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Abstract

Network-based analyses of high-dimensional biological data often produce results in the form of
tree structures. Generating easily interpretable layouts to visualize these tree structures is a non-
trivial task. We present a new visualization algorithm to generate two-dimensional layouts for
complex tree structures. Implementations in both MATLAB and R are provided.
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1 Introduction

Network-based analyses of high-dimensional biological data often produce results in the
form of tree structures [1, 2, 3, 4, 5, 6]. Visualizing these tree structures in an easily
interpretable layout is a non-trivial task. Existing methods that generate automatic layouts
include circular layout with various ordering schemes, spring embedding [7],
multidimensional scaling [8], and high-dimensional embedding [9].

Circular layout algorithms place nodes on a circle with equal spacing. Various schemes can
be used to determine the order of the nodes, such as ordering by node degree, or ordering by
spectral analysis to minimize edge crossings. These algorithms are easy to implement, but
the resulting layouts are diffcult to interpret.

Spring embedding produce graph layouts by employing principles of mechanical systems.
Edges in a graph are modeled by springs. Nodes are connected by the springs, creating
attractive and repulsive forces between each pair of nodes. Node pairs that are not adjacent
are connected by looser springs. Starting from an initial layout, an iterative algorithm is used
to find the layout that minimizes the overall potential energy. Depending on the initialization
scheme and the iterative optimization algorithm, a layout generated by spring embedding
may represent a local minimum. Consequently, multiple runs of spring embedding may
produce different layouts.
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Both multidimensional scaling and high-dimensional embedding derive a distance matrix
from the graph, and then use either optimization or principle component analysis to
determine a layout. These two approaches generally produce easily interpretable layouts for
relatively simple tree structures. However, when visualizing complex tree structures, nodes
can overlap.

We present a new algorithm, TreeVis, for visualizing tree structures. TreeVis generates a
layout that emphasizes the longest path and major branches of a tree structure. The
algorithm first rearranges the nodes in the longest path into an arch-like shape. Then, the
remaining nodes are sequentially appended using a modified Fruchterman and Reingold
graph layout algorithm [10], so that smaller branches are oriented pointing outwards from
the arch that represents the longest path.

There are several existing toolboxes for graph visualization, such as Cytoscape [7],
Graphviz [11], RGraphviz, and Graphlet [12], implemented in Java, C++/GTL and R. Since
MATLAB is extensively used in analyzing high-throughput bioinformatics data, we
implemented TreeVis using MATLAB. We also provide an R implementation.

The TreeVis algorithm emphasizes on the longest path and major branches of a tree
structure. Different from most existing visualization algorithms that determine the
visualization positions of all nodes at the same time, TreeVis orders the tree nodes and
visualizes them sequentially.

The ordering of the tree nodes is derived as follows. TreeVis breaks the tree into chains of
nodes. The longest chain is defined as the main chain. Chains that are directly connected to
the main chain are defined as the side chains of the main chain. For complex tree structures,
each side chain may also have its own lower level side chains. Tree nodes are arranged in an
order such that nodes in the main chain come first, followed by nodes in the side chains of
the main chain, and then the lower level side chains. An example is shown in Figure 1. In
Figure 1(a), there are three longest chains of equal length. The main chain is randomly
chosen from them. The ordering, shown in Figure 1(b), starts with the main chain, which is
composed of nodes 1 to 9, followed by the side chains. Node 10 is a side chain attached to
node 3. Nodes 11, 12, 14, 15 constitute a side chain attached to node 5. Nodes 16 and 17 are
two side chains attached to node 7. After the side chains of the main chain are included,
lower level side chains are appended, i.e. node 13 is a lower level side chain attached to
node 12.

After ordering the tree nodes, TreeVis rearranges nodes in the main chain on an arch-like
curve, with unit distance between adjacent nodes. The remaining nodes are appended one at
a time, according to the ordering defined above. A modified Fruchterman and Reingold
algorithm [10] is used to determine the position of a new node to be appended. Between the
new node and each existing node in the layout, we assume a repelling force, which is
inversely proportional to their distance. Each edge is assumed to be a string whose length is
less than or equal to unit distance. Since the new node is attached to one of the nodes whose
positions are already determined, the position of the new node is within a unit radius disk of
the node it is appended to. TreeVis exhaustively examines all positions within that unit disk,
and place the new node at the position where it is under balanced forces.

As a result of the above procedure, the TreeVis layout always has an arch-like backbone,
with smaller branches oriented pointing outwards from the backbone. One example is shown
in Figures 1(a). TreeVis is a deterministic algorithm, meaning that multiple runs of TreeVis
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on the same tree structure will produce the same layout. We have found this method
favorable when visualizing complex tree structures with relatively large numbers of nodes.

We have applied TreeVis to visualize trees in several recent publications, in which the
number of tree nodes ranged from 20 to 300 [3, 4, 6]. Here, we provide the TreeVis result
for a complex tree, which contains 2491 nodes. The tree is derived from the methylation
data of 2491 samples generated by The Cancer Genome Atlas (TCGA). The samples are
composed of cell lines and 12 cancer types. We selected 200 CpG sites using conditional
correlation [13], and used the methylation data of those CpG sites to build a minimum-
spanning tree. The tree describes the similarities among the samples according to their
methylation status of the selected CpG sites. TreeVis took the the 2491*2491 adjacency
matrix of the tree as input, and automatically produced the layout shown in Figure 2. When
visualizing the tree, we used different colors for different cancer types. Due to the large size
of the tree, nodes inevitably overlapped. However, the clustering according to tissue types is
evident.

4 Conclusion

For bioinformatic analyses that produce tree structures, visualization is essential to the
interpretation of the results. We present a new visualization algorithm, TreeVis, to generate
easily interpretable and visually appealing layouts for complex tree structures.
Implementations in both MATLAB and R are available at http://odin.mdacc.tmc.edu/~pgiu/
software/TreeVis/index.htm
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Figure 1.

(a) An example tree structure visualized by TreeVis; (b) TreeVis constructed the layout by
sequentially appending nodes to the main chain, which is the longest path. The node
ordering used when TreeVis generated the layout is shown here. Vertical lines separate main
chain and side chains.
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Figure 2.
TreeVis generated visualization for a complex tree structure that contains 2491 nodes. Each

node corresponds to one cancer sample, collected by The Cancer Genome Atlas (TCGA)
and profiled using Illumina methylation array. The 2491 samples are composed of cell line
controls and 12 different cancer types. The tree structure describes the similarities among
the samples in terms of methylation.
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Table 1

TCGA abbreviation of cancer types.

GBM
LAML
KIRC
KIRP
LUAD
LUSC
STAD
READ
COAD
BRCA
UCEC
ov

Glioblastoma multiforme

Acute myeloid leukemia

Kidney renal clear cell carcinoma
Kidney renal papillary cell carcinoma
Lung adenocarcinoma

Lung squamous cell carcinoma
Stomach adenocarcinoma

Rectum adenocarcinoma

Colon adenocarcinoma

Breast invasive carcinoma

Uterine corpus endometrioid carcinoma

Ovarian serous cystadenocarcinoma
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