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Abstract
Many estimation tasks require Bayesian classifiers capable of adjusting their performance (e.g.
sensitivity/Specificity). In situations where the optimal classification decision can be identified by
an exhaustive search over all possible classes, means for adjusting classifier performance, such as
probability thresholding or weighting the a posteriori probabilities, are well established.
Unfortunately, analogous methods compatible with Markov random fields (i.e. large collections of
dependent random variables) are noticeably absent from the literature. Consequently, most
Markov random field (MRF) based classification systems typically restrict their performance to a
single, static operating point (i.e. a paired sensitivity/Specificity). To address this deficiency, we
previously introduced an extension of maximum posterior marginals (MPM) estimation that
allows certain classes to be weighted more heavily than others, thus providing a means for varying
classifier performance. However, this extension is not appropriate for the more popular maximum
a posteriori (MAP) estimation. Thus, a strategy for varying the performance of MAP estimators is
still needed. Such a strategy is essential for several reasons: 1) the MAP cost function may be
more appropriate in certain classification tasks than the MPM cost function, 2) the literature
provides a surfeit of MAP estimation implementations, several of which are considerably faster
than the typical Markov Chain Monte Carlo methods used for MPM, and 3) MAP estimation is
used far more often than MPM. Consequently, in this paper we introduce multiplicative weighted
MAP (MWMAP) estimation — achieved via the incorporation of multiplicative weights into the
MAP cost function — which allows certain classes to be preferred over others. This creates a
natural bias for Specific classes, and consequently a means for adjusting classifier performance.
Similarly, we show how this multiplicative weighting strategy can be applied to the MPM cost
function (in place of the strategy we presented previously), yielding multiplicative weighted MPM
(MWMPM) estimation. Furthermore, we describe how MWMAP and MWMPM can be
implemented using adaptations of current estimation strategies such as iterated conditional modes
and MPM Monte Carlo. To illustrate these implementations, we first integrate them into two
separate MRF-based classification systems for detecting carcinoma of the prostate (CaP) on 1)
digitized histological sections from radical prostatectomies and 2) T2-weighted 4 Tesla ex vivo
prostate MRI. To highlight the extensibility of MWMAP and MWMPM to estimation tasks
involving more than two classes, we also incorporate these estimation criteria into a MRF-based
classifier used to segment synthetic brain MR images. In the context of these tasks, we show how
our novel estimation criteria can be used to arbitrarily adjust the sensitivities of these systems,
yielding receiver operator characteristic curves (and surfaces).
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1. Introduction
The ability to classify multiple objects (e.g. pixels in an image) simultaneously is essential
for certain estimation tasks. Within a Bayesian framework, each object (“site” in MRF
nomenclature) is modeled as a random variable, and the collection of these random variables
(under minor conditions) is called a Markov random field (MRF). If the random variables
are assumed independent, we can estimate each in isolation. This estimation typically
involves an exhaustive search. For example, obtaining the maximum a posteriori (MAP)
estimate (of a single random variable) entails calculating the a posteriori probability for each
possible class, and then choosing the class with the largest probability. However, if the
random variables are not independent, the entire MRF must be estimated collectively. Since
the number of possible states of the random field is prohibitively large, the exhaustive
approach becomes untenable1. Consequently, more sophisticated schemes, such as
relaxation procedures (Geman and Geman, 1984; Besag, 1986), Monte Carlo methods
(Marroquin et al., 1987), loopy belief propagation (Yedidia et al., 2000), and graph cuts
(Boykov et al., 2001), become necessary. For a comparison of different estimation
procedures see (Dubes et al., 1990; Szeliski et al., 2008).

The capability of adjusting classifier performance (e.g. sensitivity/Specificity) with respect
to Specific classes is essential for many applications — especially in medical imaging. For
example, misclassifying a malignant lesion is typically more egregious than misclassifying a
benign lesion. In situations where the optimal classification decision can be identified by an
exhaustive search, means for modifying classifier performance, such as probability
thresholding or weighting the a posteriori probabilities, are well established (Duda et al.,
2001). Unfortunately, analogous methods compatible with MRFs are noticeably absent in
the literature. Consequently, most MRF-based classification systems restrict their
performance to a single, static operating point (i.e. a paired sensitivity/Specificity).

Though MRFs are pervasive in the computer vision and medical imaging literature —
addressing such tasks such as segmentation (Pappas, 1992; Farag et al., 2006; Awate et al.,
2006; Liu et al., 2009; Scherrer et al., 2009; Marroquin et al., 2002; Bouman and Shapiro,
1994), denoising (Besag, 1986; Figueiredo and Leitao, 1997), and texture synthesis (Paget
and Longstaff, 1998; Zalesny and Gool, 2001) — relatively little work has discussed means
for varying the performance of MRF-based classification systems. To address this
deficiency, we recently presented a generalization — and novel Markov Chain Monte Carlo
realization — of the maximum posterior marginals (MPM) estimation criterion (Monaco and
Madabhushi, 2011). This generalization allows certain classes to be weighted more heavily
than others, thus providing a means for varying MRF-based classifier performance. Like all
Bayesian estimation techniques, MPM estimation is derived by minimizing the expected
value of an underlying cost function. For a given state of the random field, the MPM cost
function is simply the sum of the number of sites that are misclassified. To generalize this
cost function we weighted each misclassification by the type of classification error. Please
see (Monaco and Madabhushi, 2011) for details.

1If a random field contains N random variables, each of which can assume one of L classes, the total number of possible states is LN.
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However, this approach is Specific to MPM estimation, and is not appropriate for
generalizing the very different MAP cost function. For unlike the MPM cost function that
sums the site-wise misclassifications, the MAP cost function yields an identical cost for any
number of misclassifications greater than zero. Thus, a strategy for varying the performance
of MAP estimators is still needed. Such a strategy is essential for several reasons: 1) the
MAP cost function may be more appropriate in certain classification tasks than the MPM
cost function, 2) the literature provides a surfeit of MAP estimation implementations
(Boykov et al., 2001; Dubes et al., 1990; Szeliski et al., 2008; Geman and Geman, 1984;
Besag, 1986), several of which (e.g. graph cuts and ICM) are considerably faster than the
typical Markov Chain Monte Carlo methods used for MPM (Marroquin et al., 1987; Monaco
and Madabhushi, 2011), and 3) MAP estimation is far more prevalent than MPM. (Note that
MAP and MPM should not be confused with the algorithms used to implement them, e.g.
simulated annealing (Geman and Geman, 1984) for MAP and Markov Chain Monte Carlo
(Marroquin et al., 1987) for MPM.)

Aside from our own work, we are aware of very few articles that discuss means for adjusting
MRF-based classifier performance, whether using MPM or MAP estimation. In (Comer and
Delp, 1999) Comer and Delp employed a Markov prior with a term that applied costs to
specified classes. However, they did not discuss this term with respect to varying system
performance, nor did they present it within the rigorous framework of Bayesian cost analysis
(as we do here). In a seminal paper by Besag (Besag, 1986), the author suggested leveraging
a unique property of iterated conditional modes (ICM) to adjust classification results. ICM is
an iterative, deterministic procedure that converges to a local maximum of the a posteriori
probability of a MRF. ICM requires the initial state of the MRF from which to begin the
iteration; the choice of this state determines the local maximum to which ICM converges.
Thus, varying the initial conditions can vary the classification results. However, the different
modes of the a posteriori probability (to which ICM converges) do not necessarily
correspond to meaningful classifications. Thus, this method, though intuitively appealing,
lacks mathematical justification (from the perspective of Bayesian cost).

In this paper, we introduce a generalization of the MAP estimation criteria and present
means for its implementation. Specifically, we demonstrate how multiplicative weights can
be incorporated into the Bayesian cost function that leads to MAP estimation, thereby
biasing the posterior probability to favor certain classes. We refer to estimation using this
new cost function as multiplicative weighted MAP (MWMAP) estimation. Coincidentally,
the same multiplicative weighting can also be applied to the MPM cost function, yielding
multiplicative weighted MPM (MWMPM) estimation. In addition to introducing these novel
estimation criteria, we demonstrate how they can be implemented by modifying existing
estimation schemes (e.g. ICM). Furthermore, we highlight their significance by
incorporating them into two separate classification systems based on MRFs: 1) a system for
detecting cancerous glands in histological sections (HSs) from radical prostatectomies
(Monaco et al., 2009a) and 2) a system for detecting cancerous regions in T2-weighted 4
Tesla ex vivo MRI of the prostate (Viswanath et al., 2012). Over a cohort of 40 digitized
HSs and 15 2D MRI sections, respectively, we illustrate how MWMAP and MWMPM
estimation can be used to vary classification performance, enabling the construction of
receiver operator characteristic (ROC) curves. Finally, to demonstrate the extensibility of
MWMAP and MWMPM to estimation tasks involving more than two classes, we
incorporate these criteria into a MRF-based classifier used to segment synthetic brain MR
images. In this instance, varying classifier performance results in ROC surfaces.

To summarize, the primary contributions of this work are as follows:
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• By incorporating class Specific weights into the MAP and MPM estimation
criteria, we introduce two novel estimation criteria capable of adjusting the
performance of MRF-based classification systems.

• We develop implementations of these criteria by modifying existing realizations of
MAP and MPM estimation (e.g. ICM and MPM Monte Carlo).

• We integrate the MWMAP and MWMPM estimation criteria into three MRF-based
classification systems, demonstrating the ability of each criterion to arbitrarily
adjust system performance.

The remainder of the paper is organized as follows: In Section 2 we review the Bayesian
estimation of MRFs, deriving the MAP and MPM estimation criteria using Bayesian risk
analysis. Section 3 discusses how class-Specific weights can be incorporated into MAP and
MPM, yielding MWMAP and MWMPM. In Section 4 we present implementations of these
novel criteria by modifying current MRF-compatible estimation strategies. In Section 5 we
present experiments to demonstrate how the estimation criteria can be used to adjust the
performance of our systems for detecting CaP (in HSs and MR images) and segmenting MR
brain phantoms. Results of these experiments are provided in Section 6. Section 7 offers
concluding remarks.

2. Review of Random Fields and Bayesian Risk
2.1. Random Field Definitions and Notation

Let the set S ={1, 2, …, N}reference N sites to be classified. Each site s∈S has two
associated random variables: Xs ∈Λ ≡ {ω1, ω2, …, ωL} indicating its state (class) and Ys
∈ℝD representing its D-dimensional feature vector. Particular instances of Xs and Ys are
denoted by the lowercase variables xs ∈ Λ and ys ∈ ℝD. Let X = (X1, X2, …, XN) and Y =
(Y1, Y2, …, YN) refer to all random variables Xs and Ys in aggregate. The state spaces of X
and Y are the Cartesian products Ω = ΛN and ℝD×N. Instances of X and Y are denoted by
the lowercase variables x=(x1, x2, …, xN) ∈ Ω and y =(y1, y2, …, yN) ∈ ℝD×N. See Table 1
for a list and description of the commonly used notations and symbols in this paper.

Let G = {S, E} establish an undirected graph structure on the sites, where S and E are the
vertices (sites) and edges, respectively. A neighborhood ηs is the set containing all sites that
share an edge with s, i.e. ηs = {r : r ∈ S, r ≠ s, {r, s}∈ E}. The random field X is a Markov
random field if its local conditional probability functions satisfy the Markov property: P(Xs
= xs | X−s = x−s)= P(Xs = xs|Xηs = xηs), where x−s = (x1, …, xs−1, xs+1, …, xN), xηs = (xηs(1),
…, xηs(|ηs|)), and ηs(i) ∈ S is the ith element of the set ηs. Note that in places where it does
not create ambiguity, we will simplify the probabilistic notations by omitting the random
variables, e.g. P(x) ≡ P(X=x).

2.2. Bayesian Risk
Given an observation of the feature vectors Y, we would like to estimate the states X.
Bayesian estimation advocates selecting the estimate x̂ ∈ Ω that minimizes the conditional
risk (expected cost)(Duda et al., 2001)

(1)

where E indicates expected value and C(x, x̂) is the cost of selecting labels x̂ when the true
labels are x. In the following subsections we will consider the two most prevalent cost
functions used with MRFs.
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2.3. Maximum a Posteriori Estimation
The most ubiquitous cost function (though this cost is rarely expressed explicitly) is

(2)

where δ is the Kronecker delta. Thus, a cost of 1 is incurred if one or more sites are labeled
incorrectly. Inserting (2) into (1) yields

(3)

Minimizing (3) over x̂ is equivalent to maximizing P(x̂|y). Thus, we have maximum a
posteriori (MAP) estimation, which advocates selecting the x̂ that maximizes the a posteriori
probability.

2.4. Maximum Posterior Marginals
As an alternative to MAP estimation, Marroquin et al. (Marroquin et al., 1987) suggested
using the following cost function

(4)

This function counts the number of sites in x̂ that are labeled incorrectly. Inserting (4) into
(1) yields

(5)

The distributions P(x̂s|y) are called the posterior marginals. Minimizing (5) over x̂ is
equivalent to independently maximizing each of these posterior marginals with respect to its
corresponding x̂s. Hence, this estimation criterion is termed maximum posterior marginals
(MPM).

3. Class Weighted Cost Functions
Both the MAP and MPM cost functions weight each class equally. That is, the cost accrued
from misclassification is identical across all classes. In this section we introduce
generalizations of the MAP and MPM cost functions which provide a means for weighting
certain classes more heavily than others. Specifically, we present the multiplicative weighted
MAP (MWMAP) and MPM (MWMPM) estimation criteria.

3.1. Multiplicative Weighted Maximum a Posteriori (MWMAP) Estimation
To introduce the ability to favor Specific classes, CMAP can be generalized as follows:
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(6)

where α(x) = Πs∈S α (xs) and  are the class dependent weighting functions. Thus,
if the estimate x̂ contains any erroneous labels it accrues a cost of α(x). Note that α(x) can
not assume any arbitrary functional form, but is restricted to the product of the independent
weighting functions α(xs). This restriction is necessary for the tractability of subsequent
derivations.

Before proceeding we introduce a Definition that will prove useful. Let X̃ be a random field
that differs from X only with respect to the following probability measure:

(7)

where Zα = Σx−Ω α(x)P(X=x) is the normalizing constant. Note also that

(8)

We now insert (6) into (1) yielding

(9)

Thus, minimizing RMWMAP(X|x̂, y) is equivalent to minimizing RMAP(X̃|x̂, y); and
consequently, the optimal labeling is the MAP estimate of X ̃. Since, as shown in (8), the a
posteriori probability of X̃ corresponds to the weighted a posteriori probability of X, we
refer to this type of estimation as multiplicative weighted MAP estimation. Note that if α
(xs) ≡ 1, MWMAP estimation reduces to MAP estimation.

3.2. Multiplicative Weighted Maximum Posterior Marginals (MWMPM)
Class-Specific weights can be similarly incorporated into the MPM cost function:

(10)

Mislabeling a site whose true label is xs has an associated cost of α(x). Consequently, the
penalty for mislabeling the single site s depends upon the true labels of all sites s∈S.
Inserting (10) into (1) yields
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(11)

Thus, this multiplicative weighted MPM (MWMPM) estimate of X is equivalent to the
MPM estimate of X̃.

Note that in (Monaco and Madabhushi, 2011) we introduced another possible generalization
of the MPM cost function. However, this generalization leads to a very different estimation
strategy (see Appendix A). Also note that since the probability distribution of every MRF
can be expressed using a Gibbs formulation (Besag, 1974), it is insightful to examine the
Gibbs formulations of both P(X = x) and P(X̃= x). This examination is presented in
Appendix B.

4. Implementations and Algorithms
In this section we demonstrate how MWMAP and MWMPM estimation can be performed
using modifications of existing estimation strategies. As mentioned in Sections 3.1 and 3.2,
the MWMAP and MWMPM estimates of a random field X are equivalent to the MAP and
MPM estimates of the random field X̃, respectively. Consequently, we are free to realize
these estimates using any existing MAP or MPM implementation. Though a variety of MAP
estimation techniques exist (e.g. simulated annealing (Geman and Geman, 1984)), for
MWMAP estimation we elect to employ iterated conditional modes (ICM) because of its
popularity and simplicity. For MWMPM we select the Markov chain Monte Carlo (MCMC)
method proposed by Marroquin et al. (Marroquin et al., 1987).

4.1. Weighted Maximum a Posteriori (MWMAP) Estimation with Iterated Conditional Modes
ICM is predicated on the following reformulation of the a posteriori probability (Besag,
1986):

(12)

Increasing P(xs|x−s, y) necessarily increases P (x|y). This suggests an optimization strategy
that sequentially visits each site s ∈ S and determines the label xs ∈ Λ that maximizes P (xs|
x−s, y). The ICM algorithm is provided as Figure 1(a). Typically, the initial condition x0 is
either a randomly selected element of Ω or the maximum likelihood estimate of P(y|x)
(Pappas, 1992; Dubes et al., 1990). ICM converges to a local maximum of P(x|y).

Since the MWMAP estimate of X is equivalent to the MAP estimate of the X̃, modifying

ICM to perform MWMAP estimation only requires replacing  with

 in step 6, and then recognizing (see Appendix B) that

. The resulting weighted ICM (WICM) algorithm
is provided in Figure 1(b). Note that in practice, the computation of P(xs|x−s, y) is straight-
forward. Consider that P(xs|x−s, y) reduces to P(xs|xηs, ys) by consequence of the Markov
property and the typical assumption that the observations Y are conditionally independent
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given their associated states, i.e. P(y|x) = Πs∈S P (ys|xs). Furthermore, P (xs|xηs, ys) ∝ P (ys|
xs)P (xs|xηs) by Bayes law.

4.2. Weighted Maximum Posterior Marginals (MWMPM) Using a Markov Chain Monte Carlo
Simulation

MPM advocates selecting the estimate x that maximizes the marginal probabilities P(xs|y)
for all s ∈ S. To obtain these marginals Marroquin et al. proposed using the Gibbs sampler
(Geman and Geman, 1984; Casella and George, 1992) or the Metropolis algorithm
(Metropolis et al., 1953) to generate a Markov chain (X0, X1, X2, …) with equilibrium
distribution P(x|y), where Xk is a random variable indicating the state of the chain at
iteration k (see Figure 2(a)). Thus, the proportion of time the chain spends (after reaching
equilibrium) in any state x is given by P(x|y), i.e. each state xk represents a sample from the
distribution P(x|y). The convergence to P(x|y) is independent of the starting conditions
(Tierney, 1994); and consequently, x0 is typically selected at random from Ω. Determining
the number of iterations l needed for the Markov chain to reach equilibrium is difficult, and
depends upon the particular distribution P(x|y) and the initial conditions x0. Usually l is
selected empirically.

Since the proportion of time the chain spends in any state x is given by P(x|y), the posterior
marginal P(xs|y) can be estimated as follows:

(13)

where ω ∈ Λ and m−l is the number of iterations past equilibrium needed to generate an
accurate estimate. The value for m, like l, is typically chosen empirically2.

Since the MWMPM estimate of X is equivalent to the MPM estimate of X̃, modifying the
previous MCMC method to explicitly perform MWMPM estimation only requires replacing

 in step 6 of the Gibbs sampler (Figure 2(a)) with

(14)

where . We refer to this modified version of the Gibbs
sampler as the weighted Gibbs sampler (see Figure 2(b)). The remainder of the estimation
procedure is identical to that used for MPM, i.e. for all s∈S we identify the ω∈Λ that
maximizes the marginal distribution P(X ̃s = ω|y) obtained from (13).

5. Experimental Design
In this section, we begin by alternately incorporating the MWMAP and MWMPM
estimation criteria into two MRF-based classification systems for detecting CaP: 1) a system
for detecting CaP glands in HSs from radical prostatectomies and 2) a system for detecting
CaP regions in T2-weighted 4 Telsa ex vivo prostate MRI. We then integrate these
estimation criteria into a simple MRF-based classifier used to segment a two-dimensional
synthetic brain MR image into regions containing cerebrospinal fluid (CSF), gray matter
(GM), or white matter (WM). For each of these classification tasks, our goal is to

2Dubes and Jain (Dubes et al., 1990) refer to l and m as “magic” numbers.
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demonstrate that by varying the class-Specific weights inherent in the MWMAP and
MWMPM criteria, we can arbitrarily adjust their detection sensitivity/Specificity and
generate ROC curves — or surfaces when the number of classes exceed two. To implement
the MWMAP and MWMPM criteria, we employ the methods presented in Section 4, which
we will refer to as MWMAPICM and MWMPMMC. The superscripts ICM and MC (i.e.
Monte Carlo) help describe the Specific approach, and hopefully, reemphasize that the
estimation criteria and their Specific realizations should not be conflated. For convenience,
the two estimation criteria and their associated implementations are listed in Table 2.

Before continuing, we should further clarify the difference between an estimation criterion
and its associated implementation. In this paper, the MAP, MPM, MWMAP, and MWMPM
estimation criteria are defined by equations (3), (5), (9), and (11), respectively. For a given
estimation criterion, the “optimal” classification is the x̂ that minimizes that criterion.
Solving for the optimal classification requires a Specific implementation. Because of
complexity of MRFs, straightforward implementations that precisely minimize the
estimation criteria do not exist; consequently, researchers have developed methods for
yielding suboptimal classifications. For example, ICM (Besag, 1986), graph cuts (Boykov et
al., 2001), and simulated annealing (Geman and Geman, 1984) are three approaches for
approximating the MAP estimate, i.e. minimizing (3). That is, ICM, graph cuts, and
simulated annealing are three possible implementations of the MAP estimation criterion. We
should point out that each implementation is usually Specific to an estimation criteria; for
example, ICM performs MAP estimation, and would not be used for MPM estimation.

5.1. Generating Receiver Operator Characteristic Curves and Surfaces
5.1.1. Binary Classes: ROC Curves—Both CaP detection systems are similar in the
sense that they employ a MRF framework to classify their respective sites (i.e. glands or
pixels) as either malignant ω1 or benign ω2. Assuming the systems use one of our two
estimation criteria, the classification results will depend upon the choice of weights α(ω1)
and α(ω2). Since only the ratio of weights, and not their Specific values, is relevant, they
can be represented using a single, more intuitive threshold

(15)

where T ∈ [0, 1]. To see that applying the two weights is equivalent to thresholding (the
Bayes factor (Kass and Raftery, 1995)), we need only rewrite step 6 in Figures 1(b) and 2(b)
in terms of T (not shown).

To assess CaP detection performance, we define the following: true positives (TP) are those
segmented objects (glands for HSs and pixels in the MRI) identified as cancerous by both
the expert-provided ground-truth and the automated system; true negatives (TN) are those
segmented objects identified as benign by both the truth and the automated system, false
positives (FP) are those segmented objects identified as benign by the truth and malignant
by the automated system; and false negatives (FN) are those segmented objects identified as
malignant by the truth and benign by the automated system. The true positive rate (TPR) and
false positive rate (FPR) are given by TP/(TP+FN) and FP/(TN+FP), respectively. Note that
the TPR and FPR are synonymous with the sensitivity and one minus the Specificity,
respectively. A ROC curve (Metz, 1978) is a plot of the TPR vs. FPR. For each estimation
criterion, we can generate a ROC curve by varying T from zero to one, measuring the
resulting TP/FP/FN/TN across all images, and then computing the TPR and FPR.
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5.1.2. Ternary Classes: ROC Surfaces—The brain MR image, unlike the images for
CaP detection, contain three classes: CSF (ω1), GM (ω2), and WM (ω3). Segmentation
performance depends upon the choice of weights α(ω1), α(ω2), and α(ω3). Since only
relative ratios of weights are relevant, we can, without loss of generality, restrict the weights
as follows:

(16)

Instead of the above restrictions, we could have employed two thresholds analogous to the T
defined in (15); however, we found the representation in (16) to be more intuitive.

To assess segmentation performance, we define the class-Specific true positives TPωi for
class ωi, i ∈ {1, 2, 3} as the number of pixels labeled as ωi by both the classifier and the
ground-truth. The class-Specific true positive rate (TPRωi) for class ωi is TPωi/ΣiTPωi. The
triplet (TPRω1, TPRω2, TPRω3) — which is a function of the weights — establishes an
operating point on the associated three-dimensional ROC surface. We populate this surface
(with unique operating points) by appropriately varying the weights in (16).

5.2. Experiment 1: Detection of CaP Glands in Digitized Radical Prostatectomy Sections
The analysis of HSs plays a significant role in the diagnosis and treatment of CaP (Kumar et
al., 2004). The most salient information in these HSs is derived from the morphology and
architecture of the glandular structures (Gleason, 1966). Since complex tasks such as
Gleason grading (Tabesh et al., 2007; Doyle et al., In Press) consider only the cancerous
glands, an initial process capable of rapidly identifying these glands is highly desirable.
Thus, we introduced an automated system for detecting cancerous glands in Hematoxlyn and
Eosin (H&E) stained tissue sections (Monaco et al., 2010). The primary goal of this
algorithm is to eliminate regions of glands that are not likely to be cancerous, thereby
reducing the computational load of further, more sophisticated analyses. Consequently, in a
clinical setting the algorithm should operate at a high detection sensitivity, ensuring that
very little CaP is discarded.

Figure 3(a) illustrates an H&E stained prostate histological (tissue) section. The
superimposed black line delimits the spatial extent of CaP as determined by a pathologist.
The numerous white regions are the gland lumens, i.e. cavities in the prostate through which
fluid flows. Our system identifies CaP by leveraging two biological properties: 1) cancerous
glands tend to be smaller in cancerous than benign regions and 2) malignant/benign glands
tend to be proximate to other malignant/benign glands (Kumar et al., 2004). The basic
algorithm proceeds as follows: Step 1) The glands (or, more precisely, the gland lumens) are
identified and segmented. (Figure 3(b)–(c)). Step 2) Morphological features are extracted
from the segmented boundaries. Currently, we consider only one feature: glandular area.
Step 3) Using this feature and an MRF prior which encourages neighboring glands to share
the same label, a Bayesian estimator classifies each gland as either malignant or benign
(Figure 3(d)).

We now formally express this CaP detection problem using the MRF nomenclature
established in Section 2.1. Let the set S ={1, 2, …, N} reference the N segmented glands in
a HS. Each site has an associated state Xs ∈ Λ ≡ {ω1, ω2}, where ω1 and ω2 indicate
malignancy and benignity, respectively. The random variable Ys ∈ ℝ indicates the area of
gland s. All feature Ys are assumed conditionally independent and identically distributed
(i.i.d.) given their corresponding states. The conditional distributions P (ys|xs) are modeled
parametrically using a mixture of Gamma distributions (Monaco et al., 2010); this
distribution is fit from training samples using maximum likelihood estimation. The tendency
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for neighboring glands to share the same label is incorporated with a Markov prior P(x)
modeled using probabilistic pairwise Markov models (PPMMs) (Monaco et al., 2010) (see
Appendix C); the PPMM is trained using maximum pseudo-likelihood estimation (MPLE)
(Besag, 1986). Two glands are considered neighbors if the distance between their centroids
is less than 0.9 mm.

We construct two ROC curves by performing classification using MWMAPICM and
MWMPMMC. Since both require that T be specified before running the relaxation
procedure, we evaluate these configurations at 21 predetermined thresholds: T ∈{0, 0.05,
0.1, … 0.95, 1}. The TP, FP, TN, and FN are generated over 40 HSs from 20 patients using
leave-one-out cross-validation. Ground-truth for each HS was delineated by an expert
pathologist using either the physical specimen or its digitized image. All glands whose
centroids fall within the truth are considered malignant; otherwise they are benign. The
parameters used by MWMPMMC are as follows: m=30 and l=10.

5.3. Experiment 2: CaP Detection in MRI
Magnetic Resonance Imaging (MRI) has recently emerged as a promising modality for the
non-invasive identification of CaP in vivo (Chelsky et al., 1993; Bloch et al., 2008). Because
of it relatively high contrast and resolution it offers a possible means for guiding biopsies
(Yu and Hricak, 2000), enhancing treatment (Yu and Hricak, 2000) (e.g. brachytherapy seed
placement, high-focused ablation therapy), and improving screening for early detection.
Motivated by these promising applications, we have developed automated systems for
identifying CaP regions in MR images (Madabhushi et al., 2005; Tiwari et al., 2011;
Viswanath et al., 2012; Monaco et al., 2009b).

For this experiment, we employ our system (Chappelow et al., 2008) for detecting CaP
regions on T2-weighted 4 Tesla ex vivo prostate MR images. This detection occurs on a
pixel-wise basis for each MR image. Figure 4(a) illustrates a typical MR image; the green
overlay indicates the cancerous extent, determined by mapping pathologist-delineated CaP
regions from a histological specimen onto a corresponding MRI section following the elastic
registration (Chappelow et al., 2011) of the two modalities. The detection algorithm
proceeds as follows: Step1) From each MRI section, we extract 21 gradient and statistical
features at each pixel (Chappelow et al., 2008) (see Figures 4(b)–(c)). Step2) Using these
features in combination with a Markov prior, which models the tendency for neighboring
pixels to share the same class, each pixel is labeled as benign or malignant (Figure 4(d)).

This detection problem is recapitulated using the MRF terminology: Let the set S = {1, 2,
…, N} reference the N pixels in the MR image that reside within the prostate. Each site has
as associated state Xs ∈ Λ ≡ {ω1, ω2}, where ω1 and ω2 indicate malignancy and benignity,
respectively. The random vector Ys ∈ ℝD represents the D = 21 features associated with
pixel s. All feature vectors Ys are assumed conditionally independent and identically
distributed (i.i.d.) given their corresponding states. Each multi-dimensional distribution P
(ys|xs) (one for each class) is modeled as the product of 21 one-dimensional histograms (i.e.
the individual features are assumed independent). The tendency for neighboring pixels to
share the same class is incorporated using a PPMM trained using MPLE. The neighborhood
ηs of a pixel s is the typical 8-connected region.

We construct two ROC curves by performing classification using MWMAPICM and
MWMPMMC. Both MWMAPICM and MWMPMMC are evaluated at 21 thresholds: T ∈ {0,
0.05, 0.1, … 0.95, 1}. The TP, FP, TN, and FN are generated over 15 (256×256) MRI slices
from a single patient using leave-one-out cross-validation. As previously mentioned,
ground-truth for each slice was determined by mapping pathologist-delineated CaP regions
from a histological specimen onto a corresponding MRI section following registration
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(Chappelow et al., 2011). All pixels lying within the pathologist-delineated CaP regions are
considered malignant; otherwise they are benign. The parameters used by MWMPMMC are
as follows: m = 50 and l = 30.

5.4. Experiment 3: Segmentation of Brain MR Phantom
Experiments 1 and 2 both concern binary-class problems. We now present a task involving
three-classes: segmenting brain MR images into regions of CSF, GM, and WM.
Specifically, we consider a single two-dimensional brain MR phantom from the BrainWeb
Simulated Brain Database (Collins et al., 1998). This image, as obtained from the database,
has 9 percent additive noise and 40 percent intensity non-uniformity. To increase the
difficultly of the segmentation task, we inserted an additional 10 percent additive Gaussian
noise, creating the image shown in Figure 5(a). Figure 5(b), also obtained from BrainWeb,
depicts the ground-truth, which partitions the image into its three constituent regions: CSF
(black), GM (gray), and WM (white).

We now describe the Specific classification procedure. Let the set S = {1, 2, …, N}
reference the N pixels in the MR image that reside within the brain. Each site has as
associated state Xs ∈ Λ ≡ {ω1, ω2, ω3}, where ω1, ω2, and ω3 indicate CSF, GM, and WM,
respectively. The random vector Ys ∈ ℝ represents the MR intensity associated with pixel s.
All random variables Ys are assumed conditionally independent and identically distributed
(i.i.d.) given their corresponding states. Each distribution P (ys|xs) (one for each class) is
modeled as a Gaussian density; the mean and standard deviation were determined using
MLE. The tendency for neighboring pixels to share the same class is incorporated using a
Potts MRF prior with β =1. The neighborhood ηs of a pixel s is the typical 8-connected
region. Note, an example of the automated classification results are shown in Figure 5(c).

We construct two ROC surfaces (He et al., 2006) by performing classification using
MWMAPICM and MWMPMMC on the single (181×217) brain MR phantom. Both
MWMAPICM and MWMPMMC are evaluated for all combinations of weights

 that satisfy (16). (This yields 4831 unique combinations.) For
each combination, we determine the the triplet (TPRω1, TPRω2, TPRω3). The parameters
used by MWMPMMC are m=20 and l = 10.

6. Results and Discussion
6.1. Experiment 1

Figure 6 illustrates the experimental results of the CaP gland detection system for the HSs.
Figures 6(a) and 6(e) indicate the ROC curves when employing MWMAPICM and
MWMPMMC, respectively. The black dots indicate the performance at the 21 different T
values. The connecting lines segments result from linearly interpolating between the points.
Figures 6(b)–(d) and 6(f)–(h) provide qualitative examples of the final classification results
for the estimation techniques at three different values of T. The green dots indicate the
centroids of those glands labeled as malignant. The system performances at these T values
are indicated with black circles in the corresponding ROC curves.

6.2. Experiment 2
Figure 7 presents analogous results for the CaP detection system for MR images. Figures
7(a) and 7(e) indicate the ROC curves using MWMAPICM and MWMPMMC. The figures in
Figures 7(b)–(d) and 7(f)–(h) depict the qualitative classification results for these estimation
schemes at different values of T. The pixels classified as malignant are overlaid in red. The
system performances at these T values are indicated with black circles in the corresponding
ROC curves.
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6.3. Experiment 3
Figure 8 illustrates the results of brain segmentation. Figures 8(a) and 8(e) indicate the ROC
surfaces when employing MWMAPICM and MWMPMMC, respectively. Figures 8(b)–(d)
and 8(f)–(h) provide qualitative examples of the final classification results for our two
estimation techniques at three different combinations of weights.

6.4. Discussion
Notice that the ROC curves/surfaces produced by MWMAPICM and MWMPMMC are
similar. This is not unexpected since both implementations have related underlying cost
functions. Specifically, they identify the MAP and MPM estimates of the same random
variable X̃ (see Section 3.1). It is important to point out that for the purposes of this paper
the actual performances (e.g. the areas/volumes under the ROC curves/surfaces) of the
classifiers are immaterial; the goal of this work is to demonstrate how the performance of
any MRF-based classification system — that uses either MAP or MPM estimation — can be
varied via the appropriate incorporation of multiplicative weights.

It is worth mentioning that our use of random initial conditions (x0) to begin each estimation
technique is not optimal with respect to classification performance. We employed these
conditions for two reasons: 1) to avoid any implication of a connection between the weights
and the initial conditions and 2) to emphasize the importance of the estimation criteria (e.g.
MWMAP) over any Specific implementation (e.g. MWMAPICM). Had we instead used the
MLE of P(y|x), the resulting performance of both estimation schemes would have improved.
With MWMAPICM, which converges to a local maximum of P(x|y), this is expected.
However, even the Monte Carlo methods, whose convergence to P(x|y) is theoretically
independent of the initial conditions, would benefit.

As is typical in ROC analysis, the curves/surfaces in Figures 6, 7, and 8 consist of a finite
number of operating points. This discrete sampling is not a product of our novel weighting
scheme, but results even when analyzing independent random variables for which likelihood
ratios can be determined (He et al., 2006). However, producing ROC curves using our
multiplicative weights — unlike the more familiar technique which employs likelihoods —
requires rerunning the relaxation process (e.g. WICM) with every change in weights α.
Thus, calculating each operating point can be a time-consuming process. (Note that using
likelihoods to compute ROC curves is not straightforward with MRFs, and for MAP
estimation it appears intractable.)

The need to perform multiple relaxations is a potential disadvantage of our proposed
weighting scheme. However, this disadvantage only becomes problematic when the total
time required to compute the necessary number of operating points is high. This
computation time depends upon the total number of operating points — which is mostly a
function of the number of classes — and the relaxation time — which is a function of the
Specific classification system. Thus, it is difficult to predict the time needed to sufficiently
sample ROC curves in absence of a definitive application. However, it is instructive to
consider ROC construction for our three tasks.

Table 3 lists the total times needed to generate the ROC curves/surfaces depicted in Figures
6, 7, and 8. All times assume the use of single core of an Intel 2.5 GHz CPU. From these
results, it becomes clear that both MWMAPICM and MWMPMMC — at least for the three
tasks presented in this paper — are computationally quite reasonable. However,
extrapolating these results to predict time requirements for future applications should be
done with care; as mentioned previously, total times will depend upon a host of factors such
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as the number of sites, number of images, algorithm implementations, convergence times for
WICM, and the number of iterations specified for the Weighted Gibbs sampler.

7. Concluding Remarks
Since MRFs typically contain large numbers of dependent random variables, estimating the
state of the entire MRF is challenging, and requires sophisticated strategies. Currently these
strategies weight each classification outcome equally, and consequently, provide no means
for varying classifier performance. This is especially significant in medical image analysis,
where certain errors (e.g. overlooking evidence of disease) are far more costly than others
(e.g. further investigating an incorrect diagnosis of disease). Addressing this deficiency, we
introduced MWMAP and MWMPM estimation, novel extensions of MAP and MPM
estimation that allow certain classes to be favored more heavily than others. This creates a
natural bias for Specific classes, and consequently a means for adjusting classifier
performance. Additionally, we described how existing means for performing MAP and
MPM estimation could be extended to obtain MWMAP and MWMPM estimates. To
illustrate the value of our novel estimation criteria we incorporated them into two medically
relevant MRF-based classification systems for detecting carcinoma of the prostate on 1)
digitized HSs from radical prostatectomies and 2) T2-weighted 4 Tesla ex vivo prostate
MRI. Furthermore, to underscore the extensibility of MWMAP and MWMPM to estimation
tasks involving more than two classes, we also incorporated these estimation criteria into a
MRF-based classifier used to segment synthetic brain MR images. In the context of these
three tasks, we demonstrated how MWMAP and MWMPM estimation schemes could
arbitrarily vary the cancer detection sensitivity of these systems, yielding receiver operator
characteristic curves and surfaces.

Before concluding, it is worthwhile to briefly consider another technique that could be used
to vary the performance of MRF-based classifiers: fuzzy MRFs (Ruan et al., 2002;
Salzenstein and Collet, 2006). In theory, thresholds could be applied to each site’s fuzzy
membership values, yielding different classifications. However, fuzzy membership was
intended to indicate the degree to which a single site belongs to each of the possible classes
(e.g. to account for partial volume effects), and not to reflect the probability of belonging to
a Specific class. Thus, constructing ROC curves in this manner appears heuristic.
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Appendix

A. Alternative Generalization of Maximum Posterior Marginals
In Section 3.2 we generalized the MPM cost function in (4) by incorporating multiplicative
weights, yielding Equation (10). However, alternative generalizations are possible. In
(Monaco and Madabhushi, 2011) we incorporated additive weights to produce the following
cost function:

(17)

which leads to a Bayesian risk given by

(18)

Minimizing this risk function entails maximizing each of the weighted posterior marginals
α(x̂s)P (x̂s|y), and thus — like MPM (and MWMPM) — requires estimates of these
marginals. Unfortunately, the MCMC method (Marroquin et al., 1987) commonly used to
estimate the posterior marginals — though sufficient for MPM (and MWMPM) estimation
— is inadequate for this weighted extension of MPM. Consequently, in (Monaco and
Madabhushi, 2011) we introduced a more appropriate estimation strategy.

B. Gibbs Formulation
The connection between the Markov property and the joint probability density function P of
X is revealed by the Hammersley-Clifford (Gibbs-Markov equivalence) theorem (Besag,
1974). This theorem states that a random field (G, Ω, P) with P(x) >0 for all x ∈ Ω satisfies
the Markov property if, and only if, it can be expressed as a Gibbs distribution:

(19)

where Z = Σx∈Ω exp{Σc∈  Vc(x)} is the normalizing constant and Vc are functions, called
clique potentials, that depend only on those xs such that s ∈ c. A clique c is any subset of S
which constitutes a fully connected subgraph of G; the set  contains all possible cliques.
Note that typically |Ω| = |Λ|N is too large to directly evaluate Z. The following reveals the
forms of the local conditional probability density functions:

(20)

where  represents {c ∈  : s ∈ c} and Zs = Σxs∈Λexp{Σc∈ Vc(x)}. For proofs of Markov
formulations and theorems, see Geman (Geman, 1991).
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It is now useful to consider the Gibbs formulation of the weighted probability function in
(7):

(21)

where Zα = Σx∈Ω α(x) exp{Σc∈  Vc (x)}is the normalizing constant and Ṽc(x) is defined as
follows: if c={s}, s∈S then Ṽc(x) = Vc(x)+ln α(xs), otherwise Ṽc(x) = Vc(x). Thus, the
weighting method proposed in this paper manifests as an increase of ln α(xs) in each single
element clique potential. The forms of the local conditional probability density functions are
as follows:

(22)

where Zαs = Σxs∈Λ α(xs) exp{Σ c∈  Vc(x)}.

C. Probabilistic Pairwise Markov Models
Before discussing probabilistic pairwise Markov models (PPMMs), we must first introduce
additional notation. As discussed previously, P(·) indicates the probability of event {·}. For
instance, P(Xs = xs) and P(X=x) signify the probabilities of the events {Xs = xs} and {X=
x}. Note that we simplified such notations in the paper — when it did not cause ambiguity
— by omitting the random variable, e.g. P(x)≡P(X=x). We now introduce p(·), which
indicates a generic (discrete) probability function; for example, pu might be a uniform
distribution. The notations P (·) and p(·) are useful in differentiating P(xs) which indicates
the probability that {Xs = xs} from pu(xs) which refers to the probability that a uniform
random variable assumes the value xs.

Continuing, in place of potential functions (i.e. a Gibbs formulation), PPMMs (Monaco et
al., 2010) formulate the local conditional probability density functions (LCPDFs) P(xs|xηs)
of an MRF in terms of pairwise density functions, each of which models the interaction
between two neighboring sites. This formulation facilitates the creation of relatively
sophisticated LCPDFs (and hence priors), increasing our ability to model complex
processes. Within the context of our CaP detection system, we previously demonstrated the
superiority of PPMMs over the prevalent Potts model (Monaco et al., 2010). The PPMM
formulation of the LCPDFs is as follows:

(23)

where the normalizing constant Zs ensures summation to one, p0 is the probability density
function (PDF) describing the stationary site s, and p1|0 represents the conditional PDF
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describing the pairwise relationship between site s and its neighboring site r. The numbers 0
and 1 replace the letters s and r to indicate that the probabilities are identical across all sites,
i.e. the MRF is stationary. Furthermore, p0 and p1|0 are related in the sense that they are a
marginal and conditional distribution of the joint distribution p0,1, i.e. p0.1(xs, xr) =
p0(xs)p1|0(xr, xs). We are free to choose any forms for p0 and p1|0, under the caveat that p0,1
be symmetric to ensure stationarity. Please see (Monaco et al., 2010) for further details.
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Highlights

We introduce estimation criteria for adjusting the performance of MRF-based
classifiers.

We implement these criteria adapting existing MRF algorithms (e.g. iterated
conditional modes).

We integrate the implementations into three classification systems for medical image
analysis.
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Figure 1.
Algorithms for (a) iterated conditional modes and (b) weighted iterated conditional modes.
Both algorithms are deterministic relaxation schemes that converge to a local maximum of
P(x|y) and α(x)P(x|y), respectively.
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Figure 2.
Algorithms for the Gibbs sampler and the weighted Gibbs sampler. These two Monte Carlo
algorithms generate Markov chains with equilibrium distributions P(x|y) and P(X̃ =x|y),
respectively.
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Figure 3.
(a) H&E stained prostate histology section; black ink mark indicates CaP extent as
delineated by a pathologist. (b) Gland segmentation boundaries. (c) Magnified view of white
box in (b). (d) Green dots indicate the centroids of those glands labeled as malignant.
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Figure 4.
(a) T2-weighted 4 Tesla ex vivo MRI of an excised prostate gland with cancerous region
(overlayed in green) determined by mapping pathologist-delineated CaP regions from an
associated histological specimen onto the MR image after registering the two modalities.
(b), (c) Images illustrating two of the 21 gradient and statistical features. (d) Result of
automated CaP detection (malignant pixels in red).
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Figure 5.
(a) Two-dimensional simulated brain MR image (Collins et al., 1998) with 19 percent
additive noise and 40 percent intensity non-uniformity. (b) Ground-truth image with ideal
segmentation of CSF (black), GM (gray), and WM (white). (c) Automated segmentation
results indicating CSF (red), GM (green), and WM (blue).
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Figure 6.
(a), (e) ROC curves of CaP detection system on HSs using MWMAPICM and MWMPMMC.
The black dots in (a) and (e) indicate the performance at T ∈ {0,0.05, 0.1, … 0.95, 1}. (b)–
(d) Centroids of the glands labeled as malignant (green dots) using MWMAPICM for T ∈
{0.75, 0.6, 0.45}. System performances at these T values are indicated by the hollow black
circles in (a). (f)–(h) Centroids of the glands labeled as malignant using MWMPMMC for T
∈ {0.75, 0.6, 0.45}. Corresponding system performances at these T values are indicated by
the hollow black circles in (e).
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Figure 7.
(a), (e) ROC curves of MRI CaP detection system using MWMAPICM and MWMPMMC.
The black dots in (a) and (e) indicate the performance for T ∈ {0, 0.05, 0.1, … 0.95, 1}. (b)–
(d) Pixels labeled as malignant (overlayed in red) using MWMAPICM for T ∈{0.8, 0.5, 0.2}.
The system performances at these T values are indicated by the hollow black circles in (a).
(f)–(h) Pixels labeled as malignant using MWMPMMC for T ∈{0.8, 0.5, 0.2}. The system
performances for these values of T are indicated by the hollow black circles in (e).
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Figure 8.
(a), (e) ROC surfaces depicting brain MRI segmentation performance using MWMAPICM

and MWMPMMC. The black dots in (a) and (e) indicate the performance for all α(ω1),
α(ω2),  that satisfy (16). (b)–(d) Segmentations of MR image in
Figure 5(a) using MWMAPICM for different combinations of weights [α(ω1), α(ω2),
α(ω3)]. Red, green, and blue colors indicate CSF, GM, and WM, respectively. The black
dots in (f)–(h) indicate the performance for all α(ω1), α(ω2), 
that satisfy (16). (b)–(d) Segmentations of MR image in Figure 5(a) using MWMPMMC for
different combinations of weights [α(ω1), α(ω2), α(ω3)].
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Table 1

List of notation and symbols.

Symbol Description

S Set referencing N sites

Λ Range of Xs and xs: Λ ≡ {ω1, ω2, …, ωL}

Xs ∈ Λ Random variable indicating state at site s

xs ∈ Λ Instance of Xs

D Number of features

Ys ∈ ℝD Random variable indicating feature vector at site s

ys ∈ ℝD Instance of Ys

x̂ ∈ Ω Estimate of X

C(x, x̂) Cost of choosing x̂ when the true labels are x

R(X|x̂, y) Conditional risk: R(X|x̂, y) = E[C(X, x̂)|y]

X ∈ Ω Collection of all Xs: X=(X1, X2, …, XN)

x ∈ Ω Instance of X: x=(x1, x2, …, xN)

Ω Range of X and x: Ω=ΛN

Y ∈ ℝ D×N Collection of all Ys: Y =(Y1, Y2, …, YN)

y ∈ ℝ D×N Instance of Y: y=(y1, y2, …, yN)

ηs Set of sites that neighbor s ∈ S

x−s x−s =(x1, …, xs−1, xs+1, …, xN)

xηs xηs = xηs(1), …, xηs(|ηs|)

α(·)

Weighting function 

α(x) α(x)=Πs∈S α (xs)
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Table 2

List of weighted estimation criteria and their associated implementations.

Estimation Criterion Implementation

MWMAP MWMAPICM

MWMPM MWMPMMC
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Table 3

Time required to populate ROC curves/surfaces.

Implementation

Experiment (#) MWMAPICM MWMPMMC

Prostate HS (1) 0.33 hours 1.0 hours

Prostate MR (2) 0.66 hours 1.3 hours

Brain MR (3) 5.4 hours 14.8 hours
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