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Abstract
Little is known about the neural correlates of within-person variability in cognitive performance.
We investigated associations between regional brain volumes and trial-to-trial, block-to-block, and
day-to-day variability in choice-reaction time, and episodic and working memory accuracy.
Healthy younger (n = 25) and older (n = 18) adults underwent 101 daily assessments of cognitive
performance, and their regional brain volumes were measured manually on magnetic resonance
images. Results showed that smaller prefrontal white matter volumes were associated with higher
block-to-block variability in choice-reaction time performance, with a stronger association
observed among older adults. Smaller volumes of the dorsolateral prefrontal cortex covaried with
higher block-to-block variability in episodic memory (number-word pair) performance. This
association was stronger for younger adults. The observed associations between variability and
brain volume were not due to individual differences in mean performance. Trial-to-trial and day-
to-day variability in cognitive performance were unrelated to regional brain volume. We thus
report novel findings demonstrating that block-by-block variability in cognitive performance is
associated with integrity of the prefrontal regions and that between-person differences in different
measures of variability of cognitive performance reflect different age-related constellations of
behavioral and neural antecedents.
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Introduction
Much attention has been paid to individual differences in cognitive performance and age-
related differences therein (Craik and Salthouse, 2008). However, less is known about intra-
individual variability in cognitive performance, which is defined as lawful but transient
within-person changes in behavior within a defined period (Nesselroade 1991) and which
can be observed across a wide range of tasks (Hultsch et al., 2008; MacDonald et al., 2006;
Rabbitt et al., 2001). Our ignorance is even greater when it comes to the neural
underpinnings of intra-individual variability in cognitive performance (MacDonald, Li, et
al., 2009; MacDonald et al., 2006).

For all its apparent simplicity, the concept of intra-individual variability in cognitive
performance can be approached in many meaningful ways. Speed and accuracy
characteristics of performance may fluctuate on a yearly, monthly, daily, hourly, or
momentary basis, thus demanding examination on various scales, with a wide range of
resolution (Boker et al., 2009). Moreover, selection of scale is not just a decision about
measurement as, depending on the time scale, variability may reflect different behavioral
and neural antecedents (Boker et al., 2009; Lindenberger and Oertzen, 2006; MacDonald,
Li, et al., 2009; Rabbitt et al., 2001). For example, trial-to-trial variability in performance on
simple reaction time (RT) tasks may reflect lapses of attention (Bunce et al., 1993; West et
al., 2002; Williams et al., 2005) and admixture of neural noise to task-related processes
(Bäckman et al., 2006; Li et al., 2001; MacDonald, Cervenka, et al., 2009). Such factors
may also induce variability in performance across blocks of trials, but block-to-block
variability may additionally reflect influences such as search and selection of optimal
strategies (Allaire and Marsiske, 2005; Li et al., 2004; Shing et al., 2012; Siegler, 1994).
Day-to-day variability in cognitive performance may stem from fluctuations in non-
cognitive factors, such as stress (Sliwinski et al., 2006) or motivation (Brose et al., 2010).
Tasks may also vary in the degree to which they tap different antecedents of variability in
cognitive performance. Simple RT tasks present relatively little opportunity for exploration
of strategies. In contrast, working memory (e.g., Shing et al., 2012) and episodic memory
(e.g., Kirchhoff, 2009) tasks provide ample room for within-subject differences in strategies,
which may contribute to performance variability.

In sum, intra-individual variability in cognitive performance is not a unitary construct
(Allaire and Marsiske, 2005; Boker et al., 2009; Lindenberger and Oertzen, 2006;
MacDonald, Li, et al., 2009), and its heterogeneity should inform the search for neural
correlates of intra-individual variability. However, extant studies on brain correlates of
variability in cognitive performance have focused almost exclusively on fluctuations in
response latency across trials of simple and choice RT tasks. These studies report that higher
trial-to-trial variability in RT is associated with smaller volume (Anstey et al., 2007;
Walhovd and Fjell, 2007) and lower integrity of white matter in frontal, parietal, temporal,
and central brain regions (Bunce et al., 2007; Fjell et al., 2011; Moy et al., 2011; Tamnes et
al., 2012). In a related vein, variability in finger tapping is associated with white matter
integrity (Ullén et al., 2008). Although at least two studies (Moy et al., 2011; Ullén et al.,
2008) failed to observe significant associations between grey matter volume and variability,
other research suggests that trial-to-trial variability may be linked to prefrontal cortex
integrity. For example, individuals with lesions in the dorsolateral prefrontal cortices
(DLPFC) display greater variability in performance on simple and complex RT tasks than
patients with orbitofrontal or non-frontal lesions and healthy controls (Stuss et al., 2003). In
primates, direct pharmacological manipulations of the DLPFC affect trial-to-trial variability
in saccade response time (Pouget et al., 2009). In addition, individual differences in
cognitive variability have been linked to activation in the attentional control network,

Lövdén et al. Page 2

Neuroimage. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



including the prefrontal cortices, in a number of functional imaging studies (Bellgrove et al.,
2004; Prado et al., 2011; Simmonds et al., 2007).

The extant literature contains no studies of neural correlates of block-to-block variability in
the accuracy of performing complex tasks geared to assess working memory and episodic
memory. It is therefore unknown whether the association between white matter integrity and
variability is unique for RT tasks and to the time-scale of trial-to-trial measurements, or
whether the observed associations generalize to other measures of variability extracted over
different time scales and with indices unrelated to speed of response. We also note that
slower performance fluctuations, similar to block-to-block variability, are confounding
many measures of trial-to-trial variability used in previous reports. Hence, there is a need for
a more systematic and nuanced investigation of the neural underpinnings of variability in
cognitive performance.

In this study, we address the outlined lacunae in knowledge by taking advantage of a unique
data set from the COGITO study (Schmiedek, Lövdén, et al., 2010), an investigation of
younger and older adults who underwent 101 daily assessments of cognitive performance.
The COGITO study presents an opportunity to follow methodological recommendations
(e.g., Boker et al., 2009), and simultaneously examine and directly compare intra-individual
and inter-individual variability on three nested time scales: trial-to-trial, block-to-block, and
day-to-day. In the COGITO study, we assessed cognitive performance at various levels of
complexity, ranging from choice-reaction time (CRT) to working and episodic memory
accuracy. The CRT task allowed for estimation of all three levels of variability, while the
accuracy tasks allow for estimation of block-to-block and day-to-day variability. To
examine neural substrates of cognitive variability, we measured volumes in several brain
regions that differed in their putative relevance to the cognitive tasks.

We based our prediction on the empirical review as well as the theoretical link between
prefrontal cortex function and transient failures of cognitive control (Miller and Cohen,
2001; Weissman et al., 2006), which have been related to trial-to-trial variability (e.g., West
et al., 2002; Williams et al., 2005). In addition to the reviewed evidence, findings link white
matter integrity to speeded performance (e.g., Espeseth et al., 2006; Bucur et al., 2008;
Kennedy & Raz, 2009; Bender & Raz, 2012) suggesting that white rather than gray matter
of the PFC would be relevant to variations in speed. We thus hypothesized that trial-to-trial
and block-to-block variability in speed-based indices of CRT performance would be
associated specifically with the prefrontal white matter volume. In addition, we predicted
that greater trial-to-trial and block-to-block variability in accuracy of cognitive performance
would be associated with smaller frontal gray matter volumes, but that no associations
between day-to-day variability in cognitive performance and brain volume would emerge.
As the association between trial-to-trial variability in RT and white matter integrity have
been reported to increase in old age (Fjell et al., 2011), this association may emerge only in
old age due to correlated individual differences in decline of variability and white matter
integrity. Thus, we predicted such an increase with age group for trial-to-trial and block-to-
block variability of CRT performance. We assumed that block-to-block variability in
working and episodic memory accuracy might contain larger influence from search and
selection of optimal strategies. We expected that such adaptive influences on variability of
cognitive performance might mask the predicted age-related increase in the association
between variability of cognitive performance and brain volume.
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Material and Methods
Participants

Participants were recruited through newspaper advertisements, word-of-mouth
recommendations, and fliers circulated in Berlin, Germany (see Schmiedek, Lövdén, et al.,
2010 for details). The main COGITO study involved 101 younger (aged 20–31 years) and
103 older adults (aged 65–80 years). Out of these participants, 30 younger and 27 older
individuals volunteered and were eligible for magnetic resonance imaging (MRI). To be
eligible, participants had to report being right-handed, have normal or corrected-to-normal
vision, and report no cardiovascular disease (except treated hypertension, recorded in seven
older adults), diabetes, neurological or psychiatric conditions, use of anti-seizure or
antidepressant drugs, or drug or alcohol abuse. Scores on the Mini-Mental State
Examination (Folstein et al., 1975) were all above 25. Based on evaluations of the
anatomical images by a clinical neurologist, one younger and six older adults were excluded
due to various brain abnormalities, and one older participant was excluded from this study
because of significant movement artifacts. Four younger and two older participants dropped
out during the course of the study.

Thus, the sample with complete data consisted of 25 younger (13 women/12 men) and 18
older (9 women/9 men) adults. Descriptive statistics at pretest (see Table 1) showed that the
sample displayed the typical age-related differences: lower perceptual speed (Digit-Symbol
Substitution; Wechsler 1981) and higher vocabulary (Spot-a-Word; Lindenberger et al.,
1993) scores in the older participants. The age groups were comparable on self-reported
years of education. Relative to the mean Digit-Symbol scores reported in a meta-analysis
(Hoyer et al., 2004), the sample was less positively selected (about 1.1 SD for the younger
and 0.6 SD for the older group) than typical samples in cognitive aging research.

Participants received an honorarium between 1450 and 1950 Euro for the total project
participation, depending on the number of completed sessions and their pace of completing
the longitudinal phase of the study. The ethical review board of the Max Planck Institute for
Human Development, Berlin, Germany, approved the behavioral parent study, and the
review board of the Otto-von-Guericke University of Magdeburg, Germany, approved the
imaging study. Written informed consent was obtained prior to the investigation.

Procedures
The general design of the study included an extensive pretest assessment, an average of 101
daily assessments of cognitive performance, and an extensive posttest assessment (see
Schmiedek et al., 2010 for a detailed description).

Pretest – posttest assessment—Participants underwent 10 days of behavioral pre-
testing in group sessions that lasted 2–2.5 hours. Measurements consisted of self-report
questionnaires, cognitive tasks included in the daily phase, and a number of covariates and
transfer tasks (for a detailed description, see Schmiedek, Lövdén, et al., 2010). The 10
posttest group sessions (1.5–2 hours each) consisted of re-administration of the pre-test
cognitive tasks and additional self-report measures.

The pre-test brain-imaging session was conducted after the behavioral pretest and
immediately before the daily assessment phase; the post-test images were acquired shortly
after the completion of the behavioral posttest. Magnetic resonance images were acquired
using a GE Signa LX 1.5 Tesla system (General Electric, Milwaukee, WI) with actively
shielded magnetic field gradients (maximum amplitude 40 mTm−1). The MRI protocol
included a T1-weighted sagittal 3D scan (contrast-optimized spoiled gradient-echo
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sequence, 124 slices, slice thickness = 1.5 mm, FOV 250 × 250 mm2; 256 × 256 matrix; TE
= 8 ms; TR = 24 ms; flip angle = 30°). In addition, diffusion-weighted images were
collected and functional MRI images were acquired during the performance of one
perceptual speed, one working memory, and one episodic memory task. Only data from the
T1-weighted images are reported here.

Daily assessment phase—Participants practiced daily for one hour on individual
computerized testing stations, up to six participants per lab room. The task battery consisted
of three working memory, three episodic memory, and six perceptual speed tasks. Sessions
were scheduled on an individual basis on up to six days a week. At the end of each session,
participants received feedback on their performance on all tasks, including average
accuracies and reaction times.

The practiced perceptual speed tasks were three CRT tasks (odd vs. even numbers;
consonants vs. vowels; symmetric vs. asymmetric figures) and three comparison tasks (two
strings of digits; two strings of consonants; two three-dimensional figures). In the episodic
memory tasks, participants had to memorize word lists, number-word pairs, or object
positions in a grid. Working memory tasks were adapted versions of the alpha span,
numerical memory updating, and spatial n-back tasks. To reduce the number of tasks in this
study, and thus to avoid the need for a conservative alpha level correction that may
compromise statistical power, while still maintaining heterogeneity of the abilities tapped by
the task, we restricted the analyses to tasks with numerical content. That is, we focused on
the numerical CRT task (odd vs. even numbers), the numerical working memory task
(memory updating), and the numerical episodic memory task (number-word pairs; for
details regarding the other practiced tasks see Schmiedek, et al., 2010).

Stimuli presentation times varied during the pre-test administration, thus presenting an
opportunity to estimate time-accuracy functions, which describe a person’s accuracy as a
function of presentation time (PT). To optimize the cognitive challenge of these tasks across
individuals, while maintaining motivation, the time-accuracy information was used for
tailoring the difficulty of the subsequently practiced tasks by adjusting presentation time for
each individual from the start of the micro-longitudinal practice phase. Specifically, for each
memory task and each individual, exponential time-accuracy functions were fitted to mean
accuracies for the different PT conditions at pretest. The functions included three freely
estimated parameters, for onset, rate, and asymptote, as well as a lower asymptote parameter
fixed to different values for each task (.10 for memory updating and .00 for the number-
word pairs task). The fitted values from these functions were used to choose PTs that were
clearly above random guessing but below the upper level of performance, which was
defined by the midpoint between the lower asymptote level and perfect accuracy (e.g., (.
10+1.0)/2=.55 for memory updating and .50 for number-word pairs). The minimum level
was defined by the midpoint between lower asymptote level and the upper level (e.g., (.10+.
55)/2=.325 for memory updating and .25 for number-word pairs). The PT was chosen so that
the predicted performance level based on the time-accuracy function was between the
minimum and the upper levels. If performance was above the upper level for the second-
fastest PT, then the fastest PT was chosen, even if predicted accuracy was below the
minimum level for the fastest PT. For the CRT, a similar procedure was used to individually
define fast and slow masking times for each participant. The fast masking time was chosen
based on a medium accuracy level of .625 and an upper level of .75, while for the slow
masking time, those levels were .875 and .95, respectively. PTs and masking times were
kept constant over the daily assessment phase.

In the CRT task, the stimuli were seven lines of the number “8” displayed as on a pocket
calculators. Stimuli were masked with a stimulus that combined this “calculator 8” with
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extending lines in all 10 possible directions. Possible masking times were 1, 2, 4, or 8 screen
cycles (12, 24, 47, or 94 ms). Depending on pre-test performance, two of the masking times
(for fast and slow conditions) were chosen for each participant. Stimuli were “3”, “5”, and
“7”, for the odd and “2”, “4”, and “6” for the even condition. Participants responded by
button presses, indicating as fast as possible whether the stimulus was odd or even. The CRT
task consisted of two blocks, which each consisted of 40 stimuli, 20 for the fast and 20 for
the slow condition, with randomly chosen stimuli out of the two possible response
categories. The basic unit of the dependent variable from this task was the RT to an
individual trial. For this study, we only included individual’s slowest masking condition as
the daily presentation time that we used to compute variability indices, in order to be
consistent with past reports of trial-to-trial variability that have used high-accuracy tasks.
Mean accuracy for the CRT task was .90 (SD = .04) at pretest and .91 (SD = .04) at posttest.

In the memory-updating task, four single digits (in the range of 0 to 9) were presented
simultaneously for 4000ms in each of four horizontally placed cells. After an inter-stimulus
interval of 500ms, eight updating operations were presented sequentially in a second row at
varying horizontal positions. The requested updating operations were additions and
subtractions in the range of −8 to +8. Those updating operations had to be applied to the
memorized digits from the corresponding cells above and the updated results had to be
memorized. Possible presentation times, based on pre-test performance, were 500, 1250, and
2750ms. Inter-stimulus interval was 250ms. At the end of each trial, the four end results had
to be entered in the four cells in the upper row. Eight blocks were included in each daily
session. The basic unit of the dependent variable from this task was the number of correctly
retrieved numbers in a block.

In the number-word pair task, lists of 12 two-digit numbers (randomly drawn) and nouns
(randomly drawn from a pool of plural nouns) in plural case pairs (e.g., “23 dogs”) were
presented sequentially with presentation times individually adjusted based on pre-test
performance. Possible PTs were 1000, 2000, or 4000ms. Inter-stimulus interval was
1000ms. After presentation, the nouns appeared in random order and the corresponding
numbers had to be entered. Two blocks were included in each daily session. The basic unit
of the dependent variable from this task was the number of correctly retrieved numbers in a
block.

Data Pre-Processing
Behavioral data—To separate intra-individual variability from practice-induced
improvements, the data for memory-updating and the number-word pairs tasks were de-
trended using a logistic function. For RTs in the CRT task, the exponential function served
this purpose. The functions were chosen because they are frequently used in the literature to
describe individual learning curves and because graphical inspections of model fit for each
participant indicated that they describe individual trends well. The response data from RT in
the CRT task were truncated at 200 ms and 2500 ms.

Day-to-day variability and block-to-block variability on the episodic and working memory
tasks were separated using multilevel variance component estimation. For the CRT task,
block-to-block variability was additionally separated from trial-to-trial variability using the
same approach. This was necessary because observed variability at higher levels (e.g., day-
to-day variability) partly contains variability at lower levels. For example, even if there were
no systematic performance fluctuations from day to day, the presence of block-to-block
variability would lead to day-to-day fluctuations of the daily means (cf. Rabbitt et al. 2001).
Multilevel models allow estimating the independent contributions of variability at the trial-
to-trial, block-to-block, and the day-to-day level to overall observed day-to-day variability.
Variance components for trial-to-trial, block-to-block, and day-to-day variability were
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estimated separately for each participant using SAS PROC MIXED models with a 3-level
hierarchically nested structure (i.e., containing random effects for days, blocks nested within
days, and trials nested within blocks; the SAS code is available from the authors upon
request). The resulting three variance parameters add up to the total variance of each
participant and can therefore be compared across participants in the same way as observed
variances.

Note that due to this variance partitioning approach, the day-to-day variability indices for
the three tasks reflect only the portion of observed day-to-day variability that denotes
systematic changes of average performance level from one day to another. In addition,
block-to-block variability on the CRT task reflects only systematic changes in average
performance level from one block to another and is not confounded by trial-to-trial
variability, which is separately estimated for this task. The block-to-block variability indices
for the two accuracy tasks (memory updating and episodic memory) may, however, partly
consist of trial-to-trial variability, because this level of performance variability is not
available for these tasks.

To alleviate the skew in the distributions, all day-to-day variability indices, as well as the
block-to-block and trial-to-trial variability measures from the CRT task, were log-
transformed. After these transformations, the distributions for all seven variability indices
were accepted as normal (skewness = 0.92 – 2.06; kurtosis = 0.70 – 5.47).

For memory updating, pretest and posttest mean performance was indexed by averaging
accuracy from the 750ms and 1500ms presentation times as all but one subject were
assigned one of either PT for the micro-longitudinal assessment. For number-word pairs,
mean performance was computed by averaging accuracy from the 1000ms, 2000ms, and
4000ms PTs. For the CRT task, mean performance was based on the mean RT of the trials
with masking times of 2, 4, and 8 cycles. The masking condition with one cycle was not
included because only young adults received this condition. The distributions were
acceptable for all of these measures (skewness = 0.06 – 0.97; kurtosis = 1.30 – 0.46).

To investigate whether the PTs assigned to participants for their daily task completion
affected the estimates of variability, we analyzed the variability measures with one-way
ANCOVAs with PT as the factor separately for the three tasks. For the memory updating
task, a single subject receiving a PT of 3000 ms was included in the group of participants
receiving a time of 1500 ms. The threshold for statistical significance was .05. Pretest
performance was included as a covariate in order to investigate effects of PT on the
variability measures over and beyond effects of performance level, which was the
determining factor for assigning the PTs. None of the variability indices varied significantly
as a function of PT, Fs < 2.41.

Segmentation of regional brain volume—Image processing and manual regional
volumetry are described in detail elsewhere (Raz et al. 2004; Raz et al. 2005). The baseline
and follow-up images were coded, mixed, and assigned randomly to two tracers, who were
blind to the time of acquisition and to the demographic characteristics of the participants.
Reliability of all ROI measures (ICC [2], intraclass correlation for random raters; Shrout and
Fleiss 1979) exceeded .93. The volumes were computed from measured areas of the ROIs
and corrected for intracranial vault (ICV) size with an ANCOVA approach (see Raz et al.,
2004 for details). In addition to the ICV, the following seven ROIs were measured:
dorsolateral prefrontal cortex (DLPFC), orbital frontal cortex (OF), the adjacent prefrontal
white matter (FW), primary visual (calcarine) cortex (VC), the hippocampus (HC), the
caudate nucleus (CD), and the cerebellar hemispheres (CB).
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All estimates of regional brain volume displayed a high correlation between pretest and
posttest measurements (mean r = .97; range = .90 – .99), indicating very high stability of
individual differences over time. For examining associations with cognitive variability, we
therefore averaged these measures over pretest and posttest. Because we had no hypotheses
about hemispheric asymmetries, we also summed the measures across the left and the right
hemispheres. The variables displayed acceptable skewness (−0.01 – 0.35) and kurtosis
(−1.11 – −0.10).

Statistical analyses
We used a regression approach to test our hypotheses of volume-variability associations.
First, we computed the incremental addition of variance in the cognitive variability indices
(R2 change) explained by regional brain volumes, after accounting for the influence of
chronological age. To balance the risk for Type I and Type II errors, we used a threshold for
statistical significance at .0125 (.05/4 measures of variability) for the predicted associations
between block-to-block variability in the three tasks and trial-to-trial variability in the CRT
task and DLPFC and FW volume. We set the correction for multiple comparisons for the
rest of the analyzed association at p = .007 (.05/7 measures). To examine age differences in
the detected associations between frontal brain volumes and block-to-block variability, we
next added the volume × age interaction term to the regression equation, after entering age
and brain volume. Finally, to address whether mean performance accounted for the observed
associations between variability and brain volume we computed the incremental addition of
variance in the cognitive variability indices explained by regional brain volumes, after
accounting for the influence of chronological age and mean performance at pretest and
posttest.

Results
Regional brain volumes and variability in cognitive performance

Higher block-to-block variability in CRT was associated with smaller FW volumes,
R2

Change = 0.147; FChange (1, 40) = 6.96, p = .012. In addition, higher block-to-block
variability in number-word pair accuracy was associated with smaller DLPFC volume,
R2

Change = 0.161; FChange (1, 40) = 16.61, p < .001. The three measures of day-to-day
variability in performance and the measure of trial-to-trial variability in CRT were not
significantly associated with any measure of regional brain volume1, all FChange (1, 40) <
3.20, all ps > .077.

Age differences in association between variability and brain volume
For the measure of block-to-block variability in CRT, addition of the interaction between
FW volume and age produced a significant increment in explained variance; that is, the
association between cognitive variability and prefrontal white matter volume differed
between the age groups, R2

Change = 0.087; FChange (1, 39) = 4.46, p = .041. As evident in the
scatter plots displayed in Figure 1, the association was stronger in the older (r = −.64, p = .
004) than in the younger age group (r = −.16, p = .440). The pattern was the opposite for the
association between DLPFC volume and block-to-block variability on the number-word
task, with younger adults showing a significantly stronger association (r = −.70, p < .001)
than the older group (r = −.15, p = .551), R2

Change = 0.038; FChange (1, 39) = 4.19, p < .047.

1Contrary to the hypothesis, trial-to-trial variability in CRT was unrelated to regional volumes. We further probed this correlation by
extracting trial-to-trial variability from one lexical-decision CRT task and one numerical magnitude CRT task that were administered
at pretest. Importantly, these variability measures did not show unique associations with any regional brain volume after the influence
of age was statistically controlled. Thus, the absence of volume-variability associations for these cognitive measures was not an
artifact of a specific way of computing trial-to-trial variability.
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To probe the robustness of the observed associations, we performed bootstrap analyses
(10000 bootstraps) on the correlation coefficient for the association between block-to-block
variability in CRT and FW volume in the older adults and the correlation coefficient for the
association between block-to-block variability on the number-word task and DLPFC volume
in the younger adults. These analyses confirmed the significance tests reported above: The
95% confidence intervals (estimated with the accelerated bias-corrected percentile method)
indicated significant associations between block-to-block variability in CRT and FW
volume in the older adults (confidence interval = −.84 – −.22) and between block-to-block
variability on the number-word task and DLPFC volume in the younger adults (confidence
interval = −.86 – −.38).

Does mean performance account for the association between variability and brain
volume?

The associations between variability and frontal lobe volumes remained significant after
accounting for mean performance, FChange (1, 38) = 4.48, p = .041 for the association
between FW and block-to-block variability in CRT and FChange (1, 38) = 15.04, p < .001 for
the association between DLPFC and block-to-block variability in number-word memory
accuracy. In line with these results and using the adjusted p =.007, we found no significant
association between any regional brain volume and mean performance on any of the three
cognitive tasks after statistically accounting for the influence of chronological age, all ps > .
048.

Discussion
We observed that smaller prefrontal white matter volumes were associated with higher
block-to-block variability in CRT, especially among older adults. Smaller volumes of
DLPFC were associated with higher block-to-block variability in episodic memory (number-
word pair) performance. This association was stronger in the group of younger adults. The
observed associations between variability and brain volumes were not due to individual
differences in mean performance.

Previous studies, focusing exclusively on trial-to-trial variability in RT tasks, have reported
that greater variability in response speed is correlated with lower volume (Anstey et al.,
2007; Walhovd and Fjell, 2007) and structural integrity (Bunce et al., 2007; Fjell et al.,
2011; Moy et al., 2011; Tamnes et al., 2012) of white matter in several brain regions. In
accord with these results, we observed an association between prefrontal white-matter
volume and variability in response latency on a CRT task. In contrast to previous research,
however, this association was not observed for trial-to-trial variability, but selectively for
block-to-block variability in performance, which has not been assessed in previous studies.
Note that, due to our variance partitioning approach, block-to-block and trial-to-trial
variability are not confounded. That is, block-to-block variability in performance on the
CRT task reflects only systematic changes in average performance from one block to
another. In contrast, most previous studies on the neural correlates of variability in cognitive
performance have confounded trial-to-trial and block-to-block variability. It is conceivable
that fluctuations in frequencies below the trial-to-trial level have contributed to past
estimates of trial-to-trial variability. Thus, the present results are important because they
suggest that white matter volume is associated with variability in performance on cognitive
tasks that draw heavily on speed of responding and that this association may originate from
systematic variations in cognitive performance over blocks of trials, rather than from trial-
to-trial fluctuations. Nevertheless, the failure to detect a significant association between
trial-to-trial variability in performance and regional brain volume should not be over-
interpreted, given the limited sample size in the present study.
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The association between block-to-block variability in the CRT task and prefrontal white
volume was greater in older adults than in their younger counterparts. In accord with a
previous report on associations between variability and white matter integrity (Fjell et al.,
2011), a significant relationship emerged only in the older age group. One interpretation of
this finding is that age-related decreases in prefrontal white matter volume results in
increased variability in performance. There is ample evidence to suggest that inter-
individual differences in brain and behavior in old age reflects, to a considerable degree,
inter-individual differences in rates of age-related decline that are correlated across brain
regions (Raz et al., 2005) and cognitive domains (de Frias et al., 2007; Ghisletta et al., in
press; Lindenberger and Ghisletta, 2009; Tucker-Drob, 2011). As a specific consequence of
this general consideration, normal aging may amplify the covariation between white matter
volume and cognitive performance. Consistent with this view is a recent report that
individual differences in cortical thickness are larger and more predictive of individual
differences in executive control in older adults relative to their younger counterparts
(Burzynska et al., 2011). Similar considerations may apply to cognitive variability. In a
cross-sectional study, regional brain volumes may reflect a multitude of influences related to
genetic, prenatal and perinatal environments, maturation and development. In younger adults
these factors should account for the bulk of the variance, whereas in older age groups, the
differences in brain volumes should reflect, in addition, the influence of aging and age-
related pathology. Thus, brain regions that show accelerated change in the older ages are
more likely to show correlations with cognitive performance. For example, hippocampus
and prefrontal white matter evidence accelerated age-related shrinkage (Raz et al., 2005),
and indeed across multiple studies, hippocampal volume is associated with memory in the
older but not younger adults (Van Petten, 2004). By the same logic, the correlations among
between-person differences in prefrontal white matter volume and cognition are expected to
increase with advanced age, which is what we observed in this study. In summary, we
suggest that the observed age-related increase in the association between prefrontal white
matter volume and block-to-block variability may be driven by developmental covariation
between these two variables (see also Fjell et al., 2011). This interpretation is in line with
empirical findings and conceptual considerations emphasizing the effects of correlated
change on heterogeneity in old age (Hertzog,1985; Hofer and Sliwinski, 2001; Lindenberger
et al., in press; Lövdén and Lindenberger, 2005).

The observed association between block-to-block variability in episodic memory
performance and DLPFC volume, and not any other grey matter volume, in healthy
adulthood is a novel finding. This finding is consistent with the claims that short-term
fluctuations in cognitive performance partially reflect lapses of attention, or transient
failures in cognitive control (West et al., 2002; Williams et al., 2005), and that cognitive
control relies on the dorsolateral prefrontal cortices (e.g. Miller and Cohen, 2001; Weissman
et al., 2006). The observed link between DLPFC volumes and intra-individual variability in
cognitive performance is also in accord with evidence from patients with DLPFC lesions
(Stuss et al., 2003) and with results from work on animal models (Pouget et al., 2009). This
finding, however, contradicts previous reports that fail to observe significant associations
between trial-to-trial variability and grey matter differences as revealed by voxel-based
morphometry (Moy et al., 2011; Ullén et al., 2008). Note also that recent findings indicate
that variability on the millisecond time scale in motor tasks such as tapping may be related
to cognitive performance in a manner that is partly independent from variability in RT
(Holm et al., 2011). These, and other results (e.g., Ullén et al., 2012), suggest that bottom-up
mechanisms (e.g., neural noise), may also induce associations among variability indices of
cognitive performance and brain integrity. That is, our results should not be taken to suggest
that fluctuation of cognitive control is the only source of cognitive variability, and of
associations between variability and indices of brain integrity.
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Of note is that this study differed from its predecessors in the manner of assessing
variability. In the present report, we used accuracy of episodic memory performance across
blocks of encoding and retrieving multiple items. Though such an index may be partly
influenced by trial-to-trial variability, block-to-block variability in accuracy tasks of this
type may to a larger extent reflect influences such as search and selection of optimal
strategies (Allaire and Marsiske, 2005; Li et al., 2004; Shing et al., 2012; Siegler, 1994). The
distinct pattern of age differences in the association between block-to-block variability in
episodic memory accuracy and DLPFC volume, with a significant association in the younger
group only, can be interpreted to support this notion. That is, these results may indicate that
experimentation with strategies influence observed block-to-block variability in episodic
memory accuracy. The lower block-to-block variability in episodic memory accuracy for the
older relative to the younger age group (see Figure 1) further suggests that variability in this
task may partly reflect adaptive rather than maladaptive antecedents of variability. In
addition, follow up analyses indicate that, for the number-word task, mean and block-to-
block variability was positively associated in the group of older adults (rpretest = .39, p = .
109; rpostest = .60, p = .008) but not among younger adults (rpretest = .03, p = .884; rpostest =
−.12, p = .574). These findings strongly suggest that, at least for older adults, variability in
this task has an adaptive component. Individual differences in such adaptive sources of
variability may coexist with differences in other antecedents of variability that may reflect
increased neural vulnerability, such as attentional lapses and neuronal noise. Depending on
the mixture of such sources of variability, and between-subject differences in the various
antecedents of variability, different associations between cognitive variability and brain
volume may emerge. These results thus underscore the heterogeneity of the indices of
variability in cognitive performance, and show that between-person differences in variability
in a particular task may reflect a different mix of antecedents in different groups of
participants (see also Allaire and Marsiske, 2005; Boker et al., 2009; MacDonald, Li, et al.,
2009; Ram, 2005). The negligible associations between day-to-day variability in cognitive
performance and regional brain volumes further demonstrate the heterogeneity of measures
of cognitive variability. This finding is consistent with the notion that such cognitive
variability is governed more by non-cognitive factors (MacDonald, Li, et al., 2009) such as
day-to-day fluctuations in stress (Sliwinski et al., 2006) and motivation (Brose et al., 2010).

This study has several strengths, including the variance partitioning approach to uniquely
estimate variability at different timescales (cf. Rabbitt et al., 2001), reliable and valid
manual measurement of multiple regional brain volumes, and a wide range of different
indices of variability in cognitive performance. However, a few limitations need to be
acknowledged. Our sample was small and positively selected, reflecting recruitment based
on convenience. We also note that we did not assess white matter volumes in the regions
other than the frontal lobes. We therefore cannot determine whether the association between
block-to-block variability in CRT performance with white matter volume is unique for
frontal volume, or whether an association would also emerge for more posterior regions.
Previous research would suggest that this association is not unique to frontal areas (Fjell et
al., 2011; Ullén et al., 2008).

In summary, we have reported the novel results that block-to-block variability in episodic
memory accuracy is related to DLPFC grey matter volume in younger adulthood, and that
block-to-block variability (but not trial-to-trial variability) in CRT performance is related to
prefrontal white volume in older adulthood. We conclude that between-person differences in
multiple measures of variability in cognitive performance tap different constellations of
behavioral and neural antecedents in distinct age groups.
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Highlights

Prefrontal white volume is related to block-to-block variability in reaction time.

Prefrontal cortex volume is related to block-to-block variability in memory.

These associations vary systematically between adult age groups.
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Figure 1.
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Scatter plots of (A) the association between prefrontal white (FW) volume and block-to-
block variability in the CRT task and (B) the association between dorsolateral prefrontal
cortex (DLPFC) volume and block-to-block variability in number-word memory accuracy.
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