
The Pathogenesis of Systemic Lupus Erythematosus – An
Update

Jinyoung Choi1,*, Sang Taek Kim1,*, and Joe Craft1,2

1Department of Internal Medicine (Rheumatology), Yale School of Medicine, New Haven, CT
06520
2Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520

Summary
Systemic lupus erythematosus (SLE, lupus) is characterized by a global loss of self-tolerance with
activation of autoreactive T and B cells leading to production of pathogenic autoantibodies and
tissue injury. Innate immune mechanisms are necessary for the aberrant adaptive immune
responses in SLE. Recent advances in basic and clinical biology have shed new light on disease
mechanisms in lupus, with this review discussing the recent studies that offer valuable insights
into disease-specific therapeutic targets.

Introduction
Systemic lupus erythematosus (SLE, or lupus) is a systemic autoimmune disease with
multiorgan inflammation. SLE is characterized by production of pathogenic autoantibodies
directed against nucleic acids and their binding proteins, reflecting a global loss of self-
tolerance (reviewed in [1]). The loss of tolerance with subsequent immune dysregulation is a
consequence of genetic factors, in the setting of environmental triggers and stochastic
events, with recent studies implicating over 30 genetic loci in disease pathogenesis (for
recent reviews, see [2-5].

Aberrant innate immune responses play a significant role in the pathogenesis of SLE,
contributing both to tissue injury via release of inflammatory cytokines as well as to aberrant
activation of autoreactive T and B cells, with the latter leading to pathogenic autoantibody
production and resultant end-organ injury (reviewed in [6]) (Figure). Autoantigenic nucleic
acids and their binding proteins are required for self-antigen specific activation of
autoreactive lymphocytes. Autoantigens complexed with their cognate autoantibodies also
directly contribute to activation of innate immune cells via Fc receptor (FcR)-mediated
uptake of complexes (or in the case of autoreactive B cells, initial engagement of the B cell
antigen receptor by autoantigens per se), with the nucleic acid component of these
complexes upon endosomal trafficking engaging intracellular Toll-like receptors (TLRs)
with subsequent innate and B cell activation.
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This review will focus upon recently dissected biologic events that provide insight into
disease pathogenesis in three major areas, dysregulation of innate and adaptive immune
responses in SLE, and the role of autoantibodies in triggering end-organ injury (Figure). We
will necessarily, in the interest of space, focus upon studies that offer new paradigmatic
insights into pathogenic events.

Innate immunity in SLE
Dendritic cells (DCs) play a central role in adaptive immunity by activating B and T cells,
with the presumption that they are similarly required for the activation of autoreactive T and
B cells. But their precise involvement in autoimmunity, and the effects of their selective
subsets in autoreactive lymphocyte activation, are less clearly understood. A recent study
addressed this question by adapting a DC-depletion model (CD11c-diptheria toxin A;
CD11c-DTA) to the widely used MRL.Faslpr mouse model of lupus [7]. These mice offered
the unique opportunity to study the natural onset and progression of disease in lupus-prone
animals in the absence of DCs, with the demonstration that the latter are crucial in regulating
the magnitude of spontaneously arising systemic autoimmunity in that DC-deficient mice
exhibited less severe disease than DC-intact controls. In particular, expansion of T cells and
plasmablasts with autoantibody production depended on DCs, indicating their previously
unrecognized role in promoting extrafollicular (EF) humoral responses in SLE. Previous
work by the same group and others has shown that EF sites in murine lupus are critical for
continued activation of and autoantibody production by short-lived plasmablasts [8,9] (more
about this later; see Adaptive Immunity in SLE), with their activation dependent upon
autoreactive B cell receptor (BCR) and subsequent TLR engagement by lupus autoantigens
[10] [11]. Although the role of EF responses in promoting human SLE is unknown, in part
due to the general lack of access of lymphoid tissues from patients, the finding of increased
numbers of circulating plasmablasts in patients with active SLE suggests such responses
may be operative [12,13]. DC promotion of plasmablast function in EF sites is appealing,
given the role of BAFF in B cell survival with myeloid cells potentially potent producers of
this and other soluble and contact-dependent factors that promote B cell maturation [14].

Other data suggesting that DCs can initiate EF humoral responses comes from slightly older
intravital imaging studies, revealing engagement of the B cell receptor by DC-associated
antigen, with B cell activation EF occurring before entry into B cell follicles [15]. More
recent work links DCs to EF B cell maturation with the finding that a splenic DC subset
found in the marginal zone, those expressing the DC-inhibitory receptor 2 (DCIR2), has the
unique capacity to initiate T-cell dependent extrafollicular B cell responses [16]. Although
the implications of these findings for SLE are uncertain at this time, it is clear that further
exploration of the role of DC-driven T and B cell maturation in EF sites as well as in
germinal center (GC) responses in SLE is warranted, with DCs a tempting therapeutic target
in SLE.

In lupus-prone CD11c-DTA animals, both conventional DC (cDC) and plasmacytoid DC
(pDC) are efficiently depleted, underscoring the potential role of both subsets in disease.
Depletion of the latter with disease amelioration recalls earlier findings that these cells
produce large amounts of type I interferons (IFNs) in response to nucleic acid-containing
immune complexes [17,18], with an increase in this cytokine paralleling activity and
severity of SLE in humans [19]. Recent studies support this idea with the finding that
interferon regulatory factors (IRFs), including IRF5, are strongly associated with higher
serum IFNα levels or IFNa signaling and autoantibody titers in patients with SLE [20](for
review, see [21]. Thus, blockade of IFNs is an appealing therapeutic strategy in SLE [22],
with early results demonstrating some promise [23-25].
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New work has now provided a pathogenic link between the heightened IFN production in
SLE and dysregulation of another innate immune cell, the neutrophil. Activation of the latter
has long been found in SLE, including in association with accelerated vascular disease
[26,27]; however, the precise role of neutrophils in global disease pathogenesis has been less
clear. Activated neutrophils die in a unique process, NETosis that is distinct from necrosis
and apoptosis [28]. Dying neutrophils extrude a large amount of DNA in the form of web-
like structures (neutrophil extracellular traps, NETs) that are associated with antimicrobial
cationic peptides LL37 (also known as calthelicidin) and that promote bacteria entrapment
and efficient killing [28]. Immune complexes of autoantibodies and nucleic acids,
abundantly circulating in the plasma of patients with SLE, engage TLRs in neutrophils after
FcR-mediated uptake with resultant activation and death by NETosis. NET DNA is
protected from nuclease degradation and is available as an autoantigen for TLR-directed
pDC activation and IFN release [29,30]. The latter cytokines further prime additional
neutrophils for NETosis while also aiding cDC maturation with subsequent autoreactive T
cell activation [17](reviewed in [6]). These findings indicate a feed forward loop among
cytokines and neutrophils, resulting in adaptive immune cell activation that amplifies
chronic inflammation with resultant tissue damage. Although it is crucial to determine
whether this amplification mechanism operates in vivo and whether NET formation is
required for disease progression, these data add weight to the argument that blockade of
interferon and/or TLR signaling may be therapeutically beneficial in SLE [6,31].

Dissection of immune-complex driven production of IFNs by pDCs has also shed light on
the role of glucocorticoids in the treatment of SLE. These drugs are widely used to treat
autoimmune diseases and are a mainstay for induction of disease remission and maintenance
in SLE via inhibition of the transcription factor NFκB [32], with subsequent pDC death and
consequently reduced IFN production. Yet, lupus patients often require higher therapeutic
doses of steroids to relieve inflammatory symptoms than other related conditions, such as
rheumatoid arthritis, with toxic side effects including immune suppression, weight gain, and
osteoporosis. Recent work has demonstrated how the therapeutic potency of glucocorticoids
may be dampened in SLE via disease-associated resistance to their immune modulatory
effects [33]. Engagement of TLR7 and 9 after endosomal uptake of nucleic acid containing
immune complexes promotes pDC survival and IFN production via activation of NFκB,
overcoming the glucocorticoid inhibitory effect. In addition to providing novel insights into
the mechanisms whereby autoantibody-immune complexes amplify inflammation and
induce drug resistance in SLE [10], this work further suggests TLR7/9 targeting may be
importantly therapeutically in SLE, in addition to providing a means to utilize lower, and
therefore less toxic, doses of glucocorticoids.

Adaptive Immunity in SLE
Given the roles of autoantibodies and B cells in disease pathogenesis [14,34], a number of
studies have been devoted to analysis of the function of autoreactive B and T cells in SLE
(for reviews, see [35,36]). B cell tolerance is defective at several levels in SLE, including
both abnormalities in central and peripheral selection responsible for removal of self-
reactive immature B cells [37-39]. Aberrant tolerance, combined with enhanced BCR [40],
TLR [41], and BAFF receptor signaling operative in lupus (reviewed in [42]) ultimately
promotes activation and survival of autoreactive B cells. CD4 T cells are critical players in
the pathogenesis of lupus as they regulate B cell responses and also infiltrate target tissues
with effector function, leading to tissue damage (reviewed in [43]), with genetically
determined defects in tolerance regulation and receptor signaling also contributing to their
activation.
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The combined T and B cell abnormalities in SLE result in production of pathogenic
autoantibodies. The latter are high-affinity, somatically mutated, and Ig-switched,
supporting the idea that they are the product of GC responses [44-46], with defects in GC
selection operative in human SLE [37,47]. Autoreactive B cells differentiate into pathogenic
memory and plasma cells via the GC response [37], with lupus nephritis patients exhibiting
abnormalities in the peripheral B cell compartment with increased autoantibody titers that
can be attributed to intensive GC activity [47].

Although the role of B cells in disease promotion in lupus has been well established [48], the
precise nature of the CD4 T cells that promote autoreactive B cell maturation has been less
clear. New data suggest that follicular helper T (Tfh) cells [49,50], which reside in GCs and
provide essential signals for B cell maturation and Ig production after immunization with
thymus-dependent antigens, are crucial to the pathogenesis of lupus in mice. Dysregulation
of Tfh cells that promote B cell differentiation in GCs is associated with the development of
SLE in the Roquinsan/san mouse model [51]. In addition, abundant Tfh-like cells are located
outside the GC where they support EF B cell differentiation in mouse models of SLE
[52,53], with this site an important one for maturation of plasmablasts that contribute to the
ongoing pathogenic production of autoantibodes in murine SLE models [9,54] as outlined
above (Innate Immunity in SLE). Although data supporting the involvement of Tfh cells in
human SLE remains relatively limited, expansion of a circulating Tfh (cTfh) cell population
in patients with active SLE has been reported [55,56], with such expansion and
dysregulation also occurring in patients with other systemic autoimmune disease [57].
Reassessment of past clinical trials in light of this newer data provides valuable insights into
the potential involvement of Tfh cells in the pathogenesis of human lupus [58]. Treatment of
lupus nephritis patients with anti-CD40L antibodies caused disappearance of circulating
CD38bright plasma cells with decrease in anti-dsDNA titers, indicating these autoantibodies
are a product of CD154-CD40 interactions, likely arising via the Tfh-driven GC response
[47]. In murine lupus, at least, Tfh-like cells in the EF focus also express CD40L that is
critical for B cell maturation [52,59]; thus, blockade of CD154-CD40 would likely also
diminish EF plasmablast maturation. While anti-CD154 therapy in humans resulted in
unexpected thromboembolic events, most likely a consequence of Fc-receptor mediated
platelet activation [60], such data nonetheless establish a role for Tfh cells in SLE
pathogenesis, providing crucial insights into the role of effectors of Tfh cell function as
potential therapeutic targets in disease [61].

Autoantibodies as Initiators of Tissue Injury in SLE
The kidney is a primary site of tissue injury in murine and human lupus. Nephritis results
from glomerular deposition of immune complexes of autoantibodies and autoantigens, with
engagement of FcRs on immune cells along with complement fixation [62]. These effector
mechanisms initiate infiltration and activation of tissue-infiltrating macrophages that
promote the inflammatory response with resultant tissue injury [63,64]. The contributions of
autoantibody isotypes to tissue injury in the kidney has not been well understood, although
those associated with Th1 responses are thought to predominate in the human and murine
diseases [65-67]. More recent data has shown that a subset of SLE patients have high titers
of circulating IgE autoantibodies, without associated allergy [68], raising the question that
Th2 cytokines (IL-4) or IgE per se contributes to lupus nephritis. Recent analysis of mice
deficient in the Src family tyrosine kinase Lyn, a defect that leads to intrinsic B cell
hyperactivation with autoantibody production and subsequent mild immune-complex
nephritis, supports this notion [69]. These lupus-prone mice contain elevated serum titers of
IL-4 with immune complexes containing IgE autoantibodies capable of basophil activation
with promotion of tissue injury. Of particular relevance, this study also found that patients
with SLE had both serum IgE autoantibodies and activated circulating basophils that could

Choi et al. Page 4

Curr Opin Immunol. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



migrate to the spleens and lymph nodes [69]. If these mechanisms are operative in human
lupus nephritis, targeting basophils may effective in those patients with high concentrations
of IgE antinuclear antibodies [68].

As autoantibodies are critical for the pathogenesis of SLE and resultant tissue injury, B cell
depletion is an attractive therapeutic option in disease. Early studies in lupus-prone mice
revealed that B cells are absolutely essential for disease induction [48] via both
autoantibody-dependent and –independent pathways [70], suggesting a role for B cell
depletion as a remittive agent. Indeed, targeting CD20, which is expressed on almost all
lineages of B cells except early pro B cells and plasmablast and plasma cells, is
therapeutically beneficial in murine lupus [71,72], albeit at high doses as elevated plasma
antibody levels in disease block FcR-mediated uptake and elimination of anti-CD20 coated
B cells [73]. Rituximab, an anti-human CD20 monoclonal antibody, has now been shown to
have clinical benefits in almost 200 off-label trials in autoimmune diseases [74]; however,
results of two randomized clinical trials in lupus were disappointing. In the Exploratory
Phase II/III SLE Evaluation of Rituximab (EXPLORER) trial, 257 patients with moderate
SLE without renal involvement were randomized to treatment with rituximab or placebo, in
both cases with background immunosuppressant therapy and steroids. After 52 weeks of
therapy, rituximab-treated patients did not show significant improvement in disease activity
compared to the placebo (background immunosuppressant therapy) group [75]. A second
randomized controlled study, The LUpus Nephritis Assessment With Rituximab Study
(LUNAR) trial, compared therapy with rituximab plus standard therapy for lupus nephritis,
mycophenolate mofetil and steroids, to standard therapy alone [76]. After one year of
treatment, the addition of rituximab did not result in enhanced clinical effectiveness over
standard therapy, although benefits were present with subset analyses. Why did these trials
not show substantive clinical benefit in light of the data from murine studies and
observational data in humans supporting the efficacy of B cell depletion in lupus? Questions
have been raised about both trial design and clinical outcome measures [36]. Thus, while
disappointing, the results of these two studies have not scuttled the idea that targeting B cells
in SLE may be therapeutically beneficial. Indeed, therapy with belimumab, a fully
humanized monoclonal antibody directed against B-lymphocyte stimulator (BLyS), proved
beneficial in recent clinical trials. Upon binding to its receptors, TACI, BAFF-R, and B cell
maturation antigen (BCMA), BLyS activates signals for B cell survival and maturation.
Circulating levels of BLyS mRNA and BLyS are elevated in lupus patients and are
correlated with disease activity [77,78], with the belimumab effect primarily mediated by
depletion of recently formed, rather than memory, B cells or long-lived plasma cells [79].
Two large, randomized controlled trials involving more than 800 SLE patients treated with
intravenous belimumab or placebo have recently been completed (BLISS-52, BLISS-76)
[80,81]. At 52 weeks follow up in both trials, patients who received belimumab had
improvement of lupus activity and serological parameters with less disease progression
compared to patients in the placebo group, with comparable, typically mild, adverse events.
While these clinical benefits were lost at 76 weeks of follow up for reasons that are unclear,
belimumab was recently approved by the U.S. Food and Drug Administration (FDA) for the
treatment of autoantibody-positive adult patients with active SLE who are receiving standard
therapies.

Conclusions
The pathogenic mechanisms that lead to the clinical lupus phenotype are becoming clear,
with genetic predisposition in the setting of environmental and/or stochastic triggers leading
to innate immune system activation associated with pathological T-B cell collaboration and
subsequent inflammation and tissue injury. These interactions are critical to understand, as
their interruption is important therapeutically, as demonstrated by clinical studies in patients.
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Since there have been, and will undoubtedly continue to be, therapeutic toxicities or failures
along the way, efforts to refine the mechanistic basis of these aberrant immune interactions
are necessary. Their dissection offers a means to better understand disease biology and to
maintain the pipeline of disease targets and ultimately that of therapeutic agents.
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Highlights

• Innate effectors are critical for the lupus phenotype

• Aberrant adaptive immune responses promote disease progression in SLE

• Dissection of pathogenic events in SLE offers new therapeutic targets in SLE
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1. . Mechanism of autoantibody production and tissue injury in lupus: A paradigm
Self-antigen dependent activation of autoreactive B cells and CD4 T cells in secondary
lymphoid organs, leads to production of pathogenic autoantibodies that, along with
inflammatory cytokines, promotes tissue injury in lupus. Antigen-presenting dendritic cells
are necessary for adaptive immune cell activation, and contribute to inflammatory cytokine
production. Autoantibodies in complexes with autoantibodies contribute to innate immune
cell activation and cytokine production. Genetic predisposition is a requisite for aberrant
immune system acivation, in the setting of environmental and stochastic events.
Abbreviations: DC, dendritic cells; pDC, plasmacytoid dendritic cells.
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