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Abstract
An important step in PET brain kinetic analysis is the registration of functional data to an
anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor
studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the
subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the
differences in kinetics and distribution for various radiotracer studies and conditions (e.g.,
blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of
registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II.
The approach involves creating multiple transformations by registering PET images of different
time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to
multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II).
Normalized mutual information was used to compute similarity between the transformed PET
images and the reference image(s) to choose the optimal transformation. This final transformation
is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic
analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating
scores to assess the quality of spatial alignment between the resliced PET and reference. One
hundred twenty PET datasets involving eleven different tracers from 3 different scanners were
used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys
on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to
96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating
scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations
for a wide range of PET studies.
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Introduction
Analysis of 4D PET brain data usually involves co-registration with MR data, where the MR
image serves as a reference for anatomical localization (Gholipour et al., 2007; Myers,
2002). In order to attain the optimal transformation to map PET image data into MR image
space, optimization functions are employed based on similarities between the target and
reference images (Jenkinson et al., 2002; Maintz and Viergever, 1998). One conventional
approach for PET-MR processing of human brain images is to use an early summed PET
image (e.g., 0–10 min post-injection, during initial tracer uptake). If tracer delivery is
limited primarily by blood flow, brain uptake is typically much higher than activity outside
the brain, thus providing good correspondence between PET and MR brain tissue classes.
This “0–10 min method” for PET-MR registration was used in many studies in the
nonhuman primate (NHP), however, registration failures were a frequent occurrence, with a
diversity of neuroreceptor studies. This suggested that using the first ten minutes of the PET
image was not always optimal for registration to MR.

PET-MR registrations can be challenging in the NHP because the brain occupies
approximately 25% of the head volume in the field-of-view (FOV), with the rest composed
of muscle around the skull, jaw, and snout, where tracer can accumulate. On the other hand,
the human brain occupies the majority of the head voxels in the scanner FOV and is much
larger in volume than that of the NHP (~1250 mL in humans vs. ~80 mL in NHPs) (Baare et
al., 2001; Cheverud et al., 1990). The smaller size of the NHP also allows more of the body
to appear within the scanner FOV, where the lungs, heart, and spinal cord can be visible.
Intensity-based registration algorithms (i.e., AIR (Woods et al., 1993)) are likely to succeed
when there is good correspondence between PET and MR brain voxels belonging to gray
matter, white matter, and cerebrospinal fluid. Additionally, high contrast between the brain
and non-brain structures is required in order to achieve a successful registration to a skull-
and muscle-stripped MR brain.

For PET-MR intermodality registrations, mutual information is a robust, intensity-based
optimization method (Studholme et al., 1997). Studholme and others developed normalized
mutual information (NMI) to decrease sensitivity to image overlap, where large
misalignments can occur with respect to the FOV between images from different modalities
(Studholme et al., 1999). For within-subject registrations, the NMI cost function (C) is
maximized, by finding a linear (rigid) 6-parameter (3 translations + 3 rotations),
transformation matrix that maximizes the shared information between two images, for
instance a reference (R) MR image and a target (P) PET image. C is defined in terms of
entropy (H), specifically the joint entropy of the two images, H(R, P), normalized by the
marginal entropy of each (H(R) and H(P)), i.e.,

(Eq. 1)

H(X) is defined by

(Eq. 2)

where p denotes the probability of a given pixel value, x, from a possible set of binned
values. Each pixel value x in the image is histogrammed into bins based on the minimum
and maximum value in the image, and the probability of x is computed.
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Eq. 1 is used to compute a similarity metric between the reference and transformed PET
images, where 0≤C≤1. For instance, the maximum C between two identical images will
equal 1. When the two image volumes are distinctly dissimilar, for instance, a PET image
with both brain and muscle uptake and a reference MR image that was stripped of skull and
muscle, C will be a value closer to 0. For iterative registration algorithms in these cases,
depending on the quality of the initial guess, it is more likely that the algorithm will fail to
converge or converge to an incorrect registration at a local maximum of the cost function.

The robustness of a registration algorithm is nontrivial due to the fact that functional PET
and anatomical MR have very different image content (Skerl et al., 2006). Heterogeneity
exists across different tracers and experimental conditions, thus affecting tracer distribution.
Distribution within the first ten minutes is driven by delivery kinetics, typically referred to
as the uptake image. Some tracers are known to have high early cortical uptake, so it may be
sufficient to always use an early image (e.g., 0–10 min) for registration. If the initial kinetics
of the tracer are relatively slow, registration algorithms tend to be less robust and may not
converge to a reasonable result. The distribution in subsequent images relies both on
delivery and binding kinetics of the tracer. Pharmacological intervention can also affect the
kinetics and distribution, e.g., blocking the receptor site to study the binding specificity of an
experimental tracer or increasing endogenous neurotransmitter to study changes in tracer
binding with respect to a baseline study.

Successful registrations are most common when there is uniform distribution of radiotracer
in the gray matter with high gray/white matter contrast and low extra-brain uptake (Fig. 1A).
A challenging distribution to register is a tracer that binds non-uniformly, e.g., only to
subcortical structures even at early times (Fig. 1B). Difficulty in PET-MR registrations can
also occur when tracer activity outside of the brain is comparable to brain radioactivity
levels, making it difficult to distinguish the brain from muscle (low contrast between brain
and extra-brain) (Fig. 1C). These characteristics are examples of PET image distributions
that pose challenges for NHP PET-MR registrations.

Thus, the aim of this study was to develop an automated algorithm that optimizes PET-MR
NHP registrations and is broadly applicable to a wide variety of PET studies. We refer to
this approach as the Multi-Transform Method (MTM). The main concept of the MTM
algorithm entails registering multiple static PET images from a dynamic study (e.g., from
different time intervals or using different levels of smoothing) to one or more reference
images, creating a group of possible transformations. Then, a figure of merit is used to
choose the optimal transformation. Note that this method is applied to data from
anesthetized NHPs, so it is assumed that there is no motion between scan frames.

Two algorithms, MTM-I and MTM-II, were evaluated. In MTM-I, multiple transforms were
created by registering the PET images to one reference image, the same NHPs anatomical
MR image. In an extension to the method, MTM-II, PET images were registered to multiple
reference images including the NHPs anatomical MR plus additional PET reference images.
PET reference images are PET images that were pre-registered to the MR image of the same
NHP. These methods were tested against our conventional method of registering an average
image from the first 10 min of the PET acquisition to the MR. The algorithm was tested on
control and blocking studies from various tracers performed in PET scanners having
different resolutions.
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Materials and Methods
Animals

The PET datasets evaluated were from eight rhesus monkeys and four baboons from various
radiotracer studies performed under protocols approved by the Institutional Animal Care and
Use Committee. Animals were initially anesthetized with an intramuscular injection of
ketamine hydrochloride then transported to the PET facility. Once intubated, the animals
were maintained on oxygen and isoflurane (1.75–2.50%) throughout the study. Rhesus
monkeys were scanned with the HRRT and Focus-220 and baboons were scanned with the
HR+ (Lehnert et al., 2006; van Velden et al., 2009) (Siemens/CTI, Knoxville, TN, USA).
For head positioning, animals in the HRRT and HR+ were placed prone, with their head in a
stereotaxic head holder. Monkeys scanned on the Focus-220 were placed head first on their
back, left, or right side (depending on catheter placement) on the scanner bed. Once
positioned in the scanner, a transmission acquisition was performed followed by an emission
acquisition lasting for at least 120 min.

Datasets
One hundred twenty PET datasets using eleven tracers were evaluated. Studies were
performed with three scanners having different resolutions, defined in terms of full-width-at-
half-maximum (FWHM). PET images from the Focus-220, HRRT, and HR+ are shown in
Fig. 2. Focus-220 (FWHM=1–2 mm) studies included radiotracers [11C]GR103545 (kappa
opioid agonist, n=13) (Nabulsi et al., 2011), [11C]OMAR (cannabinoid receptor subtype 1,
n=14) (Wong et al., 2010), [11C]PHNO (dopamine D2/D3 receptor agonist, n=12) (Graff-
Guerrero et al., 2008), and [18F]FPEB (metabotropic glutamate receptor 5, n=8) (Wang et
al., 2007). HRRT (FWHM=2–3 mm) studies included radioligands [11C]AFM (serotonin
transporter, n=9) (Huang et al., 2004), [11C]MRB (norephinephrine transporter (NET),
n=10) (Gallezot et al., 2011), and [11C]P943 (5-HT1B receptor antagonist, n=12) (Nabulsi et
al., 2010). HR+ (FWHM=5–6 mm) studies included radioligands [11C]carfentanil (mu
opioid receptor agonist, n=10) (Wand et al., 2011), [11C]raclopride (dopamine D2/D3
receptor antagonist, n=4) (Graff-Guerrero et al., 2008), [11C]GR205171 (NK1 receptor
antagonist, n=24) (Zamuner et al., 2012), and [18F]FEPPA (peripheral benzodiazepine
receptor, n=4) (Wilson et al., 2008). In addition to the variety in range of studies, control and
blocking scans were included. For instance, data was used from the [11C]MRB occupancy
study with atomoxetine, a NET reuptake inhibitor, where Gallezot and others reported a
dose-dependent decrease in [11C]MRB binding at NET. In addition, baseline radioligand
binding may be altered by self-blocking with cold compound prior to tracer administration
or via displacement of tracer with a drug (e.g., with the bolus infusion paradigm, after
equilibrium is achieved) as exhibited in [11C]P943 studies (Cosgrove et al., 2011; Nabulsi et
al., 2010).

MRI scanning and processing
MR images were acquired on a Siemens Magnetom 3.0T Trio scanner, using an extremity
coil. T1-weighted images were acquired in the transverse plane with spin echo sequence
(TE=3.34, TR=2530, flip angle=7°, section thickness=0.50 mm, FOV=140 mm, image
matrix=256×256×176 pixels, matrix size=0.55×55×0.50 mm). The MR image volume was
then cropped to 176×176×176 pixels and re-oriented into coronal slices using MEDx
software (Medical Numerics Inc, Germantown, MD, USA). For processing, the MR images
were stripped of skull and muscle so that only the brain remained in the image (FMRIB’s
Brain Extraction Tool, http://www.fmrib.ox.ac.uk/fsl/bet2/index.html). This skull and
muscle stripping procedure was performed once for each monkey MR image prior to co-
registration with the PET images.
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PET Images
PET data were collected on three different scanners: HR+, High Resolution Research
Tomograph (HRRT), and Focus-220. A sequence of 33 frames was reconstructed with the
following timing: 6 × 30 sec; 3 × 1 min; 2 × 2 min; 22 × 5 min. HR+ data were collected in
sinograms and reconstructed using FBP with all corrections (attenuation, normalization,
scatter, randoms, and deadtime). HRRT dynamic listmode data were reconstructed with all
corrections using the MOLAR algorithm (Carson et al., 2004). Focus-220 dynamic listmode
data were reconstructed with all corrections using the OSEM algorithm via ASIPro 2.3
microPET software. Final image dimensions and voxel sizes from each scanner were: HR+
(image matrix=128×128×63, matrix size=2.06×2.06×2.43 mm), HRRT (image
matrix=256×256×207, matrix size =1.22×1.22×1.23 mm), and Focus-220 (image
matrix=256×256×95, matrix size=0.95×0.95×0.80 mm).

PET-MR registrations
For HR+ and HRRT scanners, the axial FOV is 15.2 and 25.5 cm, respectively. The
animal’s brain only occupies about 7.4 cm for both scanners, or 49% and 30% of the
respective axial FOV. The remainder of the FOV in HR+ and HRRT PET images contained
non-brain including the snout, salivary glands, heart, and lungs (Figs. 2A and 2B). In some
cases, the radioactivity concentration in the lungs was much higher than the brain. To deal
with this issue, HR+ and HRRT images were first registered to the MR image with the
intermodality 6-parameter rigid automated image registration (AIR) algorithm as an
initialization step, providing a reasonable starting point (using AIR 3.08 in MEDx). The AIR
algorithm seeks a transformation that minimizes the overall standard deviation of PET
values, grouped by the corresponding MR values (Hill et al., 2001; Woods et al., 1993).
Thus, to initialize PET-MR registrations for HR+ and HRRT images, a rigid AIR
registration was performed prior to implementing the FLIRT-NMI registration. This
initialization step was necessary because FLIRT-NMI alone produced inadequate
registrations. The PET image was then resliced with the AIR transform and registered to the
MR via a 6-parameter rigid registration using the NMI cost function with FSL FLIRT
(FMRIB’s Linear Image Registration Tool, www.fmrib.ox.ac.uk/fsl/flirt/index.html). The
final transformation was the product of both the AIR and FLIRT-NMI transformations.
FLIRT-NMI alone always produced visually inadequate transformations. AIR alone
achieved better results, however, still misregistered (See Discussion). The Focus-220 axial
FOV is only 7.6 cm, with the brain present in 70% of the axial FOV. Since the brain
occupies much of the FOV in the Focus-220 (Fig. 2C), the preliminary AIR registration was
unnecessary.

MTM Algorithm
The MTM algorithm is defined as follows:

PET summed images, Pi, i=1,…,nP were created from specific time intervals from a 120-min
acquisition: 0–10, 10–20, 20–40, 40–60, 60–90, and 90–120 min (n=6). For Focus-220 data,
in addition to using different time intervals, both non-smoothed (Figs. 1A–C) and post-
smoothed (3×3×3 voxel FWHM Gaussian filter, Figs. 1D–F) PET summed images were
created (n=12); the use of additional PET images was found to be necessary due to the
higher noise in the Focus-220 images.

The MTM algorithm is shown in Fig. 3. Each of nP PET images (indexed by i) was
registered to one MR reference image, R1, and any number of additional PET reference
images, R2,…,Rj, where i=1,..,nP and j=1, …,nR. The resulting number of transformations
was n=nP·nR, the total number of PET images (nP) times the number of reference images
(nR) (Fig. 3A). MTM-I uses only one MR as a reference image, R1 (nR=1), whereas MTM-II
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uses multiple reference images, specifically, PET images pre-registered to the MR (R2,
…,Rj), in addition to R1 (nR> 1). Then, to choose the best of the n transforms, all transforms
Tk, k=1, …,n, are applied to all PET images Pi, i=1, …,nP to yield i·k resliced PET images
in MR image space, Pik, where

(Eq. 3)

Thus, Pik is PET image i mapped by transform k. Note that each reference image produced a
set of transforms (i.e., 6 PET images × 3 references=18 transforms), which were applied to
each Pi. If the transform is accurate, this image will be well registered to the NHPs MR
space (Fig. 3B). The similarity, Nijk, is then computed between the resliced PET image, Pik,
and each reference image, Rj, where

(Eq. 4)

The calculation of Nijk, the similarity between Pik and Rj, was limited to pixels masked
within the MR image volume. Using Eq. 1, Nijk was computed based on the minimum and
maximum value in each image where pixel values were histogrammed into 256 bins to
compute marginal and joint entropy. In MTM-I, Nijk is computed between Pik and R1 (Table
1, Eq. 4). Nijk is computed between Pik and all reference images, Rj, in MTM-II (see Inline
Supplementary Table 1, Eq. 4).

For MTM-I and MTM-II, Nijk scores were first normalized to the highest value across n
transforms (Table 1), i.e., for a given PET image and reference image, the C values for each
transform were divided by the maximum C attained by any transform. The normalized
value, Mijk, was computed where the highest value in each row was equal to 1 (Eq. 5). Row
normalization across the k transforms was especially important for MTM-II that uses
multiple reference images, because Nijk values with each PET image i and reference image j
have a different range of values due to the nature of the types of images being compared
(i.e., resliced PET and MR vs. resliced PET and PET reference).

(Eq. 5)

A final score for each transform (Sk) was computed by taking the mean of Mijk for each
transform (k), i.e., a column-mean in Table 1, yielding

(Eq. 6)

The final transform was chosen for MTM-I and MTM-II as the one with the maximum Sk
score. See Table 1 and Inline Supplementary Table 1, for MTM-I and MTM-II, respectively.
The MTM algorithms were coded with IDL Version 8.0.

In summary, the MTM algorithm is as follows:

1. Create multiple PET images using different time intervals and post-smoothing (for
Focus-220 images only). For each PET image, create transformation matrices by
registering to the MR reference image (MTM-I) or to multiple reference images
(MTM-II) (Fig 3A).
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2. Reslice every PET image with each transform (Eq. 3, Fig. 3B) and compute a
similarity metric between each resliced PET images and the reference image(s)
(Eq. 4, Fig. 3B).

3. Row normalize Nijk scores to the maximum value for each transform yielding Mijk,
to account for variability in similarity measures between resliced PET and different
reference images (Eq. 5).

4. Choose the best transform based on the overall NMI measures for each transform
(Eq. 6, Table 1).

Evaluation
The two new algorithms MTM-I and MTM-II were compared to our original method of
registering a single summed image (0–10 min post-injection) to the NHPs MR image. Thus,
the original method is a special case of MTM-I with nP=1. Of the total number of studies for
each tracer, the percentage of PET time intervals that generated the chosen transform was
computed.

The quality of all the transforms was evaluated visually. For MTM-I and MTM-II, each
summed PET image was resliced with the transform generated from registering the same
summed PET to the MR image. The resulting registration was given a visual rating score
(VRS) of 1=good, 2=slightly misregistered, or 3=failed. MEDx software (Medical Numerics
Inc, Germantown, MD, USA) was used to assess the quality of registration from each
transform in sagittal, coronal, and transverse views, between resliced PET images and the
MR and reference PET images. An example of registrations and their visual rating scores is
shown in Fig. 4. Transforms that were designated a VRS of 1 had good spatial alignment of
both images (Figs. 4A and 4B). Transforms that were assigned a VRS of 2 produced slightly
tilted resliced PET images in either sagittal, coronal, or transverse views compared with the
MR, where the magnitude of error was 2–3 mm or 5°–10° degree rotation in either x, y, or z
(Fig. 4C). Transforms that were assigned a VRS of 3 produced completely misaligned
resliced PET images, compared with the MR (Fig. 4D). To obtain a qualitative VRS for each
transformation, the studies were split amongst two individuals (CS and DW) experienced at
assessing NHP PET-MR registration quality. The percentage of registrations with VRS=1, 2,
and 3 for the chosen transforms were computed for the 0–10 transform method, MTM-I, and
MTM-II for each study.

Results
MTM-I

Early summed PET images (e.g., 0–10 min) were used for PET-MR registrations with the
assumption that brain contrast is high in these images, providing similar brain tissue content
as in the MR images, thus improving the accuracy of registration. The time period 0–10 min
was one option available to the MTM-I algorithm, however, the transforms were selected
from all time intervals across scanners as optimum for registration. The percentages of
chosen transforms from each time period across 120 studies evaluated were: T0–10 (33%),
T10–20 (33%), T20–40 (13%), T40–60 (10%), T60–90 (8%), and T90–120 (3%). The percentage
of chosen transforms from each PET time interval was calculated for each study, with those
exceeding 20% highlighted in gray (Table 2). Preferred transforms for the Focus-220 and
HRRT images were taken 34% and 35%, respectively, from the 10–20 min summed PET
image registered to the MR, whereas the favored transform for the HR+ was taken 60%
from the 0–10 min summed PET-MR registration. Note that the choice of optimal time
period may have more to do with the tracer and the study (control or blocking), rather than
the scanner.
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For Focus-220 images, smoothing the image prior to registration was helpful for 13 of the
47 (28%) of studies analyzed: [11C]GR103545 (3 of 13 studies), [11C]OMAR (4 of 14
studies), [11C]PHNO (5 of 12 studies). No transforms from registrations of smoothed PET
images were chosen for [18F]FPEB, presumably due to its higher statistical quality.

A higher percentage of chosen transforms with MTM-I (86%) were visually better (VRS=1)
than those from the 0–10 min transform method (78%) (Table 3). For MTM-I, 3% of the
cases had failed registrations (VRS=3) from chosen transformations. In these cases,
registrations from all time intervals failed. For MTM-I transforms given a VRS score of 2
(11%), there were 8 cases with transforms that provided visually better registrations, yet had
lower overall S values and were not chosen for [11C]PHNO (4 out of 4 cases),
[11C]GR103545 (1 out of 2 cases), and [11C]GR205171 (3 out of 5 cases) (Table 3). For the
remaining 5 studies with chosen transform given a VRS=2, no better transform choices were
observed. Focus-220 studies produced 47% of MTM-I algorithm failures (chosen transforms
visually designated a 2 or 3), HRRT studies had no failures, and HR+ studies contributed
53% of failures.

MTM-II
MTM-II is an extension of MTM-I using multiple reference images to generate additional
transforms. By adding more reference possibilities, the percentage of failed cases from
MTM-I (14%: VRS of 2 or 3) was reduced to 3% with MTM-II; successful registrations
(VRS=1) increased from 86% to 97% (Table 3). Across studies, a PET reference was
selected over the MR reference to generate the best transforms in many cases: Focus-220
(70%), HRRT (71%), and HR+ (74%).

The MR reference was used to generate the chosen transform for 28% of the studies. For 30
out of 34 of these cases, MTM-I and MTM-II provided consistent results, where the same
summed PET image was registered to the MR to yield the chosen transformation.

MTM-II eliminated all transforms with VRS=3 (Table 3). However, in the 4 cases where the
chosen transform was given a VRS of 2, visual comparison suggested that there were better
transform options available.

Discussion
Summary

The Multi-Transform Method (MTM) was developed to optimize PET-MR NHP
registrations across various PET studies including: radiotracers with varying kinetics and
distributions, conditions (e.g. baseline vs. blocking studies), and scanners of different
resolutions. The goal of the method is to provide a robust registration over the wide range of
studies performed. The previous method used, registering the 0–10 min summed PET image
to the MR, would often result in failed transformations: ~23% of the time. Thus, MTM-I
was developed to produce multiple transformations by registering different time intervals (or
smoothing) of the PET dynamic dataset to the MR. Then, the NMI similarity metric was
computed between the resliced PET images and the MR to choose the best transformation.
Chosen transforms were given a visual rating score (VRS), where successful registrations
(good alignment between the resliced PET and MR) were given a score of ‘1-good’ and poor
registrations were given a ‘2-slightly misregistered’ or ‘3-failed’ (Fig. 4). Implementing
MTM-I improved the success of registrations by 8% (from 78% to 86%) when compared
with the 0–10 min registration method.

An extension of the algorithm, MTM-II, was developed to improve upon MTM-I, providing
more possible transformations by registering the summed/smoothed PET images to the MR
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plus additional references, i.e., PET images pre-registered to MR space (PET references).
NMI similarity was computed between the resliced PET images and all of the reference
images. MTM-II further improved success in the chosen transforms by 11% compared with
MTM-I to a 97% overall success rate. In addition, 72% of ‘selected’ transforms were
registered to PET references. A PET reference may have been chosen in cases where the
tracer had a more similar distribution to the PET reference than the MR reference.
Interestingly, good transformations were generated for all registration methods for tracer
studies performed in the HRRT. In summary, successful transformations increased from
77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively,
based on visual rating scores.

Necessity for MTM algorithm
Analysis of dynamic PET data often requires PET-MR image co-registration, where the MR
serves as an anatomical reference for functional PET images. The resulting transformation
must be sufficient to map the entire PET dynamic dataset into the space of the MR,
assuming that the NHP does not move throughout the scan while under anesthesia. Brain
regions of interest (ROIs) are delineated on the MRI or via a template (Black et al., 2004;
McLaren et al., 2009), to generate time-activity curves (TACs). Analysis of TACs, with
different modeling methods, provides estimates of physiological parameters (e.g., flow,
receptor binding, metabolism, etc.). The accuracy of brain ROI TACs are dependent on
accurate spatial alignment between the PET and the MR.

MTM was developed to automate PET-MR registrations, where the choice of transformation
is based on mutual information measures. Prior to MTM, the transformation was determined
by registering the 0–10 min summed image to the MR to generate a transformation. If the
registration failed based on visual inspection, multiple other summed PET images were
created from the dynamic study and registered individually to the MR until a ‘good’
transformation was found. When comparing PET-MR registrations of consecutive time
intervals, it was often difficult to determine visually whether one registration was better than
another. This process was time consuming and tedious. When a transformation is chosen via
the MTM algorithm, the user can perform a visual inspection to check the alignment
between the PET and the MR before ROI TACs are generated.

MTM-I algorithm performance
MTM-I was successful for 83%, 100%, and 79% of Focus-220, HRRT, and HR+ studies,
respectively. MTM-I algorithm failures typically occurred when the distribution of the tracer
was dissimilar to that of the MR image having either low brain uptake or poor brain contrast.
[11C]OMAR contributed 12% of failures (2/17), where all registrations from all time
intervals failed. [11C]GR103545 also contributed 12% (2/17) of algorithm failures where, in
one of two cases, there was a better transformation that was not selected. Both tracers
exhibited low contrast between brain and muscle (Figs. 1C, 1F, and 4). [11C]PHNO
contributed 24% (4/17) of failures, where uptake was high in striatum, but low in the rest of
the brain (Figs. 1B and 1E). All 4 failures for [11C]PHNO had better transform options,
where typically the 0–10 min registration to the MR was visually better. It may be that NMI
may not provide the optimal metric for this particular type of brain distribution and that
registering 0–10 min summed image may be more appropriate for [11C]PHNO studies than
MTM-I.

Forty-one percent (7/17) of MTM-I algorithm failures were attributed to [11C]GR205171,
where 3 of the 7 failures had better transform options. [11C]GR205171 studies were
performed on baboons in the HR+, where images show extra-brain uptake in the salivary
glands and snout (Fig. 2A). Two studies with [11C]carfentanil had similar registration
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failures. For HR+ studies, a contributing factor to the misregistrations may be the scanner
resolution (FWHM=5–6mm), giving rise to partial volume effects.

It is worth noting that there were 9 cases in MTM-I where a suboptimal transformation was
chosen because none of the possible registrations were good (VRS>1). This was due to the
FLIRT-NMI registration algorithm that either failed to converge or converged to a local
maximum. Thus, true MTM-I algorithm failures included the 8 cases where a better
transform option was available upon visual inspection, but were not chosen. For these cases,
it is likely that the algorithm converged to an incorrect registration at a local maximum of
the cost function

MTM-II algorithm performance
MTM-II increased successful registrations to 98% for the Focus-220, 100% for the HRRT,
and 93% for the HR+. Increasing the number of transform options optimized the chances of
generating better transformations, especially when registering to a reference PET image that
may have a more similar distribution to the tracer study of interest. Seventy-two percent of
the selected transforms were from registrations of a summed PET image to a PET reference
image. Between MTM-I and MTM-II, when the MR reference was chosen to generate the
‘best’ transform, there were only 4 of 34 instances when a different summed PET image was
used. When a different summed PET image was chosen for registration to the MR, the next
adjacent time interval was used from MTM-I to MTM-II (i.e., if the MTM-I chosen
transform was 10–20 min PET to MR registration, then the MTM-II chosen transform was
20–40 min PET to MR registration). This means that the quality of registration and the total
NMI scores were very similar between the two transforms. For MTM-I and MTM-II, 12 of
120 studies chose the 0–10 min transform to the MR. The four cases with MTM-I where all
PET registrations to the MR failed (VRS of 3) were eliminated with MTM-II. However, all
4 MTM-II cases with a VRS of 2 had visually better transform options; two had better
transform options from either the ‘0–10 min’ registration method or from MTM-I, and two
had better transform options chosen by neither of the two methods.

AIR pre-registration step
Uptake in the snout, salivary glands, and lungs appeared in the PET FOV, where the brain
comprised only 49% and 30% of the image in the HR+ and HRRT, respectively (Figs. 2A
and 2B). FLIRT-NMI alone with HR+ and HRRT images consistently produced
misregistered results (Fig. 5C). This could either mean that FLIRT converged to a local
maximum that was not registered to the brain, or that the initial search parameters of FLIRT
were not optimized. The AIR algorithm was not sensitive to uptake in non-brain organs and
achieved better registrations than FLIRT-NMI alone (Fig. 5D); however, the FLIRT-NMI
registration was needed to improve the AIR-registered PET image (Fig. 5E). The AIR
registration step was not needed for the Focus-220 images because the head comprised 70%
of the axial FOV.

Choice of registration software
Another widely used registration tool that implements NMI for intermodality registrations is
included in the SPM software (http://www.fil.ion.ucl.ac.uk/spm/doc/, (Collignon et al.,
1995). For human studies, SPM has been used for PET-MR registrations without requiring
skull/muscle editing to achieve a reasonable result. This may not be the case for NHP
registrations, especially with more difficult tracer distributions (Figs. 1B and 1C). Pre-
processing in SPM typically includes smoothing the PET images and segmenting the PET
and MR images to create partitioned images of gray matter, white matter, and cerebrospinal
fluid prior to registration. The segmentation step may be nontrivial for PET images with
activity in non-brain organs in the FOV or nonuniform distribution within brain tissue
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classes (Figs. 1B, 1C, 2A, 2B). It remains to be tested whether the SPM registration
implementation of NMI can handle the various tracer distributions for NHP PET studies, but
there is potential for integrating SPM registrations within the MTM algorithm.

Caveats of MTM algorithm design
To design the MTM algorithm, a number of decisions were made. For instance, the time
intervals for the PET image were arbitrarily chosen to cover the entire dynamic PET scan,
avoid overlap in time intervals, and maintain similar number of counts as the tracer decays
over time. The intervals increased from ten, twenty, and thirty between 0–20, 20–60, 60–120
min, respectively.

Next, the choice of smoothing (3×3×3 voxel FWHM Gaussian filter) was made for the
Focus-220 images, but not the HR+ or HRRT images that had poorer resolution (Fig. 2).
Because the Focus-220 images are of higher resolution (FWHM=1–2 mm), reconstructed
images tended to be noisy, especially for tracers that are poorly distributed in the brain (Figs.
1B and 1C). Without smoothing, for initial evaluations with MTM-I, it was difficult to
achieve a good registration at any time interval. The idea was that creating additional
smoothed versions of the PET images would helpful for the FLIRT-NMI algorithm (Figs.
1D–F). Smoothing was helpful for 23% [11C]GR103545, 29% of [11C]OMAR, and 42% of
[11C]PHNO studies. No transforms from smoothed PET-MR registrations were chosen for
[18F]FPEB because the images were less noisy and generally had high brain to extra-brain
contrast and high gray/white matter contrast. [18F]FPEB binds to metabotropic glutamate-5
receptor, abundant in cortical gray matter. In addition, radiotracers labeled with the 18F
isotope tend to have less noise due to a longer half-life than those labeled with 11C (110 min
vs. 20 min, respectively). Although smoothing was not required for [18F]FPEB registrations,
26% of all Focus-220 studies with MTM-I chose transformations created by the registration
of smoothed PET images to the MR. Another approach would be to try smoothed versions
of the MR image to closer match the resolution of the PET images.

A visual rating score (VRS) was given for each transform, by applying it to the PET image
that was used to create that transform after registration to the MR. Two authors, CS and
DW, adept at assessing NHP PET-MR registrations, defined the rating system and acted as
raters. To test the reliability of the rating system, the individuals independently scored five
of the same Focus-220 studies. When VRS were compared between the two, there was
100% agreement.

For MTM-II, PET references were created from registered studies of the same animal.
Appropriate PET references were chosen for each NHP for MTM-II. The criteria used for
this decision was based on availability and range of tracer studies for the animal. MTM-I
was utilized to choose the appropriate transform and reslice the PET image that was used to
generate it into MR space (pre-registered to the MR) with a VRS of 1. The range in types of
PET references varied across scanners (e.g., an individual NHP was scanned in the
Focus-220 with [11C]PHNO and the HRRT with [11C]P943), and across studies (e.g., an
individual NHP participated in both an [18F]FPEB and an [11C]OMAR study). Some of the
rhesus monkeys were scanned in both the HRRT and Focus-220 scanners, and some were
scanned in the Focus-220 only. Therefore, a set of PET reference images was chosen for
each animal, independent of scanner type. The baboons were primarily scanned on the HR+,
and were limited to the studies performed on that scanner in terms of number PET reference
images.
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Extensions of MTM algorithm
The MTM algorithm is not limited to the choice of PET time intervals, references, or level
of smoothing used in this study. MTM can obviously be extended to create more
transformation possibilities. For instance, overlapping times (e.g., 0–30 min and 10–30 min)
could be used to register to the MR image to generate another transform. In addition, using a
summed imaged from the full 0–120 min scan period was tested with MTM-I to create an
additional transform. This approach was applied for a subset of scans that included all cases
where 1) MTM-I failed (n=17), and 2) the 0–10 min PET-MR transform was chosen for
both MTM-I and MTM-II (n=12). The 0–120 min PET-MR transform was only chosen as
best once of the 29 re-processed studies. The additional transform did not reduce the number
of failures based on visual inspection (subset 1), and the 0–10 min PET-MR transform was
still chosen as optimal (subset 2). For these data, the 0–120 min summed PET image was not
the best choice for registration to the MR. However, given the flexibility of the MTM
algorithm, there is no disadvantage to include this additional PET image in producing the
possible transforms.

T1-weighted MR images were used for this study, but if available, other MR sequences,
such as T2-weighted MR images, may be useful as an additional reference. Registering the
PET images to the full MR image, including the skull and muscle outside of the brain, was
also considered as an additional reference image. The ability to register directly to the entire
MR image would avoid the tedious step of skull/muscle stripping (although this must only
be performed once per animal). The utility of unstripped MR images was investigated for
one NHP with MTM-II using 2 reference images: the skull-and muscle-stripped MR brain
(R1) and the whole head MR (R2) for [11C]AFM (n=3) and [18F]FPEB (n=3) studies
performed in the HRRT and Focus-220 scanners, respectively. Preliminary MTM-II results
in 6 studies still chose transforms from PET images registered to the skull/muscle stripped
MR. Upon visual inspection, registrations with all summed PET images to the whole head
MR were failures (VRS of 3). Non-brain features in the MR image can increase the
probability that intensity-based registration algorithms would converge to incorrect local
maxima. For example, the muscles around the head and the gray matter have very similar
MR voxel intensities, but typically have dramatically different PET activities, depending on
the tracer.

To strengthen MTM-II, for animals that have participated in several studies, it may be
possible to generate PET reference templates in MR space. For example, if a monkey
participated in a few control and blocking studies for a given tracer, MTM-I would be used
to choose the best transform and image to reslice the images into the NHPs MR space for
each case. Then an averaged PET reference can be created for each of the control and
blocking conditions. In addition, an averaged PET reference can be created for many
different tracers with various distributions.

In this study, a set of PET references from each animal was used in MTM-II. However, this
is not possible for NHPs with no previous studies. PET references from other NHPs may be
helpful for the case of having a new animal participating in a new tracer study. In the event
were MTM-I fails to produce a good transform, it may be possible to use MTM-II to
perform an affine (12-parameter) registration to a different monkey’s set of PET reference
images to acquire a useful transformation.

Limitations of MTM algorithm
The MTM algorithm works under the assumption that the NHP does not move for the entire
duration of the scan while under anesthesia. For example, if the MTM algorithm chooses a
transform from registering an early PET image to the MR (i.e., T10–20), and the monkey’s
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head moves as little as a few millimeters half-way through the scan, the concentration values
in the TACs can be as much as 15% wrong in a larger region and as much as 25% in a
smaller region in an infusion study. This example was based on an infusion study with
[18F]FPEB where the animal’s head moved during the equilibrium period. In order for the
MTM algorithm to work, the image must be realigned or motion-corrected. Otherwise,
separate registrations may need to be performed to correct the post-movement portion of the
images.

Another limitation of the MTM algorithms is computation time. Using a single processor,
MTM-I requires 20–30 min, whereas, MTM-II requires one hour or more, depending on the
number of PET images and references images being registered. Further, although the MTM
algorithm has been designed to be applied across a variety of PET studies, one must not
assume that the chosen transform to the MR is optimal in all cases (i.e., [11C]PHNO
studies). The final transform should be visually inspected for registration quality.

The absolute accuracy of the final registration cannot be determined for real data. In
principle, a careful simulation of dynamic PET data can be used to assess the absolute
accuracy of a registration. Studies have been published to test the accuracy of different
registration algorithms by generating human PET brain data via a segmented MR and
applying known transformations, applying the registration algorithms, and measuring the
error between the known and estimated transforms. (Davatzikos et al., 2001; Kiebel et al.,
1997). To simulate the human PET data, relative concentration values were assigned to gray
matter, white matter, and cerebrospinal fluid, smoothed to the resolution of the scanner, and
noise was added. However, simulating PET images for NHP brain data to test the MTM
algorithms would additionally require knowledge of tracer kinetics and distribution for
various tracers throughout the scan, i.e., in brain and non-brain tissues. This would be
particularly challenging for tracers that distribute in the muscle that surrounds the brain and
in other organs visible in the image FOV (Figs. 1B, 1C, 2A, 2B).

Conclusions
The MTM algorithm has been developed with the goal of producing a robust PET-MR
registration method for nonhuman primate PET studies. Normalized mutual information was
used to compute a similarity metric to choose the optimal transformation, where a group of
transformations were created by registering PET images of different time intervals to the
MR or PET reference images. MTM-I chosen transforms increased the success of
registrations over the conventional method (registration to a 0–10 min image), however,
MTM-II proved to be more robust for a wide range of PET studies. The MTM algorithm can
be extended by using alternate time intervals, degrees of smoothing, or PET references, to
work across many different types of PET studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A PET-MR registration algorithm is proposed for nonhuman primate brain
studies.

• Transforms from our original method often resulted in misaligned PET-MR
images.

• The algorithm was tested in 120 datasets, and transforms were assessed visually.

• Successful transforms improved from 78% to 97% with the new registration
method.
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Fig. 1.
Examples of PET tracer distribution for the Focus-220 scanner (10–20 min post-injection).
A. [18F]FPEB images have good gray/white matter contrast and low extra-brain uptake B.
[11C]PHNO images are noisy with high uptake in the striatum compared to the rest of the
brain. C. [11C]OMAR images have high noise and high extra-brain uptake. D, E, and F are
post-smoothed (3×3×3 voxel FWHM Gaussian filter) versions of A, B, and C, respectively.
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Fig. 2.
Sagittal PET images from 3 scanners. A. HR+ image of [11C]GR205171 (FWHM=5–6 mm,
FOV=128×128×63, voxel size=2.06×2.06×2.4 mm) B. HRRT image of [11C]AFM
(FWHM=2–3 mm, FOV=256×256×207, voxel size=1.2×1.2×1.2 mm) C. Focus-220 image
of [18F]FPEB (FWHM=1–2mm, FOV=256×256×95, voxel size=0.95×0.95×0.80 mm). The
larger axial FOV of the HRRT (25.5 cm) and HR+ (15.2 cm) included more non-brain
structures compared with the Focus-220 image (7.6 cm).
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Fig. 3.
Multi-Transform Method (MTM) algorithm. A. Registration of a PET image (Pi) to a
reference image (Rj) to yield transforms (Tk) where i=1,..,nP, j=1,…,nR, and k=1,…,nPxnR.
B. Apply each Tk transform to each Pi and compute NMI similarity (Nijk) between resliced
PET (Pik) and each reference, Rj. See Table 1 for example of selection of the optimal
transform.

Sandiego et al. Page 19

Neuroimage. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Fig. 4.
Visual rating scores from the study example in Table 1. Transforms were used to reslice the
10–20 min post-smoothed PET image (3×3×3 voxel FWHM Gaussian filter) into MR space
and were given a visual rating score (VRS) for one monkey study with the tracer
[11C]GR103545 on the Focus-220. The grid with increments of 25 pixels is shown for
visualization. A. MR reference image, R1. B. T40–60s was designated a VRS=1 where there
is good alignment between the PET and MR images. C. T90–120 was designated a VRS=2
where the PET and MR images are slightly misaligned with a 5º rotation about the frontal tip
of the brain. D. T0–10 was designated a VRS=3, where the transform produced a failed
registration.
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Fig. 5.
The AIR initialization registration step was helpful for HR+ and HRRT images. The
following are registration examples of A. [11C]P943 PET HRRT image and the B. MR
image. A. and B. were registered using C. FLIRT-NMI algorithm D. AIR algorithm, and E.
AIR+FLIRT-NMI algorithms. Notice that FLIRT-NMI produced a failed registration, and
AIR produced a misregistered, but a slightly better registration. The AIR-registered image,
D, was then re-registered to the MR with FLIRT-NMI. The product of the two
transformations produced a better registration, as shown in E. AIR alone was not sufficient
to produce a quality registration.
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