transferase (CT) active site, where the CO2 is transferred to the

acceptor (substrate, acetyl-CoA is shown as an example). In the

swinging-arm model, biotin itself translocates between the BC and

CT active sites, while the biotin-carboxyl carrier protein (BCCP)

component remains stationary. The longest distance between the N10

of biotin and the Ca atom of the covalently linked lysine residue is

*16 Å, giving the swinging arm a maximal reach of *30 Å. This is

significantly shorter than the distances observed in the holoenzymes

so far, between 55 and 80 Å. Therefore, the BCCP domain must also

translocate during catalysis, and this is known as the swinging-

domain model. b The substrates of biotin-dependent carboxylases.

The sites of carboxylation are indicated with the red arrows
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descriptions of results from earlier studies or the citation of

those primary publications. These results are summarized

in the many reviews that have been published in the pre-

vious years, which are cited throughout this manuscript.

Classification of biotin-dependent carboxylases

Biotin-dependent carboxylases can be classified first based

on the identity of the substrate that becomes carboxylated.

This is dictated by the CT component, which can be highly

distinct among these enzymes (Fig. 2). These enzymes can

then be further classified by how the BC, BCCP, and CT

components are organized in them (Fig. 2). The different

components may exist as separate subunits, often in

bacteria, or they can be fused together into a large, multi-

domain enzyme in eukaryotes (Fig. 2). Various interme-

diates between these two extremes have also been observed

in nature (Fig. 2).

The largest collection of biotin-dependent carboxylases

uses CoA esters of (small) organic acids as the substrate;

hence they are acyl-CoA carboxylases (YCCs) in general.

These enzymes can have distinct substrate preferences,

such as acetyl-CoA carboxylase (ACC), propionyl-CoA

carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase

(MCC), and geranyl-CoA carboxylase (GCC), although

some of them may have a wider collection of substrates, for

example enzymes that are active toward both acetyl- and

propionyl-CoA (ACC/PCC). In addition, some of these

enzymes can be identified based on genome sequences but

have not been studied in detail biochemically, and their

substrate preference is currently not known. They are

referred to generically as YCCs here. Acyl-CoA carboxy-

lases have also been referred to as ACCases [12], although

ACCs are sometimes called ACCases as well.

The CT components of the acyl-CoA carboxylases share

readily detectable amino acid sequence conservation,

because they all recognize CoA esters. It was generally

believed that these enzymes have the same organization of

their components. However, the recent structure of the

MCC holoenzyme indicates that there may be two distinct

lineages of these carboxylases [23]. Therefore, the acyl-

CoA carboxylases have been divided into two separate

collections, one including ACC, PCC, ACC/PCC, and most

of the other YCCs (families 1.1 through 1.7), while the

other consists of MCC and GCC (family 2.1) (Fig. 2). The

different families of biotin-dependent carboxylases are

described briefly next and in more detail in the later

sections.

Family 1.1 includes the bacterial ACC enzymes (Fig. 2).

They contain four subunits, with a BC subunit (*50 kD), a

BCCP subunit (*17 kD), and two subunits (a and b,

*33 kD each) for the CT activity. These enzymes are also

referred to as the multi-subunit ACCs [2]. The holoenzyme

has the stoichiometry (BC)2(BCCP)4(CTa, CTb)2, but it is

generally unstable and readily dissociates during purifica-

tion. These enzymes are also found in the chloroplasts of

many plants, reflecting the evolutionary origin of this

organelle.

Family 1.2 includes the ACC/PCC enzymes from

M. sedula [34], A. fulgidus, and other archaeal organisms,

but it appears to be absent in M. jannaschii. Compared to

the multi-subunit bacterial ACCs, the two CT subunits are

fused into a single protein (*60 kD), while the BC and CT

components remain as separate subunits. The holoenzyme

has the stoichiometry (BC)4(BCCP)4(CT)4.

Family 1.3 represents another possible way of fusing the

different components of the multi-subunit bacterial ACCs,

where the BC and BCCP subunits are fused together but

the CT subunits remain separate. An actual example of

such an enzyme has not been identified as yet, but its

existence may be expected.

Family 1.4 includes the ACC/PCC/acyl-CoA carboxy-

lases (YCCs) in S. coelicolor, M. tuberculosis, and other

organisms [12]. The BC and BCCP components are fused

into a single protein (a subunit, *65 kD), and the two

CT subunits are also fused (b subunit, *60 kD). The

Fig. 2 Classification of biotin-dependent carboxylases. These

enzymes are classified into four major collections and 13 different

families. Domains with sequence homology to each other are shown

with the same color. More detailed descriptions of the families can be

found in the text, and common examples of acyl-CoA carboxylase

family members include E. coli ACC (family 1.1), eukaryotic ACC

(family 1.7), PCC (family 1.5), and MCC (family 2.1). The proteins

are drawn to size, which is indicated with the scale bar at the bottom

(in number of residues)
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holoenzyme has the stoichiometry a6b6 or a2b2 [12].

Another subunit (e) is required for some of these enzymes

to achieve maximal activity [12].

Family 1.5 includes the PCCs from various organisms.

The difference to family 1.4 is that the BC-BCCP fusion

(the a subunit, *73 kD) also contains a BT domain, which

mediates the interactions between the BC (in the a subunit)

and CT (the b subunit, *55 kD) domains [22]. This

domain is likely absent in family 1.4, as the linker between

BC and BCCP is too short to accommodate the residues of

the BT domain in that family. However, it is possible that

family 1.4 contains a modified version of the BT domain,

for example a structure similar to that of the PT domain in

pyruvate carboxylase (family 3.1) [21]. PCC holoenzyme is

a 750 kD a6b6 dodecamer.

Family 1.6 includes the acyl-CoA carboxylases from

P. aeruginosa and some other bacterial organisms. These

enzymes can be readily identified based on sequence

searches, but they have not been characterized biochemi-

cally (hence they are called YCCs here). All four subunits

of the multi-subunit bacterial ACCs are fused together in

these enzymes, giving rise to a multi-domain protein of

*120-kD molecular weight.

Family 1.7 includes the ACCs from most eukaryotic

organisms. These proteins can be thought of as being

made of three parts of equal lengths. The N-terminal one-

third of the proteins contains the BC, BCCP, and possibly

a BT domain, and the C-terminal one-third contains the

CT activity. The middle one-third is unique to eukaryotic

ACCs and has no other close sequence homologs in the

database. The structure and function of this part of

eukaryotic ACCs is currently not known. These enzymes

are generally referred to as the multi-domain ACCs, with

*250-kD molecular weight, and they function as 500-kD

homodimers and possibly higher oligomers. In light of the

multi-domain bacterial YCCs of family 1.6, it is probably

more appropriate to refer to family 1.7 as the multi-

domain eukaryotic ACCs. The multi-domain bacterial

YCCs lack the middle one-third of the multi-domain

eukaryotic ACCs, and they may lack the BT domain as

well (Fig. 2).

Family 2.1 includes the MCCs and GCCs from various

organisms. The overall domain organization of these

enzymes appears quite similar to that of PCCs (family 1.5).

However, the crystal structure of MCC indicates a large

difference in the architectures of the b subunit and the

holoenzyme [23], and therefore it has been placed into a

separate family. GCC is assigned to this family based on

sequence conservation and the similarity of its substrate to

that of MCC (Fig. 1b). These holoenzymes are also 750-kD

a6b6 dodecamers.

Besides the acyl-CoA carboxylases, two other major

collections of biotin-dependent carboxylases use small

organic compounds as substrates, specifically pyruvate and

urea (Fig. 1b). Family 3.1 includes the pyruvate carboxy-

lases (PCs) that are present in most organisms, from

bacteria to humans. It is a single-chain, multi-domain

enzyme of *130 kD and functions only as a 500-kD tet-

ramer. Besides the BC, CT, and BCCP domains, structural

studies have revealed the presence of another domain,

known as the PT (PC tetramerization) or the allosteric

domain, in these enzymes [20, 21].

Family 3.2 includes the two-subunit form of PCs. They

are found in some bacteria (such as P. aeruginosa) as well

as archaea (M. jannaschii). The a subunit contains the BC

component (*52 kD), and the b subunit contains CT and

BCCP (*65 kD). The stoichiometry of the holoenzyme is

a4b4. Whether the PT domain also exists in these enzymes

is currently not known.

Family 4.1 includes the urea carboxylase (UC) found in

yeast and some other fungal organisms. It is a single-chain,

multi-domain enzyme of *200 kD, with an allophanate

hydrolase (also known as the amidase) domain fused at the

N-terminus. The entire enzyme is known as the urea

amidolyase (UA). The CT component consists of four sub-

domains (A, B, C, D) and is distinct from that in acyl-CoA

carboxylase and PC [24]. UC functions as a monomer.

Family 4.2 includes the UCs found in many bacterial

organisms, some fungal species, and green algae. They are

different from family 4.1 in that they lack the allophanate

hydrolase domain, and hence they are somewhat smaller,

*130 kD.

Family 4.3 includes the UC found in P. aeruginosa and

possibly other bacterial organisms. It is a multi-subunit

form of the enzyme, with a BC subunit (*50 kD), BCCP

subunit (*10 kD), and two subunits for the CT activity

(*35 kD, each containing two domains of the multi-

domain form of the enzyme).

Overall, four major collections of biotin-dependent

carboxylases can be identified based on current biochemi-

cal, sequence, and structural information, which can be

further divided into 13 families. The availability of genome

sequences has enabled the identification of all biotin-

dependent enzymes in many organisms, which also pro-

vides insight into the evolution of these enzymes [35, 36].

An inventory of such enzymes can now be compiled for

these organisms (Table 1). E. coli has only one biotin-

dependent enzyme, a multi-subunit bacterial ACC (family

1.1, Fig. 2). The yeast S. cerevisiae has two multi-domain

eukaryotic ACCs (family 1.7), two PCs (family 3.1), and

one urea amidolyase (family 4.1), while most other fungal

species has only one ACC, one PC, and one UA. There are

five biotin-dependent carboxylases in humans, ACC1,

ACC2, PCC, MCC, and PC. The structure and function of

representative enzymes in these different families will be

described in more detail below.
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Acetyl-CoA carboxylase (ACC)

Biological functions of ACC

ACC catalyzes the conversion of acetyl-CoA to malonyl-

CoA, which serves many functions [37]. It provides the

two-carbon building block for fatty acid biosynthesis in

most living organisms, and is also used for polyketide

biosynthesis in some organisms (Fig. 3). In mammals,

ACC1 (also known as ACCa) is cytoplasmic and catalyzes

the rate-limiting and committed step of long-chain fatty

acid biosynthesis in liver, adipose, and other lipogenic

tissues. In the yeast S. cerevisiae, the cytosolic ACC1 is

essential for viability. There is also a mitochondrial form of

the enzyme (known as HFA1), which is important for

growth on lactate or glycerol as carbon source and for fatty

acid (especially lipoic acid) biosynthesis in this organelle

[38–40]. However, this isoform is unique to S. cerevisiae

and is not present in other fungal organisms, although ACC

activity has been reported in the mitochondria of some

plants. Malonyl-CoA for fatty acid biosynthesis in the

mitochondria of other organisms may be produced by

malonyl-CoA synthetase [41, 42] and/or PCC working on

acetyl-CoA as the substrate.

Mammals carry a second isoform of ACC, ACC2 (also

known as ACCb), which is highly conserved with ACC1,

with 73 % amino acid sequence identity between human

ACC1 and ACC2. ACC2 is associated with the outer

mitochondrial membrane through a 140-residue segment at

the N-terminus that is absent in ACC1, the first 20 residues

of which are highly hydrophobic [43]. However, most of

the ACC2 protein faces the cytosol (Fig. 3). This isoform is

primarily expressed in heart and muscle tissues, as well as

liver. The malonyl-CoA product is a potent inhibitor of

carnitine palmitoyltransferase I (CPT-I), the crucial

enzyme for the transport of long-chain fatty acyl-CoAs into

the mitochondria for b-oxidation (Fig. 3) [44, 45]. There

are differences in the expression patterns of human and

rodent ACCs [46]. In addition, a form of ACC2 lacking the

N-terminal mitochondrial targeting segment is expressed at

high levels in white adipose tissue in humans and can

participate in de novo lipogenesis [47].

Single-nucleotide polymorphisms (SNPs) in ACC1 and

ACC2 are associated with hypertriglyceridemia and

hypercholesterolemia, respectively, in patients taking

antipsychotic drugs [48]. Polymorphisms in the promoter

or the coding region of the ACC1 gene is linked to fatty

acid composition in porcine meat [49], fatness traits in

Table 1 Inventory of biotin-dependent carboxylases in some common organisms

Organism Biotin-dependent carboxylase (family number)

Bacteria

Escherichia coli K-12 Multi-subunit ACC (1.1)

Pseudomonas aeruginosa
PAO1

Multi-subunit ACC (1.1), multi-domain YCC (1.6), MCC (2.1), GCC (2.1), two-subunit PC (3.2), multi-subunit

UC (4.3)

Ruegeria pomeroyi DSS-3 Multi-subunit ACC (1.1), PCC (1.5), MCC (2.1), GCC (2.1), PC (3.1)

Cupriavidus metallidurans
CH34

Multi-subunit ACC (1.1), multi-domain YCC (1.6, 2 copies), MCC (2.1), GCC (2.1), PC (3.1)

Deinococcus radiodurans R1 Multi-subunit ACC (1.1), multi-domain YCC (1.6), PCC (1.5), MCC (2.1)

Streptomyces coelicolor
A3(2)

Two-subunit YCC (1.4), PCC (1.5, 2 copies), MCC (2.1, 2 copies), PC (3.1)

Staphylococcus aureus Multi-subunit ACC (1.1), PC (3.1), multi-subunit UC (4.3)

Bacillus subtilis Multi-subunit ACC (1.1), three-subunit YCC (1.4), PC (3.1)

Archaea

Methanocauldococcus
jannaschii

Two-subunit PC (3.2)

Metallosphaera sedula Two subunit YCC (1.4)

Fungi

Saccharomyces cerevisiae Eukaryotic ACC (1.7, 2 copies), PC (3.1, 2 copies), UC (4.1)

Kluyveromyces lactis Eukaryotic ACC (1.7), PC (3.1), UC (4.1)

Schizosaccharomyces pombe Eukaryotic ACC (1.7), PC (3.1)

Animals

Xenopus laevis Eukaryotic ACC (1.7), PCC (1.5), MCC (2.1), PC (3.1)

Danio rerio Eukaryotic ACC (1.7), PCC (1.5), MCC (2.1), PC (3.1)

Mus musculus Eukaryotic ACC (1.7, 2 copies), PCC (1.5), MCC (2.1), PC (3.1)

Homo sapiens Eukaryotic ACC (1.7, 2 copies), PCC (1.5), MCC (2.1), PC (3.1)
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chickens [50], fatty acid composition in beef [51], and milk

production traits in goats [52].

The activity of both ACC1 and ACC2 in mammals are

stimulated by citrate, inhibited by long-chain saturated

acyl-CoA, and inactivated by phosphorylation [53], espe-

cially AMP-activated protein kinase (AMPK, at Ser80 in

ACC1, Ser222 in ACC2) and cAMP-dependent protein

kinase (protein kinase A, at Ser1201 in ACC1). Steady-

state kinetic studies show that citrate increases the kcat

(threefold) and kcat/Km (tenfold) of the ATP and acetyl-

CoA substrates for human ACC2, with a Ka of *0.5 mM

[54]. In comparison, another report shows that human

ACC2 is activated 1,000-fold by citrate, while ACC1 is

activated only fourfold [55]. The data also suggest two

binding sites for citrate, a higher-affinity (Kd * 1 mM)

activating site and a lower-affinity (Ki * 30 mM) inhibi-

tory site. A cytosolic protein MIG12 (*20 kD) promotes

the polymerization and stimulation of ACC1 by citrate, and

is incorporated into the ACC1 polymer [56]. The activity

of MIG12 is negatively regulated by forming a complex

with another protein, Spot 14 (*17 kD) [57].

Human ACC1 interacts with BRCA1 in a phosphor-

ylation-dependent manner, which reduces the activity of

ACC1 [58, 59]. The tandem BRCT domains of BRCA1

recognize the phosphorylated Ser1263 residue of ACC1, in

a (pS)PTF motif, and the structure of this complex has been

reported [60]. The phosphorylation of Ser1263 is regulated

by the cell cycle, possibly through a proline-directed pro-

tein kinase such as the cyclin-dependent kinase (CDK).

In plants, plastid ACC (ACC1) produces malonyl-CoA

for the biosynthesis of long-chain fatty acids, while cyto-

plasmic ACC (ACC2) is important for secondary

metabolism, including the synthesis of very long-chain

fatty acids, flavonoids, cuticular waxes, and other com-

pounds, and for proper embryonic development [61–63].

Plastid ACC in dicots is a multi-subunit enzyme, similar to

the multi-subunit bacterial ACCs [64, 65]. On the other

hand, the plastid ACC in grasses is a single-chain, multi-

domain enzyme, similar to the multi-domain eukaryotic

ACCs and arising through gene duplication of the cytosolic

ACC. This multi-domain plastid ACC is the target of three

classes of herbicides (see below). The BCCP subunit of the

Fig. 3 Functions of biotin-

dependent carboxylases in

mammals. Reactions involving

the five biotin-dependent

carboxylases are shown in blue.

Selected intermediates of the

TCA cycle (green) are shown.

Glutamine can also be used for

anaplerosis, especially in some

cancer cells. Dashed arrows
indicate pathways with more

than one step. In other

organisms, the biotin-dependent

carboxylases have similar

functions (with the exception of

ACC2), and they are also

involved in additional cellular

processes
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multi-subunit plastid ACC of Arabidopsis thaliana forms a

complex with the signaling protein PII, which reduces the

Vmax of ACC but does not affect its Km for acetyl-CoA

[66]. 2-oxoglutarate, pyruvate or oxaloacetate can disrupt

this inhibition. A second isoform of BCCP (BCCP2) in A.

thaliana plastids is expressed at much lower levels and

cannot rescue the lethal phenotype of BCCP1 null mutants

[67]. Two additional BCCP-like proteins lack the biotin-

ylation motif (MKM) but co-purify with the 1–2 MDa

ACC complex from A. thaliana chloroplasts [68].

ACC has important functions in other organisms as well.

In the apicomplexan pathogen Toxoplasma gondii, ACC1 in

the apicoplast is required for fatty acid biosynthesis [69]. In

Trypanosoma brucei, RNAi knockdown of ACC results in

reduced virulence of the pathogen, and lower fatty acid

elongation in procyclic forms [70]. Aedes aegypti mosquitos

with deficient ACC activity have reduced lipogenesis and

produce significantly fewer eggs [71]. Human cytomegalo-

virus (HCMV) upregulates the expression and activity of

ACC1 in infected cells, and inhibition of ACC1 attenuates

viral replication [72]. In archaea and some bacteria, ACC

(and PCC) activity is important for CO2 fixation (possibly

coupled with ammonia oxidation) [5, 6].

ACCs as drug discovery targets

The crucial roles of ACCs in fatty acid metabolism make

them attractive targets for drug discovery against a variety

of human diseases, including bacterial infections, fungal

infections, type 2 diabetes, cancer, artherosclerosis, and

others [2, 3, 73–77]. Besides microbial infections, many of

the other diseases are also manifestations of the metabolic

syndrome, which is linked to the current obesity epidemic

[78–80]. It has been projected that *50 % of the adult

population in the US will be obese by the year 2030 [81],

indicating a pressing need for new therapeutic agents and

modalities in this area.

The importance of ACCs as targets for drug discovery

against the metabolic syndrome was first validated by

observations on the ACC2 knockout mice [82–86]. These

mice have elevated fatty acid oxidation, increased energy

expenditure, reduced body fat and body weight, improved

insulin sensitivity, smaller heart size but with normal

function, and normal life span and fertility. The animals

have increased food intake (hyperphagia), due to reduced

malonyl-CoA levels in the brain [87, 88]. In comparison, a

null mutation in the ACC1 gene causes embryonic lethality

in mice [89]. ACC1 knockout in the liver in mice reduced

hepatic lipid accumulation but did not disturb glucose

homeostasis [90]. ACC1 knockout in the adipose tissues in

mice reduced lipid accumulation in these tissues, but also

caused prenatal growth retardation and impaired bone

development [91].

Knockdown of ACC1 and ACC2 expression with anti-

sense oligonucleotides confirms the beneficial effects of

inhibiting these enzymes [92]. Mice on a high-fat diet show

improved peripheral insulin sensitivity after treatment with

the potent ACC inhibitor soraphen A [93]. Downregulation

of ACC2 activity by the adipokine CTRP1, through

AMPK-mediated phosphorylation, leads to elevated fatty

acid oxidation and reduced adiposity in mice [94]. On the

other hand, overexpression of ACC2 is associated with

increased production of proinflammatory cytokines in a

human renal cell, which can be reversed by inhibition of

p38 MAP kinase [95]. This may be a mechanism for dia-

betic nephropathy development. An SNP in ACC2 is

associated with type 2 diabetic nephropathy and proteinuria

[96–98], while another SNP in ACC2 is linked to increased

risk for metabolic syndrome [99].

Two recent reports have failed to observe the beneficial

effects of ACC2 knock out or down regulation, as elevated

fatty acid oxidation did not change energy expenditure or

adiposity [100, 101]. Another study failed to demonstrate a

correlation between ACC2 phosphorylation (down regula-

tion) and fatty acid oxidation in skeletal muscle [102].

Some of these differences could be due to variations in the

genetic background of the mice or the strategies that were

used to create the knockout mice [86, 103, 104].

A large number of potent (nanomolar) inhibitors have

been reported against human ACCs [105–116]. Some of

these compounds have nearly equal activity against both

isoforms (isoform nonselective), while others are more

selective toward ACC2. They can reduce tissue malonyl-

CoA levels, inhibit fatty acid biosynthesis, enhance fatty

acid oxidation, reduce plasma triglyceride levels, improve

insulin sensitivity in cells or in rodent models. However,

long-term treatment with an inhibitor of both ACC1 and

ACC2 did not lead to sustained reduction in hepatic tri-

glyceride levels or body weight in rodent models, although

the compound was able to stimulate fatty acid oxidation

[117]. Long-term down-regulation of ACC1 activity in

b-cells leads to reduced glucose-stimulated insulin secre-

tion [118], indicating that ACC2 inhibition may be the

more desirable approach for diabetes therapy.

Recent studies suggest that ACCs are also attractive

targets for anti-cancer agents. ACC is over-expressed in

liver, prostate, breast, and other cancers [119–122], and

RNAi knockdown or chemical inhibition of ACC1 leads to

growth inhibition and apoptosis [111, 123–125] as well as

reduced tumor cell invasion [126]. AKR1B10 (aldo–keto

reductase family 1 B10) is overexpressed in some cancer

cells and can form a complex with ACC1 and stabilize its

cellular levels [127], consistent with the importance of

ACC1 in cancer. As discussed earlier, ACC1 activity is

downregulated through a phosphorylation-dependent

interaction with BRCA1 [58, 59].
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Plastid multi-domain eukaryotic ACCs from grasses are

the targets of three classes of commercial herbicides, ary-

loxyphenoxypropionates (APPs or FOPs), cyclohexan-

ediones (CHDs or DIMs), and pinoxaden [128–131]. FOP

and DIM inhibitors have been used in the field for more

than 30 years, and resistance mutations have been reported

against them [132–136]. Pinoxaden was introduced in

2006, but resistance grasses were already present, likely

due to cross resistance to the FOPs and/or DIMs [137, 138].

Additional pinoxaden resistance mutations have also been

reported [136, 139]. A herbicide-resistant green foxtail

plant has higher fitness than the wild-type [140]. Dimeric

cyclohexanedione compounds also have activity against

the malaria parasite Plasmodium falciparum [141].

Potent inhibitors that target the BC activity of bacterial

ACCs have been developed, with potential use as antibi-

otics [142–146]. These compounds bind selectively to the

ATP binding site of BC, and the initial leads were identi-

fied by directed high-throughput screening, virtual

screening, and fragment-based approaches. For the CT

activity, the natural products moiramide and andrimid are

known inhibitors [146]. A single-site mutation (M203L) in

the b subunit of E. coli CT produces a fivefold resistance to

andrimid [147]. Components of cinnamon oil are also

inhibitors of CT activity, partly explaining the antibacterial

effect of cinnamon bark [148].

Structures of ACC BC component

The ACC holoenzymes have been difficult to study at the

structural level. The multi-subunit bacterial ACCs disso-

ciate readily during purification, while the multi-domain

eukaryotic ACCs are exceptionally large (*250-kD

monomers). On the other hand, using the divide-and-con-

quer approach, structural information has been obtained for

the BC, BCCP, and CT components of both bacterial and

eukaryotic ACCs. The structure of a bacterial BC subunit

(from E. coli ACC) was first reported in 1994 [149], and

the structure of a eukaryotic BC domain (from yeast ACC)

was first reported in 2004 [150]. Currently, a large number

of structures are available for bacterial and eukaryotic BC

components [143, 151–157].

The BC structure contains three domains, A, B, and C

domains (Fig. 4a). Residues in domains A and C form the

active site. Domain B undergoes a large conformational

change to close over the active site during catalysis.

Eukaryotic BC domain contains several inserted segments,

especially at the N-terminus and between domains A and B

(the AB linker), which explains its larger size (*550 res-

idues) compared to bacterial BC subunits (*450 residues)

(Fig. 4b).

The structure of E. coli BC in a pentary complex with

the substrates MgADP, bicarbonate, and biotin provides

detailed insights in the catalysis by this enzyme (Fig. 4a)

[154]. The substrates are recognized by an intricate net-

work of ionic, hydrogen-bonding and van der Waals

interactions (Fig. 4c). One of the oxygen atoms of bicar-

bonate is poised to initiate the nucleophilic attack on ATP

to form the carboxyphosphate intermediate, and Glu296 is

the general base that extracts the proton from bicarbonate.

The orthophosphate (PO4
3–) derived from the decomposi-

tion of carboxyphosphate is the general base that extracts

the proton on the N10 atom of biotin [17], and Arg338

stabilizes the resulting enolate biotin intermediate for the

carboxylation reaction.

Mutation of residues in the BC active site (including

Glu296 and Arg338) confirms their importance for catal-

ysis. Mutation of Gly165 and/or Gly166 in the glycine-rich

loop in domain B and near the phosphates of ATP has no

effect on the kcat but leads to a 40-fold increase in Km for

ATP [158]. The catalytic activity of E. coli BC can be

inhibited by ATP at high concentrations (substrate inhibi-

tion) and other nucleotides [157]. A second ADP molecule

can be bound in the BC active site, with its phosphate

groups occupying the binding sites of bicarbonate and

biotin.

Escherichia coli BC is a dimer (Fig. 4a), and studies

suggest that catalysis at the two active sites of the dimer

may be coupled [159]. A chimeric mutant where one of the

active sites of the dimer is knocked out is essentially

inactive. However, each active site of the dimer is located

*25 Å away from the dimer interface, with no contribu-

tions from residues in the other monomer (Fig. 4a). It is

postulated that there may be long-range communications

between the two active sites, through the dimer interface.

The two monomers may undergo alternating catalysis, with

one monomer binding substrates and catalyzing turnover

and the other releasing products. Half-site reactivity of the

BC subunit has also been proposed [152, 160], although no

cooperative behavior is observed from kinetic studies.

Mutations in the dimer interface of E. coli BC can

produce mutants that are monomeric in solution [161].

These mutants are still catalytically active, indicating that

dimerization is not absolutely required for BC catalysis in

vitro. On the other hand, dimerization of BC is required in

vivo, possibly for the assembly of the ACC holoenzyme

[162].

The polyketide natural product soraphen A is an allo-

steric inhibitor of eukaryotic ACC, binding to the BC

domain using the equivalent surface area as that for

dimerization of E. coli BC (Fig. 4b) [150]. Conformational

differences in this region of eukaryotic BC allow soraphen

A binding but disallow dimerization. The BC domain of

eukaryotic ACC is monomeric in solution and is catalyti-

cally inactive [163]. A BODIPY-labeled soraphen analog

has been developed and can be useful for screening for new
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compounds and characterizing inhibitor binding to the BC

domain [155].

The AMPK phosphorylation sites in mammalian ACCs

are located in the N-terminal extension of the BC domain.

The structure of human ACC2 BC domain phosphorylated

by AMPK shows that the segment enclosing the phos-

phorylated Ser222 residue is located in the soraphen-

binding site [156]. Therefore, structural information on

soraphen A binding and the phosphorylated BC domain

supports the hypothesis that this region of BC can

Fig. 4 Structural information

on the BC component.

a Structure of the BC subunit

dimer (cyan and yellow) of E.
coli ACC in complex with

MgADP, bicarbonate, and

biotin [154]. The twofold axis of

the dimer is indicated with the

black oval. b Structure of the

BC domain of yeast ACC in

complex with the inhibitor

soraphen A (green) [161]. The

sub-domains of BC are given

different colors. The bound

position of ATP is also shown to

indicate the location of the

active site. The view is similar

to that for the top monomer in

a. c Stereo figure showing

detailed interactions between

MgADP, bicarbonate, and

biotin with the active site of the

E. coli BC subunit. Several

segments of the protein,

including the glycine-rich loop,

are omitted for clarity. The

structure figures were produced

with the program PyMOL

(www.pymol.org)
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allosterically regulate catalysis, although the exact molec-

ular mechanism for this long-range communication is

currently not known.

Structures of ACC BCCP component

The BCCP domain of E. coli ACC, including the ‘‘thumb’’

feature, is more flexible in the apo protein [164]. Upon

biotinylation, the thumb interacts with biotin [165], leading

to its stabilization as well as that of BCCP domain overall

[164, 166]. Solution structure of the BCCP domain of

human ACC2 is similar to that of BCCP subunit of E. coli

ACC [165], except that the human protein does not have

the thumb feature [167]. As a result, the covalently

attached biotin is flexible in human BCCP, while it inter-

acts with the thumb in E. coli BCCP. This thumb structure

interferes with biotinylation by the human holocarboxylase

synthase (HCS), though it has no effect on biotinylation by

the E. coli BirA enzyme [168]. In comparison, an engi-

neered E. coli BCCP lacking the thumb feature, and the

BCCP domain of human PCC (which also lacks the thumb

feature) can be readily biotinylated by HCS [168].

Structures of ACC CT component

The structure of a eukaryotic CT domain (from yeast ACC)

was first reported in 2003 [169], and the structure of bac-

terial CT subunit was first reported in 2006 [170]. The

structure of the CT domain contains two sub-domains, N

and C domains (Fig. 5a), which are equivalent to the b and

a subunits of bacterial CT (Figs. 2, 5b). Each domain/

subunit has the crotonase fold (a b–b–a superhelix). The

active site of CT is located at the bottom of a ‘‘canyon’’ in

the interface of a dimer of the CT domains (Fig. 5c) or an

a2b2 heterotetramer of the bacterial CT subunits. There-

fore, CT must dimerize to be catalytically active.

Using the yeast CT domain as a surrogate since crystals

of the CT domain of grass plastid ACCs are not yet

available, the binding modes of all three classes of herbi-

cides, haloxyfop, tepraloxydim, and pinoxaden, have been

determined [171–173]. The compounds inhibit ACC by

competing against the binding of the acetyl-CoA substrate.

Despite their chemical diversity, the three compounds

share two common anchoring points of interactions with

the CT domain—a negatively charged oxygen atom that

likely mimics the oxyanion in the substrate during cataly-

sis, and a small hydrophobic group (methyl or ethyl) that is

probably located in the binding site for the acetyl group.

Each compound also establishes unique interactions with

the CT domain. Haloxyfop binding requires a large con-

formational change in the active site, in the dimer interface

of the CT domain, while tepraloxydim and especially

pinoxaden require much smaller changes. Most of the

herbicide resistance mutations are located in or near the

binding sites, consistent with their effects on herbicide

binding although the exact molecular mechanism is still not

fully understood.

Studies using the yeast CT domain also reveal that a

class of inhibitors of mammalian ACCs, as exemplified

by the CP-640186 compound, block the binding of

(carboxy)biotin to the CT-active site (Fig. 5a) [108, 174].

Structures of the human and bovine ACC2 CT domain

have been reported at 3.2 Å and 2.4 Å resolution, respec-

tively [112, 175]. In a different approach, nine mutations

are introduced into the active site of yeast ACC CT domain

to ‘‘humanize’’ this protein [176]. The resulting mutant

binds human ACC inhibitors with similar potency as the

human CT domain and produces crystals that diffract up to

2.4 Å resolution.

A unique feature of bacterial CT is the presence of a

zinc finger in the b subunit (Fig. 5b) [170], which binds the

CT mRNA and inhibits its translation, and this inhibition

can be reversed by the substrate acetyl-CoA [177]. E. coli

CT also binds and is inhibited by single-stranded, double-

stranded, and hairpin DNA [178].

Propionyl-CoA carboxylase (PCC)

Biological functions of PCC

PCC catalyzes the conversion of propionyl-CoA to

D-methylmalonyl-CoA. In most organisms, it is crucial for

the catabolism of b-branched amino acids (Thr, Val, Ile)

and Met, cholesterol side chain, and fatty acids with an odd

number of carbon atoms (Fig. 3). Mammalian PCC is local-

ized in the mitochondrial matrix, and is activated by mono-

valent cations (K?, NH4
?, Cs?) [179–181]. PCC activity is

also important for CO2 fixation in some archaeal organisms

[5, 6], methanol assimilation in Methylobacterium extor-

quens [7], acetyl-CoA assimilation in a-proteobacteria

[10], 3-hydroxypropionate assimilation in Rhodobacter

sphaeroides [11], mycolic acid and methyl-branched long-

chain fatty acid biosynthesis in M. tuberculosis [12], and

polyketide biosynthesis in Streptomyces and other organisms

[13].

Inherited deficiencies in PCC activity in humans are linked

to propionic acidemia (PA), with symptoms usually first

appearing during the neonatal period, including vomiting,

lethargy, ketoacidosis, delayed growth, cardiomyopathy,

mental retardation, and death in severe cases. A large number

of autosomal recessive mutations in both subunits of PCC

have been identified, including missense mutations, a few

nonsense mutations, insertions/deletions, and splicing muta-

tions [182–189]. PCC is expressed in the brain and may be

important for neurodevelopment, which may be related to the
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neurological effects of PCC deficiency [190], including epi-

lepsy [191] and seizure [192].

PCCa-/- mice die of propionic acidemia within 2 days

after birth, but they can be rescued by a liver-specific

transgene [193]. Anti-sense morpholino oligonucleotides

have been used to correct splicing defects in PCC, which

restored normal PCC activity in patients’ fibroblasts [194].

In another study, a modified U1 snRNA was used to correct

a splicing defect, but it did not restore PCC enzymatic

activity [195]. Successful rescue of PCC deficiency in

mouse models by gene therapy has been demonstrated

[196, 197], indicating a potential treatment strategy for

PCC deficiency in humans.

Structure of PCC

The crystal structure of the 750-kD a6b6 holoenzyme of a

bacterial PCC was reported recently, and a similar structure was

observed for human PCC based on a cryo-electron microscopy

reconstruction [22]. The holoenzyme obeys 32-point group

symmetry, with a central b6 hexamer core (Fig. 6a) and three a
subunits at each end of the b6 core (Fig. 6b). Therefore, the

structure of the PCC holoenzyme consists of four layers, with

three subunits in each layer, a3–b3–b3–a3.

The b6 hexamer core is in the shape of a short cylinder

and there are intimate contacts among the six monomers.

The overall structure of this hexamer core is similar to the

Fig. 5 Structural information on the CT component of acyl-CoA

carboxylases. a Structure of the CT domain dimer of yeast ACC in

complex with tepraloxydim (brown) [172]. The N and C domains for

monomer 1 are colored in cyan and yellow, respectively, and those for

monomer 2 in magenta and green. The bound positions of CoA (gray)

[169] and CP-640186 (gold) [174] are also shown. b Structure of the

CT subunit of S. aureus ACC [170]. The zinc ions are shown as

spheres (dark gray). The view is similar to that for a. c Molecular

surface showing the canyon in the active site region of the CT dimer.

CoA is recognized by the N domain of one monomer, in the bottom

half of the canyon. Biotin is recognized by the C domain of the other

monomer, in the top half of the canyon. The side chain of Lys1764

has been omitted in this figure. d Chemical structures of the

herbicides haloxyfop (FOP), tepraloxydim (DIM), and pinoxaden.

The two anchoring points of interaction with the CT domain are

highlighted by the red arrows. e Overlay of the binding modes of

haloxyfop (black), tepraloxydim (brown), and pinoxaden (light blue)
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12S subunit of transcarboxylase [31] as well as the b
subunit of S. coelicolor and M. tuberculosis acyl-CoA

carboxylases [198–200]. In addition, the b2 dimer of PCC,

with one monomer from each layer of the b6 hexamer

(Fig. 6a), is similar to the dimer of the CT component of

ACC (Fig. 5a). The active site is located at the interface of

this dimer (Fig. 7a), at the bottom of a deep canyon

(Fig. 7b). In the PCC crystal, BCCP-biotin (from the a
subunit) is bound in the CT active site, interacting with

residues in the C domain of one b subunit (Fig. 7b). The

propionyl-CoA substrate is recognized by the N domain of

the other subunit (Fig. 7b).

In comparison, the a subunits are arranged as mono-

mers, splayed far apart from each other, and there are

essentially no contacts among them in the PCC holoen-

zyme (Fig. 6b). This is in sharp contrast to the dimeric

organization of the BC subunit of bacterial ACCs (Fig. 4a)

and the BC domain of pyruvate carboxylase (see below).

While the overall structure of the BC domain of the PCC a
subunit is similar to that of the bacterial BC subunit,

sequence, and conformational differences for those resi-

dues in the putative dimer interface in PCC precludes the

formation of a similar dimer.

There are few contacts between the BC domain in the a
subunit and the b subunit (CT component) (Fig. 6a).

Instead, interactions between the a and b subunits in PCC

is mediated by a previously unrecognized domain, located

between the BC and BCCP domains in the primary

sequence of the a subunit (Fig. 2). It has been named the

BT domain [22], for its role in mediating BC-CT interac-

tions. The structure of this domain has a novel backbone

fold, with a long helix surrounded by an eight-stranded

anti-parallel b-barrel (Fig. 7c). A ‘‘hook’’, comprising the

C-terminal part of the helix and the loop connecting it to

the first strand of the b-barrel, has a central role in the

interactions between the a and b subunits in the PCC

holoenzyme.

The distance between the BC and CT active sites in the

PCC holoenzyme is *55 Å (Fig. 7a). This cannot be

reached by biotin in the swinging-arm model. Therefore,

the BCCP domain (in addition to its attached biotin) must

translocate during PCC catalysis, hence the swinging-

domain model (Fig. 1a).

The structure of the PCC holoenzyme also provides a

framework for understanding the large collection of dis-

ease-causing mutations. The missense mutations are

distributed throughout the entire enzyme (Fig. 7a). Some

of them affect substrate binding and/or catalysis, while

others affect protein stability [201–207]. At the same time,

few of the mutations are located directly in the interface

between the subunits of the holoenzyme, consistent with

the extensive nature of the interface. Single-site mutations

in this interface may not be sufficient to disrupt the holo-

enzyme. In fact, five mutations in the hook region are

needed to disrupt the interactions between the a and b
subunits [22].

Fig. 6 Striking differences in

the overall architecture of the

holoenzymes of PCC and MCC.

a Crystal structure of the

bacterial PCC holoenzyme [22],

viewed down the twofold

symmetry axis within a b2

dimer. The domains are colored

as in Fig. 2. The four layers of

the structure are indicated.

b Structure of the PCC

holoenzyme, viewed down the

threefold symmetry axis.

c Crystal structure of the P.
aeruginosa MCC holoenzyme

[23], viewed down the twofold

axis within a b2 dimer.

d Structure of the MCC

holoenzyme, viewed down the

threefold axis. e Structure of the

MCC holoenzyme, after a *60�
rotation around the vertical axis

from c. The view is down the

twofold axis relating two b2

dimers. f Structure of the MCC

holoenzyme, after a *60�
counterclockwise rotation from

panel D
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3-Methylcrotonyl-CoA carboxylase (MCC)

Biological functions of MCC

MCC catalyzes the conversion of 3-methylcrotonyl-CoA to

3-methylglutaconyl-CoA (Fig. 1b). It is essential for the

catabolism of leucine and isovalerate in most living sys-

tems (Fig. 3) [61]. In Pseudomonas organisms, MCC is

required for the metabolism of acyclic terpenoids [14, 208–

212]. In Arabidopsis, MCC activity is required for seed

development and germination [213]. MCC expression level

is higher in male zebra finches, which may be important for

the development of their singing behavior [214].

MCC shares good sequence conservation with PCC and

its holoenzyme is also a 750-kD a6b6 dodecamer. On the

other hand, while PCC carboxylates the a carbon of the

substrate, MCC carboxylates the c carbon of an a–b
unsaturated acid (Fig. 1b). MCC is located in the mito-

chondrial matrix in eukaryotes, and mutations in the

N-terminal mitochondrial targeting sequence of both sub-

units can affect their localization [215]. Human MCC has

been expressed and purified from the baculovirus system in

the active form [216]. It demonstrated hyperbolic kinetics

with ATP and 3-methylcrotonyl-CoA, while the Pseudo-

monas MCC showed sigmoidal kinetics toward ATP [212].

Deficiencies in MCC activity in humans are linked to

3-methylcrotonylglycinuria (MCG), which constitute one

of the most frequently observed inborn errors of metabo-

lism [217–226]. The clinical manifestations of MCG are

highly variable, from asymptomatic individuals to neonatal

onset, severe cases that can result in death. Neurological

symptoms such as psychomotor retardation, seizure and

coma have also been observed. Like PCC, a large number

of autosomal recessive mutations in both subunits of MCC

have been identified.

Structure of MCC

The structure of the P. aeruginosa MCC holoenzyme also

obeys 32-point group symmetry, with three subunits in

each of four layers (Fig. 6c) [23]. However, despite its

sequence conservation with PCC, the overall architecture

of the MCC holoenzyme is strikingly different from that of

PCC. This is especially apparent for the locations of the a
subunit relative to the b subunit, the organization of the N

and C domains in the b subunit, and the structure and

placement of the BT domain. As a result of these differ-

ences, the overall shape of the MCC holoenzyme is highly

distinct from that of PCC (Fig. 6a, c).

Rather than being splayed away from each other as in

PCC, the three a subunits at each end of the central b6 core

of MCC are located close to each other, in fact showing

trimeric association (Fig. 6d). In addition, the BC domain

in the a subunit is located *20 Å above the b subunit, and

there is no contact between them. The BT domain bridges

the BC domain and the b subunit. While the overall

structure of this domain is similar to that in PCC, there are

also important differences. Especially, the hook in the

MCC BT domain has a different conformation (Fig. 8a),

contributing to the different architecture of the MCC

holoenzyme compared to PCC. The Pseudomonas MCC

BT domain lacks the third strand of the eight-stranded

b-barrel (Fig. 8a), although this strand is likely present in

human and most other MCCs [23].

In the b subunit, the positions of its N and C domains in

MCC (Fig. 8b) are swapped relative to those in PCC (Fig. 8c).

Fig. 7 The active sites of PCC. a Relationship between the BC and

CT active sites (indicated with the asterisks) in the PCC holoenzyme.

The CT active site is located at the interface of a b2 dimer, with the b
subunit from the bottom layer colored in green. Sites of disease-

causing missense mutations are indicated with the spheres. The third
asterisk indicates the other active site of the CT dimer. b Molecular

surface of the active site region of CT. The observed position of biotin

is shown (stick model in black). The position of CoA (gray) is

modeled based on that in the structure of the yeast ACC CT domain

[169]. c Structure of the BT domain of the bacterial PCC a subunit.

The hook region is labeled
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This difference is not due to a swap of the two domains in the

primary sequences of the two b subunits. Instead, it is due to a

different connectivity between the N and C domains. In

essence, each layer of the b6 hexamer contains alternating N

and C domains of the three subunits. While PCC uses one way

of connecting neighboring N and C domains to make a b
subunit (Fig. 8c), MCC uses the alternative way, such that the

linker between the two domains runs in the opposite direction

as compared to PCC (Fig. 8b).

The N and C domains of the b subunits in PCC and

MCC have the same backbone fold. The pseudo symmetry

operation relating the two domains is a rotation of *60�
along the threefold axis of the b6 hexamer. Therefore, the

b6 hexamers of MCC and PCC have pseudo sixfold sym-

metry. The swapping of the N and C domains in MCC

follows this pseudo symmetry, equivalent to a 60� rotation

around the threefold axis of the hexamer (Fig. 8b, c), and

therefore does not lead to a large change in the overall

shape of the hexamer. Such a rotation also places the

BCCP domain in the same position in the MCC holoen-

zyme compared to PCC (Fig. 6e, f).

The connectivity between the N and C domains

observed in MCC b subunit is the same as that in the a
subunit of the Na?-transporting glutaconyl-CoA decar-

boxylase (GCDa) [27, 30]. However, GCDa is a dimer

only, and therefore the different connectivity leads to a

distinct organization of the active site in GCDa dimer

compared to the CT dimer of ACC (Fig. 5a). Like MCC

and GCC, GCDa is also active on the c carbon of an a-b
unsaturated acid. It is possible that these three enzymes

Fig. 8 Structure of P. aeruginosa MCC. a Structure of the BT

domain of the P. aeruginosa MCC a subunit. The missing third strand

is indicated in red. b Structure of the b6 hexamer of MCC. The

subunit boundaries are indicated with the gray lines. The N (cyan) and

C (yellow) domains are labeled. The linker between the two domains

is shown in black, with the direction given by the red arrow. The

linkers from neighboring subunits come very close to each other at

one point (blue asterisk), and therefore only a small change is needed

to switch to the connectivity seen in the PCC b subunit. c Structure of

the b6 hexamer of PCC, shown in the same scheme as panel B. The

linker in PCC b runs in the opposite direction compared to MCC b.

d Relationship between the BC and CT active sites (indicated with the

asterisks) in the MCC holoenzyme. While the BT domain of the a
subunit contacts one b2 dimer (b1 and b4), the BCCP domain of that a
subunit is actually located in the active site of a different b2 dimer (b3

and b6). e Binding modes of biotin (black) and 3-methylcrotonyl-

CoA (gray) to the CT active site of MCC. The position of

3-methylcrotonyl-CoA is modeled based on that of CoA in MCC

[23] and crotonyl-CoA in GCDa [30]. The carbon atom to be

carboxylated is indicated with the red arrow. f Locations of disease-

causing missense mutations in the structure of MCC (indicated with

the spheres). Only the b1–b4 dimer is shown
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share a common evolutionary origin, representing a second

lineage of biotin-dependent carboxylases that act on CoA

esters. Another common feature among MCC, GCDa and

likely GCC is the extended N-terminal segment of the b
subunit, which has extensive interactions with the C

domain of the same subunit (Fig. 8b). In comparison, the

N-terminal segment of PCC b subunit is much shorter

(Fig. 8c). These additional interactions may be the

molecular basis for the swapping of the positions of the N

and C domains [23].

The distance between the BC and CT active sites in the

MCC holoenzyme is *80 Å (Fig. 8d), indicating that the

BCCP domain must translocate during catalysis (the

swinging-domain model). BCCP-biotin is located in the CT

active site in the MCC structures (Fig. 8d). Compared to

the structure of PCC, biotin is bound deeper into the CT

active site, consistent with its carboxylation of the c carbon

of the substrate. The N10 atom of biotin is *6 Å from the c
carbon of the 3-methylcrotonyl-CoA substrate (Fig. 8e),

modeled based on the observed positions of CoA bound to

MCC [23] and crotonyl-CoA bound to GCDa [30]. A

conformational change for two helices in the CT active site

(a6 and a6A, Fig. 8e) is observed upon CoA binding in

MCC [23]. A similar conformational change is also

observed in GCDa [30].

The disease-causing mutations are distributed over the

entire structure of the holoenzyme (Fig. 8f). Some of them

are located in the BC or CT active site. For example, the

R385S mutation in the a subunit abolishes the stabilization

of the biotin enolate during BC catalysis. The A214T

mutation in the b subunit is centrally located between

biotin and 3-methylcrotonyl-CoA in the CT active site

(Fig. 8e) and may block binding of either or both sub-

strates. Some of the mutations may also disturb the

interaction between the BCCP or the BT domain and the b
subunit [23].

Geranyl-CoA carboxylase (GCC)

GCC is classified into the same family as MCC since its

site of carboxylation in the substrate is also on the c carbon

of an a-b unsaturated acid (Fig. 1b). The amino acid

sequences of bacterial GCC are highly conserved with

those of MCC, and the holoenzyme of GCC is likely also

an a6b6 dodecamer. At the same time, the geranyl group is

much larger than the 3-methylcrotonyl group, and therefore

the CT component (b subunit) of GCC is expected to have

a larger pocket in the active site to accommodate this

group. In fact, P. aeruginosa MCC cannot carboxylate

geranyl-CoA, while GCC has activity toward both geranyl-

CoA and 3-methylcrotonyl-CoA [212].

GCC is found in Pseudomonas organisms and several

other bacteria (Table 1) [14, 208–212, 227]. It is important

for the metabolism of the geranyl group and other acyclic

terpenes. In fact, some Pseudomonas organisms can use

these compounds as the sole carbon source. Through

reactions that are similar to b-oxidation, c-carboxygeranyl-

CoA is converted to 3-methylcrotonyl-CoA (releasing two

acetyl-CoAs and one acetate), and MCC facilitates the

further degradation of this compound.

GCC activity has been purified from maize leaves, and it

is probably also important for the metabolism of acyclic

terpenes in plants [61, 228]. The biotin-containing com-

ponent of this enzyme was found to have a molecular

weight of *122 kD, which is significantly larger than the

*75-kD a subunit of bacterial GCC (and MCC). Plant

GCCs may constitute another family of biotin-dependent

carboxylases, although a sequence for this protein is cur-

rently not available.

Other acyl-CoA carboxylases

Streptomyces, Mycobacterium, and Corynebacterium

organisms have a collection of a6b6 or a2b2 acyl-CoA

carboxylases (family 1.4, Fig. 2) [12, 229]. These enzymes

are different from PCC (family 1.5) in that they probably

lack the BT domain in the a subunit. In addition, they have

more diverse substrate preferences, being active toward

acetyl-, propionyl-, and/or butyryl-CoA [230, 231]. More-

over, some of these enzymes require the presence of a third

subunit, e subunit (*7 kD in S. coelicolor and *25 kD in

M. tuberculosis), for maximal activity, although the exact

stoichiometry of this subunit is currently not known [12,

232, 233]. These acyl-CoA carboxylases are important for

the biosynthesis of fatty acids, branched-chain fatty acids

and other compounds, such as mycolic acid [234, 235]. An

acyl-CoA carboxylase in Mycobacterium tuberculosis is

crucial for mycolic acid biosynthesis and pathogenesis

[236].

The structures of the b6 hexamer of these enzymes have

32 symmetry [198–200, 237], and are similar to that of

PCC [22] and the 12S subunit of transcarboxylase [31]. An

Asp residue near the CT active site may be important for

substrate preference for propionyl-CoA, while mutating

this residue to Ile changes the preference to acetyl-CoA

[198, 200]. On the other hand, an equivalent mutation in

PCC is not able to change the substrate preference of that

enzyme [22].

A Rhizobium etli acyl-CoA carboxylase has *15-fold

higher activity toward propionyl-CoA than acetyl-CoA,

and it is activated substantially by mono-valent cations,

K?, NH4
? and Cs? [238].
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Pyruvate carboxylase (PC)

Biological functions of PC

PC catalyzes the conversion of pyruvate to oxaloacetate

(Fig. 1b) and it is an important enzyme in intermediary

metabolism [4, 239–243]. In mammals, PC is localized in

the mitochondrial matrix and has crucial roles in gluco-

neogenesis in liver and kidney (being the first enzyme in

the gluconeogenesis pathway), lipogenesis and glycero-

neogenesis in adipocytes, and biosynthesis of the excitatory

neurotransmitter glutamate in astrocytes (Fig. 3). PC has

an important anaplerotic role, replenishing the intermedi-

ates of the tricarboxylic acid (TCA) cycle that have been

withdrawn for the biosynthesis of glucose, fatty acids,

amino acids and other molecules [244]. Tumor cells

depend on PC for anaplerosis in the absence of glutamine

(Fig. 3), and cells with high PC activity may be resistant to

inhibition of glutamine metabolism [245].

PC is important for glucose-induced insulin secretion by

pancreatic b-cells in rats [246], and knock-down of PC

activity by shRNA in rat insulinoma cells leads to impaired

insulin secretion [247]. However, PC protein level and

enzymatic activity are low in human pancreatic b-cells, and

these cells may use a different pathway for stimulating

insulin secretion [248].

Fungal PC is localized in the cytoplasm, in contrast to

other eukaryotes. S. cerevisiae is unique in that it carries

two PC enzymes, and the expression levels of the two

enzymes are regulated independently in response to dif-

ferent nutrients [4]. PC is required for the assembly,

import, and/or activation of some peroxisomal enzymes in

several fungi, including alcohol oxidase in Hansenula

polymorpha [249] and D-amino acid oxidase in Pichia

pastoris [250]. This function is mediated by the CT domain

of PC [251], but involves residues on the opposite face of

the CT domain from the active site and is independent of

its catalytic activity [252]. PC activity is important for

carbon metabolism and virulence of the human pathogen

Listeria monocytogenes [253].

PC is a single-chain, multi-domain enzyme in most

organisms (family 3.1, Fig. 2), and is active only as a

500-kD tetramer. In archaea and some bacteria, such as

P. aeruginosa [254], PC is in the two-chain form (family

3.2, Fig. 2), but it is also active as a tetramer of the two

chains. Acetyl-CoA stimulates single-chain form of PC, by

activating the BC activity, but it has no effect on the two-

chain form of PC [255, 256]. An ATP analog, MgTNP-ATP,

also activates PC activity and can allosterically compete with

acetyl-CoA [257]. On the other hand, aspartate, glutamate

and a-ketogluratate are allosteric, feedback inhibitors of the

CT activity of PC [258].

Deficiency in PC activity is a rare, autosomal recessive

metabolic disorder in humans, and has been associated with

three forms of clinical manifestations [259–264]. Patients

with form A PC deficiency have chronic, mild to moderate

lactic acidemia, psychomotor retardation and hypotonia,

and many patients die within a few years of birth. Form B

deficiency is associated with the most serious symptoms,

with severe lactic acidemia, hypoglycemia, hyperammo-

nemia, anorexia, convulsions, and the patients generally die

in the first months of life. Form C deficiency shows

occasional mild lactic acidemia and may also show mild

neurological symptoms. A collection of missense and

insertion/deletion mutations has been identified in patients

suffering from PC deficiency.

Structure of PC

Crystal structures of the full-length Rhizobium etli PC

(RePC) [20, 265], Staphyloccocus aures PC (SaPC) [21,

266], and human PC (HsPC) lacking only the BC domain

[21] are currently available. The overall structure of the

tetramer is in the shape of a square (or a diamond), with

approximate 222 symmetry for SaPC (Fig. 9a). The

structure consists of two layers, with two monomers in

each layer (Fig. 9b). BC and CT dimers are located at

alternate corners of the square, creating an extensive

interface between the two layers. On the other hand, there

are few contacts between the two monomers in the same

layer (Fig. 9a). The overall structures of the four mono-

mers in the tetramer are similar to each other, but there are

differences in the relative positions of their BC and CT

domains. This is especially true for RePC, where the two

monomers in one layer show large differences to those in

the other layer. As a result, the RePC tetramer shows

significant asymmetry between the two layers (Fig. 9c, d)

[20, 265].

Structural information on these PC enzymes reveals the

presence another domain, named as the PT (PC tetramer-

ization) [21] or allosteric [20] domain. The structure of this

domain contains a helix (formed by 30 residues between the

BC and CT domains, Fig. 2) surrounded by a highly twisted,

four-stranded anti-parallel b-sheet (formed by 60 residues

between the CT and BCCP domains) (Fig. 9e). In HsPC and

SaPC, the PT domain is important for tetramerization, hence

its name [21]. A PT domain in one layer interacts with a PT

domain in the other layer, and mutations in this PT–PT

interface can disrupt PC tetramerization and catalytic

activity. In contrast, the equivalent allosteric domain in

RePC does not appear to be important for tetramerization

(Fig. 9c) [20]. RePC lacking the BC domain is a dimer in

solution [265], while the same construct for HsPC is a tet-

ramer [21].
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The structure of the PT domain shares remote similarity

to that of the BT domain in PCC and MCC. The eight-

stranded b-barrel in the BT domain (Fig. 7c) is replaced by

a four-stranded anti-parallel b-sheet in the PT domain

(Fig. 9e). However, while the helix is connected directly to

the b-barrel in the BT domain, the CT domain of PC is

inserted between the helix and the b-sheet in the PT

domain.

The structure of the CT domain of PC contains a tri-

osephosphate isomerase (TIM) barrel with a long

C-terminal extension, and has similarity to that of the 5S

(CT) subunit of transcarboxylase [32] and the CT domain

of oxaloacetate decarboxylase [29, 267]. In SaPC and

HsPC structures [21], one BCCP and its covalently

attached biotin is bound in the CT active site of the other

monomer in the same layer (Fig. 9b), providing direct

Fig. 9 Structure of PC. a Crystal structure of SaPC tetramer [21].

The domains of monomer 1 are colored as in Fig. 2, and the other

three monomers are in magenta, cyan and yellow. The BC and CT

active sites are indicated with the asterisks. The distance between the

exo site and the CT active site is also labeled (gray). b Structure of

SaPC tetramer, viewed from the bottom layer. c Crystal structure of

RePC tetramer [20]. d Structure of RePC tetramer, viewed from the

bottom layer. e Structure of the PT domain of SaPC [21]. f Structure

of the active site region of the CT domain, in complex with BCCP

(blue). The position of biotin in the SaPC structure is shown in black,

and that in the HsPC structure in gray [21]. g Molecular surface of the

binding site of CoA in SaPC [266]. h Detailed interactions between

CoA and the binding site in SaPC. i The activity of various acetyl-

CoA analogs in stimulating the catalysis by SaPC [266]
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insight into the molecular mechanism of the CT reaction.

In contrast, the BCCP domains are in a non-productive

location and their attached biotins are disordered in the

RePC structure (Fig. 9c) [20].

In the CT active site, Thr908 is hydrogen-bonded to the

N10 atom of biotin (Fig. 9f), indicating that it may play an

important role in catalysis. The structure of the T908A

mutant of SaPC is essentially identical to that of the wild-

type enzyme, but the mutant is inactive [266]. Kinetic

studies with the equivalent mutant of RePC also confirm

the importance of this residue in the CT reaction [268]. The

disease-causing A610T and M743I mutations are located in

the active site of the CT domain, and are expected to dis-

rupt catalysis by interfering with the binding of biotin

(A610T mutation) [21, 266] or pyruvate (M743I mutation)

(Fig. 9f) [21, 32]. The importance of other residues in the

CT active site has also been assessed by mutagenesis

studies in SaPC [266] and RePC [269].

The structural information defines the molecular basis

for why PC is only active in the tetrameric form [20, 21].

BCCP-biotin is carboxylated in the BC domain of its own

monomer, but it then transfers the CO2 to pyruvate in the

CT domain of the other monomer in the same layer

(Fig. 9a). Therefore, both monomers in each layer are

required for catalysis, but their conformation is stabilized

only in the context of the entire tetramer because there are

few interactions between two monomers of the same layer.

The distance between the BC and CT active sites in PC

is *75 Å (Fig. 9a), supporting the swinging-domain

model for catalysis (Fig. 1a). Binding of BCCP-biotin in

the CT active site is observed in SaPC and HsPC [21].

Recently, BCCP-biotin in a nonproductive binding mode in

the BC domain of RePC was reported [265].

The overall structures of the BC domain monomer and

dimer of PC are similar to those of the BC subunit of

E. coli ACC. Mutation of residues in RePC equivalent to

those important for substrate binding and catalysis in

E. coli BC [154] confirms their importance for PC catalysis

as well [270].

The activator CoA is bound at the interface of the BC

and PT domains of one monomer and the BC domain of

another monomer (Fig. 9g) [20, 266]. A change in the

organization of the dimer of the two BC domains is

observed upon CoA binding [266], consistent with the fact

that acetyl-CoA primarily activates the BC activity. The

phosphate groups of CoA interact with a collection of Arg

and Lys residues (Fig. 9h). Especially, Arg541 recognizes

the 30-phosphate group of CoA, which is critical for the

activating effect of CoA (Fig. 9i), and the R541C disease-

causing mutation abolishes acetyl-CoA activation [21]. In

SaPC, CoA binding made the four monomers of the PC

tetramer more similar to each other, essentially making the

tetramer more symmetric. The symmetrical structure of

SaPC is also supported by cryo-EM studies [266, 271]. In

contrast, a highly asymmetric tetramer is observed in the

RePC structure, and only two CoA molecules (the 30-
phospho-ADP portion) are bound to the tetramer [20].

However, this asymmetry may be an inherent property of

RePC and does not depend on CoA binding, as the struc-

ture without CoA shows similar asymmetry [265].

In the SaPC structure, the other three biotin groups are

located in another binding site, at the interface between the

PT and CT domains of the other monomer in the same

layer, *20 Å from the CT active site (Fig. 9a) [21]. This

exo site does not exist in HsPC due to sequence and

structural differences. The functional importance of this

binding site is currently unknown.

Urea carboxylase (UC)

Biological functions of UC

UC catalyzes the carboxylation of urea to produce allo-

phanate, which is then hydrolyzed to generate ammonia

and CO2 (Fig. 10a) [15, 16, 272]. Therefore, urea amid-

olyase (UA, family 4.1) can catalyze both steps of this

conversion, while a separate allophanate hydrolase activity

is needed for UC (families 4.2 and 4.3).

UC is found in some bacteria, fungi, and green algae, and

its activity is important for the utilization of urea as a

nitrogen source in these organisms [15, 16, 272]. A second

pathway for urea utilization is catalyzed by the nickel-

dependent enzyme urease, which can convert urea to

ammonia in a single step. Some of the fungal organisms

contain both pathways, although only the UA pathway is

present in S. cerevisiae. In fact, the UA form of this enzyme

is found primarily in fungal species. In Saccharomyces

kluyveri, UA is part of a pyrimidine degradation pathway,

converting the urea product of uracil degradation to

ammonia and enabling this organism to use uracil as the sole

nitrogen source [273]. This is a distinct pathway for uracil

catabolism, and it may also be present in other eukaryotes.

In Candida albicans, UA activity is important for the

virulence of this important human pathogen. The CO2

product of UA is a signal for hyphal switching [274], while

the ammonia product can be secreted to alkalinize the

extracellular environment, which also induces the yeast-

hyphal transition. The hyphal form is important for C.

albicans to escape phagocytosis by macrophages, thereby

evading the host immune system [275].

Structure of UC

The structure of the UC component of K. lactis urea

amidolyase was reported recently (Fig. 10b) [24]. In
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contrast to the other biotin-dependent carboxylases, the UC

component is catalytically active as a monomer. The CT

domain of UC consists of four sub-domains, named A, B, C

and D (Fig. 10b), with many structural and sequence

homologs. Especially, domains A and B together are sim-

ilar to the KipA subunit, and domains C and D the KipI

subunit of the B. subtilis KipA-KipI complex [276, 277].

KipI binds and inhibits the autophosphorylation of the

histidine kinase KinA, thereby inhibiting sporulation. On

the other hand, KipA can sequester KipI and prevent it

from inhibiting KinA activation. CT and KipA-KipI have

*20–35 % sequence identity, but residues that are

important for CT catalysis are not conserved in KipA and

KipI. Therefore, the KipA-KipI complex is unlikely to

have CT activity. In addition, both domains B and D have

the cyclophilin fold, although they do not share any rec-

ognizable sequence homology with cyclophilin.

The active site of the CT domain is located in a cleft at

the interface between the B and D domains (Fig. 10c) [24].

The biotin head group is fully extended away from the

BCCP domain and interacts with highly conserved residues

in the active site. The urea substrate is recognized by

hydrogen-bonding interactions with the active site. Espe-

cially, one of the urea nitrogen atoms is directly hydrogen-

bonded to the N10 atom of biotin. Mutations of residues in

the active site region have detrimental effects on the

catalysis by UC.

The overall structure of the BC domain of UC is similar to

that of other BC components. However, the BC domain is

monomeric in UC, as the interface that mediates the dimer-

ization of the BC subunit of bacterial ACC is not conserved in

UC. The BC domain interacts with domains A and D of CT in

the UC holoenzyme. The distance between the BC and CT

active sites in UC is *60 Å (Fig. 10b), indicating that the

BCCP domain must translocate during catalysis, consistent

with the swinging-domain model (Fig. 1).

Common features in the catalysis by biotin-dependent

carboxylases

The BC component has strong sequence conservation

among the biotin-dependent carboxylases. Insights into the

BC reaction are obtained from the structure of the E. coli

BC subunit in complex with substrates [154], which indi-

cates the crucial importance of two residues, Glu296 as a

general base to extract the proton from bicarbonate and

Arg338 to stabilize the biotin enolate oxyanion. The

Fig. 10 Structure of the urea

carboxylase (UC) domain of K.
lactis urea amidolyase. a The

chemical reaction catalyzed by

UC, converting urea to

allophanate, which is then

hydrolyzed to ammonia and

bicarbonate. b Crystal structure

of K. lactis UC [24]. The

domains are labeled, and the

active site of BC is indicated

with the asterisk. c Interactions

of biotin and urea with the CT

active site of UC, located at the

interface between the B and D

domains
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hydrolysis of ATP, via the formation of a carboxyphos-

phate intermediate, serves at least two functions: (1) the

dehydration of bicarbonate to CO2, which is a stronger

electrophile; (2) the production of orthophosphate (PO4
3-),

which is a strong base that is capable of extracting the

proton on the N10 atom of biotin [17]. This mechanism is

likely shared among all biotin-dependent carboxylases, and

Glu296 and Arg338 of E. coli BC are conserved among

these enzymes.

The CT components of the acyl-CoA carboxylases show

sequence and structural conservation. The acyl-CoA sub-

strate is recognized by a domain/subunit with the crotonase

fold, and it may be speculated that this part of the CT

component evolved from a primordial crotonase. This fold

is capable of binding CoA esters, and it also provides an

oxyanion hole, in the form of two main-chain amides, that

stabilizes the enolate oxyanion of the acyl group during

catalysis. Remarkably, the main-chain carbonyl of one of

the oxyanion hole residues recognizes the N6 amino group,

and the main-chain amide of the following residue is

hydrogen-bonded to the N1 atom of the adenine base of

CoA. Biotin is recognized by a separate domain/subunit,

but also with the crotonase fold. The equivalent oxyanion

hole in this domain/subunit stabilizes the biotin enolate

oxyanion during the CT reaction. It might be possible that

the biotin-binding domain/subunit of CT arose through

gene duplication of a crotonase enzyme and then evolved

its specificity toward biotin.

The CT components of PC and UC are entirely different

in sequence and structure from those of acyl-CoA car-

boxylases. However, they share the common feature of

providing two oxyanion holes to stabilize the intermediates

during the CT reaction. On the other hand, while acyl-CoA

carboxylases use primarily (carboxy)biotin for catalysis

[17, 169], side chains of conserved amino acids are

important for the CT reaction in PC and UC, for example

Thr908 in SaPC [21, 266, 268] and Lys1605 in KlUC [24].

Summary and perspective

Biotin-dependent carboxylases are crucial enzymes for

metabolism and many other cellular processes. They pro-

duce compounds that are important for the biosynthesis of

many molecules and/or help degrade potentially toxic

metabolic intermediates. ACCs are drug discovery targets

against type 2 diabetes, cancer, microbial infections, and

other diseases in humans. Three classes of herbicides

function by inhibiting the plastid ACC of grasses, dem-

onstrating the feasibility of small-molecule ACC

antagonists. On the other hand, deficiencies in PCC, MCC

and PC activity are linked to serious diseases in humans,

especially infants. Development of agents that can restore

the activity of the deficient enzyme, possibly through gene

therapy, will be of great benefits to these patients.

Structural information on the holoenzymes of biotin-

dependent carboxylases demonstrates the remarkable

degree of variability in these enzymes. They share con-

served domains, which have similar structures on their

own. However, the arrangement of these domains in the

holoenzyme monomers and especially the architecture of

the holoenzyme oligomers can be dramatically different,

for example the comparison between PCC and MCC or

between SaPC and RePC. These observations also serve as

a cautionary tale for the limitations of homology modeling

on such large, multi-domain systems.

The past few years have seen great progress in the

studies on biotin-dependent caboxylases, especially with

the first structural information on most of the holoenzymes

(PCC, MCC, PC, UC). At the same time, many important

questions remain to be answered. For example, structural

information on the holoenzymes of multi-subunit and

multi-domain ACCs is still not available. In addition, while

the recognition of BCCP by the CT component has been

observed in most of the holoenzyme structures, it is not

clear how BCCP binds to the BC component for catalysis.

Moreover, the molecular basis for substrate selectivity of

the acyl-CoA carboxylases is still poorly understood, and

presently one cannot readily determine the substrate pref-

erence(s) of a given acyl-CoA carboxylase based on a

sequence analysis of its CT component. While substitutions

of amino acid side chains are likely to play a major role in

determining substrate selectivity (for example the size and/

or shape of the acyl-CoA binding pocket), conformational

differences in the main chain of residues in the active site

may also be important and further structural information is

needed to illuminate such differences. Therefore, the

coming years should continue to be highly exciting in the

studies of biotin-dependent carboxylases.
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