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background: Advanced maternal age is associated with reduced fertility and adverse pregnancy outcomes. This review details recent
developments in our understanding of the biology and mechanisms underlying reproductive ageing in women and the implications for fertility
and pregnancy.

methods: Sociological online libraries (IBSS, SocINDEX), PubMed and Google Scholar were searched for relevant demographic, epi-
demiological, clinical and biological studies, using key words and hierarchical MeSH terms. From this, we identified and focused on key
topics where it was judged that there had been clinically relevant advances in the understanding of ovarian and uterine ageing with implica-
tions for improved diagnostics and novel interventions.

results: Mapping of the ovarian reserve, follicular dynamics and associated biomarkers, across the reproductive lifespan has recently
been performed. This now allows an assessment of the effects of environmental, lifestyle and prenatal exposures on follicular dynamics
and the identification of their impact during periods of germ cell vulnerability and may also facilitate early identification of individuals with
shorter reproductive lifespans. If women choose to time their family based on their ovarian reserve this would redefine the meaning of
family planning. Despite recent reports of the potential existence of stem cells which may be used to restore the primordial follicle and
thereby the oocyte pool, therapeutic interventions in female reproductive ageing at present remain limited. Maternal ageing has detrimental
effects on decidual and placental development, which may be related to repeated exposure to sex steroids and underlie the association of
ageing with adverse perinatal outcomes.

conclusions: Ageing has incontrovertible detrimental effects on the ovary and the uterus. Our enhanced understanding of ovarian
ageing will facilitate early identification of individuals at greatest risk, and novel therapeutic interventions. Changes in both ovary and
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uterus are in addition to age-related co-morbidities, which together have synergistic effects on reducing the probability of a successful preg-
nancy outcome.
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Introduction
World and female reproductive demographics are changing dramatic-
ally. Within the current demographic transition, populations are
moving from an initial state of high mortality and high fertility to a
state of low mortality and low fertility. As recently reviewed, these
changes have caused dramatic changes in the global population size,
the rate of population growth, the working-age share and the age dis-
tribution (Bloom, 2011; Lee, 2011). Combinations of medical
advances, public health initiatives and social changes have been re-
sponsible for this transformation. As a consequence of this, globally,
adolescents and young adults aged 15–24 years currently outnumber
those aged 60 years and above by 54% but the size of these two
groups will equalize by 2025, after which those over age 60 years
will outnumber adolescents and young adults (Bloom, 2011). For
the foreseeable future we will therefore see a large number of
women capable of reproduction, but with competing demands as edu-
cational attainment increases and their fiscal contribution to an ageing
population is required. These factors underlie the progressive increase
in age at childbirth.

Changes in fertility with female age have been widely described in
historical populations where contraception was not practiced
(Schmidt et al., 2012). Although the level of fertility varies, the age pat-
terns of decline are quite similar; the fall is not large until after age 35
years (Olsen, 1990; van Balen et al., 1997; Dunson et al., 2002).
A model that imposed a common age pattern but allowed the level
of marital fertility to differ among populations demonstrated that com-
pared with that of women age 20–24 years, fertility is reduced on
average by 6% for women 25–29 years, by 14% for those 30–34
years and by 31% for women 35–39 years, with a much greater
decline thereafter (Menken et al., 1986). These changes in natural fer-
tility are mirrored by IVF success rates, which, while showing some
variance by country, show an initial increase in success rates through
the late teens to early 20s and then a general decline from the early
30s (Nelson and Lawlor, 2011; de Mouzon et al., 2012).

At a population level postponement of parenthood and an
increased maternal age will have a relatively modest change in the
mean number of children but a large increase in the proportion of
couples suffering from infertility and seeking assisted reproduction
techniques (ART) and a large increase in pregnancies in older
mothers. In addition to the well-established age-related increase in
the risk of miscarriage (Nybo Andersen et al., 2000; Cleary-Goldman
et al., 2005), almost all other adverse fetal and maternal outcomes are
also increased with advancing maternal age. Rates of placental abrup-
tion, placenta praevia, malpresentation, low-birthweight, large for ges-
tational age, post-partum haemorrhage and preterm and post-term
delivery are �2-fold higher in older mothers (Cnattingius et al.,
1992; Aldous and Edmonson, 1993; Cleary-Goldman et al., 2005;
Hoffman et al., 2007). The prevalence of pre-existing maternal

medical conditions, including hypertension, obesity and diabetes also
increases with age (Health, 2004), as do pregnancy-related maternal
complications, such as pre-eclampsia and gestational diabetes
(Solomon et al., 1997; Duckitt and Harrington, 2005). Consequently
one quarter of pregnant women aged 45 years or over will have a
chronic medical disease, with hypertension affecting 25% of 45–
54-year-old women (Department of Health, 2004). Obesity affects
�25% of women ages 35–54 years, with a further 33% overweight.
Collectively this has resulted in many more women entering pregnancy
with pre-existing morbidity or at increased risk of developing novel
disease in response to the physiological demands of pregnancy. The
clinical impact of this is substantial, as the risk of pregnancy-induced
hypertension doubles with obesity and triples with morbid obesity
(≥35 kg/m2), while the risk of pre-eclampsia increases 2-fold with
each 5–7 kg/m2 increase in prepregnancy BMI (O’Brien et al.,
2003b). The prevalence of gestational diabetes is also likely to in-
crease, partly through its association with obesity (Chu et al., 2007)
and also because of a redefining of the diagnostic criteria (International
Association of Diabetes and Pregnancy Study Group, 2010), the latter
alone increasing the prevalence almost 3-fold. Even using historical
diagnostic criteria, in a cohort of healthy women aged over 50 years
receiving oocyte donation, the risk of gestational diabetes was 20%,
increasing to 40% in those over 55 years (Paulson et al., 2002).

These medical co-morbidities can also all influence fetal health and
are likely to compound the effect of age on the risk of pregnancy in
an older mother. The extreme consequence of comorbidity or
pregnancy-specific disorders is maternal mortality, which at present
has continued to decline since systematic records began in 1952.
The most recent triennial report from the UK reported 11.39
[95% confidence interval (CI) 10.09–12.86] deaths per 100 000
maternities from indirect and direct causes (Cantwell et al., 2011).
Indirect deaths, primarily related to underlying medical or psychiatric
causes, have however become more frequent with an incidence of
6.72 (95% CI 5.74–7.87) per 100 000 maternities when compared
with direct deaths which had declined to 4.67 (95% CI 3.86–5.64)
per 100 000 maternities. The impact of age is also striking, as
overall the maternal death rate in the UK in women over 40 years
is now three times higher than that in women aged ,25 years
(Figure 1). The objective of the present review is therefore to
provide a discussion of recent findings in the biology and mechanisms
underlying ovarian and uterine ageing in women, and their implica-
tions for fertility with particular focus on the establishment and
decline in the finite pool of oocytes, and novel approaches question-
ing this concept.

Methods
Multiple strategies were used to identify relevant demographic, epidemio-
logical, clinical and biological studies relevant to the broad topic of female
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reproductive ageing, without a date limit. We searched in sociological
online libraries (IBSS, SocINDEX), PubMed and Google Scholar using
the following key words and hierarchical MeSH terms: fertility, infertility,
chromosome aberrations, reproduction, pregnancy, pregnancy complica-
tions, placenta, labour obstetric, assisted conception, maternal age,
ovary, climacteric, stem cell. Additional journal articles were identified
from the bibliography of studies included as well as textbooks and hand
searches of other source materials including conference proceedings. Arti-
cles written in a language other than English without an available English
translation were excluded from our review. From this, we identified and
focused on key topics (listed in Table of Contents) where it was judged
that there had been clinically relevant advances in the understanding of
ovarian and uterine ageing with implications for improved diagnostics
and novel interventions.

Ovarian ageing
Ovarian ageing, meaning the progressive loss of the primordial follicle
pool, is strikingly different to the changes that occur in the other major
organs in that the major functions of the ovary cease little more than
half way through a woman’s lifespan. This leads to a very long post-
reproductive period in humans, and while a post-reproductive
period of life is shared by a wide range of animals it appears to be
only in women that it makes up such a large proportion of the
overall lifespan (Hawkes et al., 1998). In humans, ovarian failure at
menopause has been causally associated with increased risks for the
development of a long list of significant health complications, including
osteoporosis, cardiovascular disease, recurrent depression and cogni-
tive dysfunction (Prior, 1998; Buckler, 2005; Frey et al., 2008). In add-
ition, other less physically debilitating problems, such as heat
intolerance and hot flushes, also negatively impact on the quality of
life in peri- and post-menopausal women (Santoro, 2008). While
the term premature ovarian failure has been historically widely used,
it is increasingly replaced by ‘primary (or premature) ovarian insuffi-
ciency’ (POI; Welt, 2008; Nelson, 2009) to reflect the range of clinical

presentations and aetiologies associated with this condition. A full
review of this is outwith the scope of this review, and a European
Society of Human Reproduction and Embryology guideline on this im-
portant subject is currently being developed.

The evolutionary advantage of a long post-menopausal life may be
related to the very long period of dependence of the human infant and
child on its mother, and indeed is not truly post-reproductive as it
benefits the family and offspring. There remains debate as to
whether post-menopausal longevity should be seen as an adaptive
trait and indeed the longevity of grandmothers may be associated
with fewer grandchildren (Madrigal and Melendez-Obando, 2008;
Hawkes and Smith, 2009). It also appears that female fertility carries
a cost in terms of lifespan, separate from any obstetric risks, which
is linked to the ‘disposable soma’ theory, which proposes a trade-off
between longevity and investment in reproduction. Genealogical ana-
lyses where apparently accurate and complete family data are avail-
able, suggest that age at first childbirth was lowest in women who
died at a younger age and highest for women who died at the
oldest ages. For older women, longevity was negatively correlated
with the number of children and positively correlated with the age
at first childbirth (Westendorp and Kirkwood, 1998).

Female reproductive potential differs qualitatively from that of men, in
that our current understanding holds that the complete complement of
primordial follicles is formed during fetal life (i.e. the true ovarian
reserve) and that this is then progressively depleted until reproductive
senescence, i.e. the menopause. This has been challenged recently, as
discussed more fully below, but the concept of a finite pool of follicles
remains a cornerstone of current understanding of ovarian function.

Establishment of the primordial
follicle pool
Ovarian development begins with colonization of the genital ridge
from Week 5 of gestation onwards, and this is followed shortly

Figure 1 Maternal mortality rates by age group (years); UK: 2006–2008. Reproduced with permission from Cantwell et al. (2011).
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afterwards by sex determination (Witschi, 1948). The primordial germ
cells continue to proliferate for many weeks but some start to enter
meiosis from 11 weeks gestation (Bendsen et al., 2006; Le Bouffant
et al., 2010). In the mouse, the onset of meiosis occurs in a synchro-
nized wave along the axis of the gonad from embryonic Day E13
(Bullejos and Koopman, 2004). In contrast, in the human fetal ovary
the onset of meiosis occurs over an extended period of time such
that when primordial follicles start to occur from �18 weeks gestation
other germ cells still have a primordial phenotype and are still prolif-
erating (Fulton et al., 2005). The human ovary thus contains a full
range of developing germ cells arranged with the less differentiated
cells undergoing mitosis around the edge of the ovary, with progres-
sive stages of differentiation entry into meiosis and primordial follicle
formation towards the centre of the organ (Anderson et al., 2007).
Fetal life is therefore a critical time for establishing female reproductive
potential and key factors involved in these processes are increasingly
being identified in both mouse and human studies. These include
growth factors involved in germ cell proliferation and survival
(Coutts et al., 2008; Childs et al., 2010), and a number of germ cell-
specific transcription factors that are essential for primordial follicle
formation (Bayne et al., 2004; Pangas and Rajkovic, 2006). Meiosis is
initiated by retinoic acid in the mouse, acting through its downstream
target gene STRA8. The retinoic acid metabolizing enzyme CYP21B
protects germ cells in the testes (Griswold et al., 2011). This model

has been clearly elucidated in the mouse, and while the key aspects
of this mechanism are likely to be conserved in the human there are
also some differences, exemplified by the high level of CYP21B ex-
pression in the fetal ovary as well as the testis (Le Bouffant et al.,
2010; Childs et al., 2011). There are few studies describing human
ovarian development in later gestation: it is believed that primordial
follicle formation is essentially complete before birth with any remain-
ing oogonia (not within primordial follicles) being removed in the first
years of life (Byskov et al., 2011). The limited data available, however,
contribute to our understanding of the changes in primordial follicle
number across the female lifespan (Wallace and Kelsey, 2010;
Figure 2).

Fetal life is a period of germ
cell vulnerability
Understanding development of the human ovary provides an oppor-
tunity for greater understanding of the regulation of adult ovarian life-
span. This is exemplified by the demonstration of expression of the
transcription factor FOXL2 in germ cells of the developing human
ovary from soon after sex determination (Duffin et al., 2009). Muta-
tions in FOXL2 are a cause of syndromic POI, associated with ble-
pharophimosis/ptosis/epicanthus inversus syndrome (Crisponi et al.,

Figure 2 Decline in primordial follicle pool with increasing age. The best model for the establishment of the NGF population after conception, and
the subsequent decline until age at menopause as described by an asymmetric double Gaussian cumulative model with parameters ¼ 5.56 (95% CI
5.38–5.74), ¼25.6 (95% CI 24.9–26.4), ¼52.7 (95% CI 51.1–54.2), ¼0.074 (95% CI 0.062–0.085) and ¼24.5 (95% CI 20.4–28.6). The figure
shows the dataset (n ¼ 325), the model, the 95% prediction limits of the model and the 95% CI for the model. The horizontal axis denotes age
in months up to birth at age zero, and age in years from birth to 51 years. Reproduced with permission from Wallace and Kelsey (2010).
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2001). Recently mutations in the homeobox gene NOBOX have been
identified in a relatively large (6.2%) proportion of women with POI
(Bouilly et al., 2011). NOBOX is one of several genes identified to
be expressed specifically in the oocyte and is critical for primordial fol-
licle formation and subsequent activation (Rajkovic et al., 2004). Rela-
tionships between these master regulators have been teased out using
mouse knockout models (Pangas and Rajkovic, 2006; Matzuk and
Lamb, 2008), but the growing body of relevant human data described
above confirms that these key factors and their interrelationships are
largely conserved.

The processes of ovarian development are potentially susceptible
to external as well as internal influences. The influence of maternal
smoking on the son’s subsequent reproductive function has been
recognized for some years (Vine et al., 1994; Ramlau-Hansen et al.,
2007), and comparable female data are now emerging. In female
fetuses, smoking may have a direct toxic effect on the primordial fol-
licle, leading to premature exhaustion of the follicular germ pool. In
animal models histological analysis of ovarian tissue from the
exposed offspring mice demonstrates a markedly reduced number
of primordial follicles (Vahakangas et al., 1985; Matikainen et al.,
2002), with the combination of prepregnancy and lactational exposure
to polycyclic hydrocarbons associated with a 70% reduction in primor-
dial follicle number (Jurisicova et al., 2007). In humans maternal
smoking has been associated with a reduction in human fetal
ovarian germ and somatic cells (Lutterodt et al., 2009; Mamsen
et al., 2010). Epidemiological studies examining the impact of maternal
smoking on ovarian reserve of the offspring are consistent with a
modest but significant decrease in adult fecundability following expos-
ure to cigarette smoke in utero [adjusted fecundability odds ratio 0.96
(95% CI: 0.93, 0.99); Ye et al., 2010].

Exposure to environmental chemicals may also be of relevance. Bis-
phenol A (BPA) is a ubiquitous chemical found in plastics which can
disrupt prophase of meiosis 1 (Susiarjo et al., 2007). The molecular
basis for this has been elucidated in the nematode Caenorhabditis
elegans showing that BPA disrupts the double-strand break repair pro-
cesses (Allard and Colaiacovo, 2010). Intriguingly the genes involved in
these repair processes are estrogen regulated, and BPA in this model
has anti-estrogenic activity resulting in down-regulation of double-
strand break repair gene expression in the germ line. Oocytes of
the baboon fetal ovary are known to express estrogen receptor
beta (Bocca et al., 2008) and expression in human fetal germ cells
has recently been confirmed (Fowler et al., 2011). Estrogen depletion
treatment using an aromatase inhibitor during primordial follicle for-
mation in the baboon substantially reduced the number of primordial
follicles that formed, with estrogen deprivation preventing breakdown
of the germ cell nests that precede primordial follicle formation (Pepe
et al., 2006). In the bovine fetal ovary estrogen production declines
dramatically at follicle formation, and also regulates follicle growth ac-
tivation (Yang and Fortune, 2008).

Androgen exposure during fetal life may also have a long-term
impact on ovarian function. Intrauterine androgen treatment of
sheep and non-human primates results in life-long ovarian dysfunction
and a metabolic phenotype with considerable similarity to polycystic
ovary syndrome (PCOS; Abbott et al., 2005). The relevance of this
to the aetiology of PCOS is debated (Franks and Berga, 2012) but
these models are of value for the investigation of this condition.
Overall, these results suggest that the local steroid environment may

be important in both follicle formation and chromatin integrity
during fetal life.

In summary, emerging data demonstrate that genetic mutations in
key genes and external factors, such as smoking and environmental
chemicals, impact on the establishment of the primordial follicle
pool during fetal life, with implications for subsequent reproductive
function in adult women.

The regulation of initiation
of follicle growth
Post-natal ovarian function is characterized by continuous follicle acti-
vation with subsequent follicle growth through the pre-antral and
antral stages until follicle depletion at the menopause. Thus, the
ability to regulate therapeutically this key aspect of ovarian function
would have far-reaching consequences. The antral stages are clinically
detectable because of their well-established hormonal products (the
inhibins and estradiol) and they can also be assessed by ultrasound
but our understanding of the early stages of human folliculogenesis
is limited. Growth to early antral stages occurs before, as well as
after, puberty (Peters et al., 1978) although later antral stages and
of course ovulation do not occur until after maturation of the hypotha-
lamo–pituitary axis at puberty with consequent increases in gonado-
trophin secretion. The key issue for determination of reproductive
lifespan is therefore the regulation of activation of primordial follicle
growth. This appears to be a result of a balance between growth ac-
tivating and inhibitory factors (Figure 3). Both groups of factors include
those produced by the oocyte itself and by the surrounding somatic
cells. These have been reviewed elsewhere (Zuccotti et al., 2011)
but a clear overall understanding of their interaction remains elusive

Figure 3 Mechanisms underlying activation of quiescent follicles. A
summary of some of the components of the PI3K pathway that have
been implicated in maintaining health of the primordial pool (black
bar) and either suppressing (orange bar) or activating (green arrow)
the initiation of growth. These details have been gathered through
knockout mouse models (see Reddy et al., 2010 for review).
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at present. A central pathway, however, is the phosphatidylinositol-
3′-kinase (PI3K–AKT) signalling pathway within the oocyte. The phos-
phatase and tensin homolog deleted on chromosome 10 (PTEN) acts
as a negative regulator of this pathway and suppresses initiation of fol-
licle development (Reddy et al., 2008). The transcription factor
FOXO3 is a downstream effector of this pathway and acts to inhibit
follicle recruitment (Castrillon et al., 2003). An additional component
of this pathway (S6K1-RPS6) is dependent on the mammalian target of
rapamycin complex 1 (mTORC1), a serine/threonine kinase that reg-
ulates cell growth and proliferation in response to growth factors and
nutrients and also regulates primordial follicle activation (Reddy et al.,
2009). Oocyte PTEN therefore suppresses, whereas mTORC pro-
motes, follicle activation.

The role of the mTOR pathway is intriguing as it is also involved in
oogenesis in Drosophila melanogaster. Rapamycin is an inhibitor of the
TOR pathway and results in midstage loss of oogenesis in drosophila,
similar to the effect of nutrient deprivation (Thomson et al., 2010).
Treatment of early human growing follicles with rapamycin also
results in oocyte loss (McLaughlin et al., 2011), postulated to result
from destruction of the oocyte by adjacent somatic cells, as is believed
to be the case in drosophila (Thomson and Johnson, 2010).

Oocyte quality and age
A key aspect of reproductive ageing is the decrease in oocyte quality
as well as quantity. The impact of this is most strikingly demonstrated
by the restoration of pregnancy rates to those seen in young women
when older women use egg donation in IVF (Sauer et al., 1992; Tem-
pleton et al., 1996; Nelson and Lawlor, 2011). Successful conception is
also more likely to result in miscarriage, the rate of which increases
dramatically with increasing age (Nybo Andersen et al., 2000;
Schmidt et al., 2012). This is largely associated with chromosomal an-
euploidy in the embryo (the incidence of Trisomy 21 at age 25 years is
1 in 1500, and 1 in 16 at age 40 years), but it is likely that other bio-
chemical processes in the oocyte may be relevant. One aspect of this
may be changes in mitochondrial function with age (Bentov et al.,
2011; Kujjo and Perez, 2011). All mitochondria are maternal in
origin, and thus can only arise from mitochondria associated with
the primordial germ cell and will remain with that cell throughout oo-
genesis. Ageing is associated with an increase in mitochondrial aggre-
gation in oocytes and a reduction in cytoplasmic ATP concentrations
in metaphase 2 oocytes (Tarin et al., 2001). It has been postulated that
inheritance of dysfunctional aged maternal mitochondria could in-
crease the risk of chromosomal abnormalities and indeed a range of
metabolic disorders, and may account for the finding that advanced
grandmaternal age is associated with an increase risk of trisomy 21
(Aagesen et al., 1984; Bentov et al., 2011).

A recent report has provided a striking demonstration that calorie
restriction, known to have a range of beneficial non-reproductive
effects in non-human primates (Colman et al., 2009), may result in a
reduction in age-associated oocyte aneuploidy (Selesniemi et al.,
2011). Adult mice that were maintained with a 40% calorie restriction
showed a similar aneuploidy rate in metaphase II oocytes to that in
oocytes from younger animals, as well as a restoration of oocyte
yield following gonadotrophin simulation to that of younger animals.
Intriguingly, the number of non-atretic follicles per ovary was also
increased by calorie restriction compared with age-matched animals,

and this applied to primordial, primary and pre-antral follicles, al-
though in all cases the number of follicles was lower than in young
animals. Calorie restriction prevented spindle and chromosome align-
ment defects in oocytes, and also prevented age-associated mitochon-
drial aggregation (Selesniemi et al., 2011). While a 40% reduction is a
severe calorie restriction, the results are striking and the mechanisms
involved require further elaboration. In the converse situation oocytes
of overfed animals also show mitochondrial abnormalities with a
reduced oocyte mitochondrial membrane potential (Wu et al.,
2010) and increased cumulus and granulosa cell apoptosis. Expression
of the endoplasmic reticulum stress gene ATF4 was increased in mice
fed on a high-fat diet, and was also increased in human granulosa cells
from obese women (Wu et al., 2010). It may therefore be that bio-
chemical changes during oocyte ageing have similarities to those
caused by metabolic abnormalities, and the importance of the
mTOR nutrient sensing pathway in the follicle has been mentioned
above. This indicates that the adverse effects of ageing and of metabol-
ic disturbance, for example as caused by obesity [itself associated with
increased risk of miscarriage (Boots and Stephenson, 2011)], will be
particularly detrimental in combination, with clear clinical implications.
Additionally, the effects of maternal peri-conceptual nutrition on the
subsequent health of the offspring are increasingly recognized
(Fleming et al., 2012) but outwith the scope of this review.

Genetic and lifestyle
determinants of reproductive
ageing
Unlike the marked secular trends in age of menarche, the age of
menopause is very similar both geographically and over time. This
implies a strong genetic component (estimated as contributing to
.50% of interindividual variability), which is reinforced by the associ-
ation between ages of menopause of women and their daughters as
well as in twin studies (Torgerson et al., 1997b; Sneider et al., 1998;
de Bruin et al., 2001; van Asselt et al., 2004; Murabito et al., 2005).
Recently large-scale genome wide association (GWA) studies have
identified novel genetic loci associated with age at menopause (He
et al., 2009; Stolk et al., 2009). Single nucleotide polymorphism ana-
lysis of 278 genes in 24 000 women from the Nurses Health Study
has confirmed some of these associations, highlighting steroid
hormone metabolism and biosynthesis pathways, but also identifying
the importance of a group of genes associated with POI (including
the auto-immune regulator AIRE, FMRI, FOXL2 and the BMP antagonist
NOG) with age at natural menopause (He et al., 2010).

The expression of many of these genes identified in GWA studies
during fetal ovarian development highlights the importance of that
period in determining reproductive lifespan and the value of under-
standing the mechanisms involved in the action of single-gene
defects causing POI. A substantial number of these have been identi-
fied, in themselves only being identified in very few women with POI
(Matzuk and Lamb, 2008). However, the above candidate gene asso-
ciation study (He et al., 2010) demonstrates the importance of varia-
tions in these genes as contributors to the normal as opposed to
pathologically early menopause. One example of a gene whose vari-
ation can cause a range of ovarian phenotypes, from POI to milder
ovarian dysfunction, is the FMR1 gene, mutations in which cause
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fragile X syndrome. This is the most common cause of mental retard-
ation in boys and is caused by an expansion of the number of CGG
repeats to more than 200 in the 5′ untranslated region of the gene.
Premutations (i.e. between 55 and 200 repeats) can also cause POI
and the number of repeats can expand over generations. There is
debate as to the significance of smaller repeat numbers (Bennett
et al., 2010). A recent analysis has suggested that women with a
reduced ovarian reserve show a shift towards an increased number
of CGG repeats in FMR1 compared with women with a normal
ovarian reserve, potentially indicating subtle effects on ovarian function
across the spectrum of genetic variation (Karimov et al., 2011). The
relatively high prevalence of mutations in the NOBOX gene in
women with POI has been mentioned above; it is likely that data
will emerge identifying genetic variations in a much larger proportion
of women with POI than is currently recognized (Murray et al.,
2011) with light consequently shed on the regulation of follicle forma-
tion, activation and early, gonadotrophin-independent, follicle growth.

Lifestyle and environmental factors by comparison appear to have
only limited effects on age of menopause. A comprehensive review
of a very large number of postulated factors calculated that the total
contribution to age of menopause may be as low as 3% (Kok et al.,
2005). A recent meta-analysis suggests that smoking is associated
with a decreased age of menopause of 0.90 years (95% CI 1.58–
0.21; Sun et al., 2011). In contrast, alcohol consumption is associated
with a later age of menopause (Torgerson et al., 1997a) and it is pos-
sible that this impacts on the relationship between ovarian function
and cardiovascular risk. The polycyclic aromatic hydrocarbon 7,
12-dimethyl benz[a]anthracene (DMBA) is an environmental carcino-
gen found in cigarette smoke as well as other products of combustion.
Treatment of mouse ovaries with DMBA-induced widespread primor-
dial follicle activation and pre-antral follicle atresia both in vitro and in
vivo (Sobinoff et al., 2011). Widespread follicular activation also results
in premature ovarian failure in other mouse models, for example the
anti-Müllerian hormone (AMH), PTEN and FOXO3a knockout
models (Durlinger et al., 1999; Castrillon et al., 2003; Reddy et al.,
2008). Increased activation of primordial follicles has also been postu-
lated to contribute to the POI resulting from chemotherapy owing to
loss of inhibition from larger sizes of growing follicles, themselves dir-
ectly targeted by chemotherapy (Meirow et al., 2010). Biochemical
analysis of the effects of DMBA reveals increased AKT1 phosphoryl-
ation, mTOR activation and decreased FOXO3a expression (Sobinoff
et al., 2011). These results indicate that exposure to this environmen-
tal toxin may contribute to ovarian ageing through increased follicular
activation acting through pathways that physiologically regulate this
process, as described above (Figure 3). As well as providing a potential
mechanism for the effect of cigarette smoking on advancing the age at
menopause, it is possible that this result is relevant to targeting these
pathways therapeutically, either positively or negatively.

Assessment of ovarian reserve
and changing follicle dynamics
from birth to the menopause
Our understanding of the ovarian reserve and early follicle dynamics
has been hindered by the absence of a good biomarker. Estradiol
and inhibin A are largely produced by the dominant and pre-ovulatory

follicle and thus largely reflect ovulatory activity. Inhibin B is produced
by smaller ovarian follicles and is thus a step closer towards being a
useful marker of early follicular activity but its serum concentration
still shows substantial changes across the menstrual cycle (Illingworth
et al., 1996), reflecting its association with gonadotrophin-dependent
follicular activity as a key regulator of FSH secretion. It is, however, be-
coming increasingly clear that AMH is a useful although imperfect
marker of pre- and early antral follicle growth. AMH is produced by
the granulosa cells of follicles from the time at which follicle growth
is first initiated. AMH expression continues until follicles reach
�8 mm diameter and expression is very low in larger antral follicles
(Weenen et al., 2004; Andersen et al., 2010). The relative contribution
of the different follicle sizes to AMH concentrations in serum is incom-
pletely described, as this will reflect the balance between the large
number of small follicles and the smaller number of larger follicles
and probably also the increasing blood supply to follicles as they
grow. Early studies demonstrated that AMH concentrations fall with
age in women (de Vet et al., 2002) and led to rapid development of
the concept that AMH may be useful to predict reproductive lifespan
and time to menopause (van Rooij et al., 2002). AMH concentrations
are relatively, although not completely, stable during the menstrual
cycle (La Marca et al., 2004; van Disseldorp et al., 2010), substantially
increasing its utility as a marker as well as also reflecting its origin in
smaller follicles. Histological data have confirmed that in humans as
well as animal species the number of small growing follicles is
related to the number of non-growing follicles (NGFs; Gougeon
et al., 1994), supporting the interpretation that AMH concentrations
may in fact reflect the primordial follicle pool size; indeed this has
been directly demonstrated in both mice and humans (Kevenaar
et al., 2006; Hansen et al., 2011). In the Hansen et al. (2011) study
AMH concentrations showed a significant correlation with the histolo-
gically determined primordial follicle pool size. AMH concentrations
are not completely gonadotrophin-independent and indeed are sup-
pressed during prolonged pharmacological gonadotrophin suppression
(Anderson et al., 2006) and in pregnancy (Nelson et al., 2010) but it
appears that there is a physiologically valid and clinically useful relation-
ship between serum AMH concentrations and the ovarian reserve,
both ‘true’ (the number of NGFs) and ‘functional’ (the number of po-
tentially recruitable small growing follicles).

Data from very large cohorts of infertile women have now defined
the decline in AMH during the second half of the reproductive lifespan
(Nelson et al., 2011b, c; Seifer et al., 2011), with more limited data for
childhood and adolescence (Hagen et al., 2010, 2012). A recent ana-
lysis has compiled AMH concentrations throughout life from concep-
tion to the menopause in healthy girls and women (Figure 4; Kelsey
et al., 2011b). While these data are cross–sectional, this analysis
reveals a number of important features which illustrate important
and previously incompletely or unidentified aspects of human
ovarian function. Specifically, AMH shows a clear rise in the first
months of life, supporting the existence of a neonatal minipuberty in
girls, similar to that well recognized in boys. This has recently been
confirmed directly (Kuiri-Hanninen et al., 2011). AMH concentrations
then progressively rise through childhood in girls reaching a peak in the
mid-20s. This rise appears to start before puberty and continue
beyond with, intriguingly, an inflection during adolescence, thus
there appears not to be a clear increase at the time of other endo-
crinological manifestations of puberty. A decrease in AMH at early
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puberty has recently been demonstrated directly in a longitudinal
study (Hagen et al., 2012). These data suggest increasing follicular ac-
tivity from late childhood right through to some 10 years following me-
narche, and indicate the existence of a prolonged period of ovarian
maturation.

Our knowledge of human ovarian function and dynamics during
puberty and adolescence is very limited owing to the lack of availability
of relevant histological material and the inability of previous endocrino-
logical analyses to reflect early follicle growth. Relating these changes
in AMH to the number of NGFs in the ovary across life (Wallace
and Kelsey, 2010) and data derived from that analysis giving the rate
of loss of follicles from the non-growing pool illustrate that the rise
in AMH during adolescence occurs in the face of a decline in NGF
number but increasing NGF recruitment which peaks at an average
age of 14 years (Kelsey et al., 2011a). Following this peak and the
peak in AMH at age 24 both NGF recruitment and AMH fall in parallel
(Figure 4). Disturbances in this relationship may occur in pathological
states. Thus, for example girls with type 1 diabetes have higher AMH
concentrations in childhood (Codner et al., 2011), which may reflect a
larger primordial follicle pool but perhaps is more likely to reflect an
increased number of small growing follicles. Conversely, in adult life
AMH is reduced in women with type 1 diabetes (Soto et al., 2009),
suggesting that there is already depletion of the primordial pool,
which would be consistent with their observed increased risk of
early age of menopause (Dorman et al., 2001). These data also

illustrate the wide range in AMH concentrations between individual
women at any given age. This is perhaps only to be expected given
the similarly wide variation in the primordial follicle pool (Faddy
et al., 1992; Wallace and Kelsey, 2010) and indeed age of menopause.
While menopause occurs on average at age 51 years, it varies from 40
to 60 years, i.e. the reproductive lifespan of some women is 50%
longer than others and, recognizing that fertility declines a decade
before the menopause (Broekmans et al., 2009), the duration of
fertile life in some women will be twice that in others. The ability to
identify this in young women through measurement of AMH or
other as yet unidentified biomarkers is unsubstantiated at present
but is likely to have significant social and medical consequences
(Baird and Steiner, 2012).

Many of the above studies have also used measurements of antral
follicle count (AFC), with largely similar results to measurement of
AMH. The relative merits and demerits of AMH and AFC assessment
have been widely debated (Jayaprakasan et al., 2010; Nelson et al.,
2011a; Rosen et al., 2012) and, as with AMH, large cross-sectional
studies of the decline in AFC with age are now available (Almog
et al., 2011; La Marca et al., 2011). Accurate interpretation of the
ovarian reserve at any given age is therefore feasible and has been
widely utilized for response prediction in ART (Broer et al., 2011a).
We anticipate that by combining biomarkers, including age, the
most accurate estimate of the underlying primordial follicle number
will be achieved.

Figure 4 Comparison of serum AMH concentrations with NGF population and with NGF recruitment. The red line is the log-unadjusted validated
AMH model (Kelsey et al., 2012), peaking at 24.5 years. The blue line denotes the decline in NGF population (Wallace and Kelsey, 2010), with peak
population at 18–22 weeks gestation. The green line denotes the numbers of NGFs recruited towards maturation population (Wallace and Kelsey,
2010), with peak numbers lost at age 14.2 years on average. Each quantity has been normalized so that the peak occurs at 100%. Correlation coeffi-
cients (r) are given for AMH concentrations against the other two curves for birth to 24.5 years and for 24.5–51 years. Reproduced with permission
from Kelsey et al. (2012).
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Predicting the reproductive
lifespan
The later stages of ovarian ageing are characterized by increasing men-
strual cycle variability followed by an increasing likelihood of missed
cycles and ultimately amenorrhoea. The menopausal transition has
been extensively reviewed clinically and endocrinologically with a stan-
dardized classification proposed as the ‘stages of reproductive ageing’
(STRAW; Soules et al., 2001). This classification includes five stages
prior to the final menstrual period and two stages thereafter, accom-
panied by a progressive decrease in primordial follicle number
(Hansen et al., 2012). Although initially based on menstrual character-
istics and follicular phase FSH concentration, the most recent revision
incorporates AMH, inhibin B and AFC as additional supportive criteria
(Harlow et al., 2012). These studies all highlight the monotropic rise in
FSH with ovarian ageing, a phenomenon first recognized in the
mid-1970s. The rise in FSH largely reflects a decrease in inhibin B pro-
duction by small antral follicles in the early follicular phase. A very
large body of work has characterized these endocrinological
changes in later reproductive life (Hale and Burger, 2009) but the
ability of FSH and inhibin B to accurately determine the early stages
is limited. The potential value of AMH as a marker of female repro-
ductive ageing is likely to increase, particularly with the development
of an international standard and harmonization of the assays (Nelson
and La Marca, 2011).

Data are now becoming available from prospective studies on the
use of AMH as a predictor of the menopause. In a study of 147
women aged over 40 years over a period of 6 years, initial AMH
showed good prediction of not reaching the menopause (Tehrani
et al., 2009). This supported previous studies (van Rooij et al.,
2004) with the van Rooij study suggesting that inhibin B improved
the predictive value of AMH. Comparable results were obtained in
a study of 50 women assessed annually over 6 years with final men-
strual period determined in all of them (Sowers et al., 2008). Baseline
AMH was associated with time to, and age at, the final menstrual
period, as was the rate of decline of inhibin B, which was less predict-
ive. It is likely that improvements in the sensitivity of currently available
AMH assays may improve the accuracy of AMH assessment in the
years preceding the menopause, as currently AMH becomes un-
detectable �5 years before the final menstrual period (Sowers
et al., 2008). A more recent study analysed AMH changes over a
more prolonged period of 11 years in younger women (aged 21–46
years) and found that age-adjusted AMH was highly predictive for
the timing of the menopause (Broer et al., 2011b). However, only
48 women had reached the menopause at the time of the second ana-
lysis. A larger study has now clearly confirmed that AMH is predictive
of time to the menopause, although with wide CIs (Freeman et al.,
2012). Importantly, the Freeman study also demonstrates that age
and AMH are independent predictors. This indicates that there are
mechanisms of ageing (presumably related to the rate of follicle acti-
vation) that are independent of the growing follicle pool, in addition
to the links between them, clearly demonstrated in detailed histologi-
cally based studies (Gougeon et al., 1994).

The clinical implications of women being able to determine their re-
productive lifespan by a blood test available to all health care profes-
sionals are potentially substantial. Certainly if women choose to time

their family based on their ovarian reserve this would redefine the
meaning of family planning.

Avoiding the age-related
decline in oocyte quality
Given the inexorable decline in female fertility with age, what steps can
be taken to mitigate against it? In essence, two very different thera-
peutic approaches have been promoted to address this. The first
involves assessment of embryo quality in IVF cycles of older women
to screen for aneuploidy, the second to try to preserve oocytes at a
young age. Both of these approaches aim to circumvent rather than
prevent the problem, in the absence of, for example, pharmacological
ways of influencing chromosome segregation during meiosis. Alterna-
tive approaches, such as the administration of growth hormone and
dehydroepiandrosterone, have been proposed in the context of IVF
to increase the number of oocytes obtained, especially in older
women and ‘poor responders’. Evidence as to their efficacy is
unclear (Duffy et al., 2010; Sunkara et al., 2012), and this approach
is not of relevance to reproductive ageing in general.

Screening for aneuploidy involves the biopsy of one or more blasto-
meres, with karyotypic analysis historically performed by fluorescence
in situ hybridization (FISH). Unfortunately RCTs of this approach
showed no evidence of a benefit in live birth rates (Staessen et al.,
2004; Mastenbroek et al., 2007, 2011). Some of the technical
aspects of those studies received adverse comment but subsequent
RCTs gave similar results and the technology has largely moved on
with increasing use of comparative genomic hybridization (CGH) ana-
lysis (Harper and Sengupta, 2011). Data using array CGH have recent-
ly supported the suggestion that most human aneuploidy arises from
premature chromatid separation rather than non-dysjunction
(Gabriel et al., 2011), a model first proposed as a key component
of human reproductive ageing 20 years ago (Angell, 1991, 1994).
Greater understanding of the biology of the cohesins that hold chro-
matids together is shedding light on this key aspect of oocyte ageing
(Lister et al., 2010).

Despite previous adverse experiences of testing embryos at the
cleavage stage, testing of blastomeres and polar bodies has been
developed in an attempt to reduce the impact of mosaicism (Delhanty
et al., 1993; van Echten-Arends et al., 2011). Analysis of the first polar
body only allows partial identification of the maternal contribution,
with at least as many errors arising during meiosis II as in meiosis I
(Fragouli et al., 2011). Failure to analyse the second polar body
could lead to the non-detection of 50% of oocyte-derived chromo-
somal errors. Furthermore, polar body biopsy will not identify post-
zygotic errors. Consequently when combined with the issue of mosai-
cism, the inherent option of being able to sample more tissue at
blastocyst biopsy (as many as 5–10 cells) would appear to make
this a more logical approach.

From a practical perspective, a blastocyst-based strategy requires
sufficient high-quality embryos to reach the blastocyst stage in the
first place, thereby limiting the applicability to older women with an
already reduced ovarian reserve. Furthermore, vitrification of the bi-
opsied blastocysts while awaiting the report of diagnostic testing is
required, however, alternative faster non-array-based diagnostic
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approaches are being developed (Treff et al., 2012). Given the lessons
learned from results of RCTs on the initial use of FISH in older
women, RCTs using array CGH and alternative technologies are
eagerly awaited, with initial pilot studies confirming the feasibility of
this approach (Geraedts et al., 2011; Magli et al., 2011).

Freezing of oocytes to avoid the decline in fertility related to age
alone is essentially a social rather than a medical application. This is
in contrast to women with a disease-related low ovarian reserve,
for example secondary to chemotherapy. The increasing use of
oocyte vitrification has advantages, with improved post-thaw viability,
fertilization and clinical pregnancy rates when compared with slow
freezing (Smith et al., 2010; Cobo and Diaz, 2011). It is likely that
the number of women seeking oocyte storage will increase, particular-
ly if early identification of women at risk of POI or reduced fecundabil-
ity by screening with AMH is feasible (Steiner et al., 2011; Baird and
Steiner, 2012). However, the financial costs and limited success rate
likely from the restricted number of oocytes obtained from a single
stimulation cycle mean that this approach will appeal and be available
to only very few.

Another potential target to avoid age-related decline in fertility is
the primordial pool of follicles. Given that the bulk of the human
ovarian follicle reserve is made up of primordial follicles, this popula-
tion is an ideal choice for in vitro growth to obtain fertilizable
oocytes for potential use in ART and fertility preservation pro-
grammes (Telfer et al., 2008; Telfer and McLaughlin, 2011). The cap-
acity of immature mammalian oocytes to develop fully in vitro has
already been demonstrated in rodents with the birth of pups from
in vitro grown murine primordial follicles (Eppig and O’Brien, 1996;
O’Brien et al., 2003a), however, this has yet to be successfully
repeated using immature human follicles. While the definition of a
complete in vitro system has yet to be achieved, a great deal of
basic scientific progress has been made using systems designed to
support the partial growth of human follicles, with several develop-
mental milestones accomplished, including follicle activation, follicle
differentiation and oocyte maturation using fresh and cryopreserved
human tissue (Smitz et al., 2010; Telfer and McLaughlin, 2011). An al-
ternative strategy would be to regulate the rate of initiation of follicle
growth, and thus the preservation of the primordial pool in vivo. This
will inevitably require a much greater understanding of the molecular
mechanisms underlying follicular activation (Figure 3) but is potentially
a target for pharmacological intervention.

The effects of uterine ageing
In addition to the changes discussed above in oocyte quality, the ability
to achieve and maintain a pregnancy will also be dependent on the
uterus. This is starkly exemplified by the association of increasing ma-
ternal age and stillbirth (Huang et al., 2008; Flenady et al., 2011). This
clear association remains even after controlling for co-morbidities and
potential confounders, including fetal chromosomal abnormalities,
multiple pregnancy, obesity, pre-eclampsia, insulin-dependent diabetes
and multiple pregnancy (Fretts et al., 1995). Consequently the risk of
stillbirths in mothers over the age of 40 years is approximately twice as
high as that of younger mothers, however, the absolute risk would be
,10 per 1000 births in most industrialized countries.

The biology underlying this association is largely undefined but po-
tentially relates to impaired decidual and placental development and

embryo interaction with the uterus. By 12 months of age, mice demon-
strate a 15% reduction in the number of implantation sites during early
pregnancy and a 50% reduction in fertility at term (Holinka et al., 1979).
Even when blastocysts were transferred from young donors to older
hosts there was greater implantation failure (Talbert and Krohn,
1966; Gosden, 1979). Older mice show an impairment of artificially
induced decidual response, which in young rodents closely resembles
the normal decidual response during implantation (Shapiro and
Talbert, 1974; Holinka and Finch, 1977). Although this impaired decid-
ual response may be in part be related to reduced progesterone secre-
tion in older mice (Holinka et al., 1979), a uterine contribution is also
likely. Even when progesterone is provided exogenously, the wet
weight of the uterus and uterine glycogen, alkaline phosphatase and
DNA content are all �25% lower in older mice (Holinka and Finch,
1977; Finch and Holinka, 1982). Microscopic changes have also been
demonstrated in response to various experimental conditions, with
unilateral hyperaemia inducing vascular development and growth of
the myometrium and stroma in young hamsters (3–5 months) but
not older animals (13–15 months) (Sorger and Soderwall, 1981). In re-
sponse to deciduogenic stimuli, older rats exhibit more lysosomes and
fewer luminal microvilli in the epithelial cells (Craig, 1981). It would
appear that decidual development is partly impaired by prolonged ex-
posure to hormonal stimulation, as in aged mice those that had under-
gone ovariectomy at 2 months had a greater decidual response
compared with controls, albeit that the controls did not have sham
operations (Goodrick and Nelson, 1989). A purely age effect is,
however, still present as although young (4 months) and aged (10
months) ovariectomized mice, demonstrated equivalent uterine
growth in response to estrogen and progesterone, the decidual re-
sponse to a standardized stimulus was reduced in the older animals
(Holinka and Finch, 1977). In rodents endometrial estrogen and pro-
gesterone receptor expression have also been observed to decline
with age, with concomitant increases in collagen and fibrosis (Blaha
and Leavitt, 1974; Ohta, 1987).

With respect to placental development in older mothers, many
studies fail to control for associated maternal characteristics. It does,
however, appear that maternal age is positively associated with placen-
tal weight, even after adjusting for birthweight, parity, smoking, pre-
eclampsia and diabetes (Haavaldsen et al., 2011). Whether this
reflects a biological compensatory mechanism for placental dysfunc-
tion is unclear. In the small mechanistic studies which have analysed
indices of placental structure, healthy older women who had a
normal pregnancy outcome exhibited reduced levels of apoptosis
and increased levels of trophoblast proliferation compared with
younger women (Rahima and Bruce, 1987; Yamada et al., 2001). In
rats, placental weight was also increased by 40–70% in the older
animals (9–12 months) when compared with the young rats (3–5
months). There was no difference in birthweight, suggesting placental
adaptation, with compensatory hypertrophy of the placenta required
to maintain fetal growth in the face of less favourable maternal physi-
ology. Collectively these studies suggest that decidualization and pla-
centation may be adversely affected by maternal age, however,
given that dysfunctional implantation and placental development
underlies almost all adverse obstetric outcomes, high-quality transla-
tional studies harnessing the power of appropriate animal models
and human basic science and clinical studies on the effect of maternal
age are required.
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The donor oocyte model provides an invaluable paradigm to assess
the role of age-related changes in the uterus on reproductive poten-
tial. Case reports of successful pregnancy and subsequent delivery in
a 70-year-old recipient of donated oocytes anecdotally demonstrate
that the uterus can support pregnancy far beyond the age at which
it is normally required to do so. Initial studies from donor oocyte pro-
grammes revealed similar rates of implantation, pregnancy, miscarriage
and delivery rates among donor oocyte recipients of different ages
(Serhal and Craft, 1989; Navot et al., 1991; Sauer et al., 1992).
However, it has subsequently become clear that oocyte recipients
have an almost 2-fold increased risk of the major perinatal complica-
tions of preterm birth and low-birthweight when compared with
women using their own oocytes after adjusting for other maternal con-
founders (Nelson and Lawlor, 2011), in keeping with the above-
described impaired decidual and placental development.

The older mother is also more likely to experience intrapartum
complications, with a linear relationship between maternal age and
the length of labour, the risk of emergency Caesarean delivery and op-
erative delivery (Figure 5; Smith et al., 2008), suggesting that myome-
trial function is impaired by advanced maternal age. With increasing
maternal age there appears to be failure of autophagy within the myo-
metrium, with older women having an increased number of cytoplas-
mic lipofuscin inclusions in the myometrial smooth muscle cells, and
ultrastructural changes including dissociation of myofilaments, mito-
chondrial destruction and abnormal endoplasmic reticulum structure
(Gosden et al., 1978; Drampian et al., 1983). Myometrial functional as-
sessment has demonstrated a negative association of maternal age and
spontaneous activity, and also an increased risk of multiphasic contrac-
tions which are associated with dysfunctional labour in vivo (Smith
et al., 2008). The basis for these structural and functional changes in
the myometrium is unclear but, intriguingly, later menarche is protect-
ive and has been shown to be associated with a reduced risk of opera-
tive delivery (Smith, 2009).

These observations raise the possibility that it is the repeated ex-
posure of myometrium and endometrium to the rise and fall of sex
steroids across the menstrual cycle that is detrimental (Smith et al.,
2008). Historically, prior to the advent of contraception and alterna-
tives to breastfeeding, the number of menstrual cycles would have
been substantially less. Women would have conceived in adolescence,
then breastfed exclusively and conceived again shortly after stopping
breastfeeding, with a minimum number of menstrual cycles. In con-
trast, assuming menarche at 13 years, age at first birth at 29 years
(the current mean age in UK) and a regular menstrual cycle, the
uterus will now be exposed to 192 cycles of estrogen and progester-
one prior to that first birth. With the use of the combined oral contra-
ceptive pill, the pattern would differ but the repeated number of
exposures would be similar. Average steroid exposure would
perhaps even be higher, given the pharmacological doses necessary
for contraceptive efficacy. We would therefore suggest the hypothesis
that repeated and prolonged exposure to sex steroids induces both
endometrial and myometrial uterine damage and partly underlies the
age-related association with adverse outcomes.

Repeated exposures to hormonal fluctuations are known to in-
crease the risk of disease in other hormone-sensitive tissues, such
as the breast. Breast cancer risk is associated with early age of menar-
che, earlier development of regular ovulatory menstrual cycles,
increased age of first birth, nulliparity or fewer children, not breast

feeding, late age at menopause and exposure to combined
hormone-replacement treatment (reviewed in Parsa and Parsa,
2009). Women with reduced exposure to menstrual cycle fluctua-
tions, as seen with use of progestogen contraceptives, might therefore
be expected to have a reduced risk of age-related pregnancy

Figure 5 Maternal age and the risk of Caesarean delivery, duration
of spontaneous labour and operative vaginal delivery. Top panel: pro-
portion of women delivered by emergency intrapartum Caesarean
section in relation to the age (years) of the mother (n ¼ 583 847).
The bars are binomial 95% CIs. Middle panel: mean duration of spon-
taneous labour in relation to maternal age (n ¼ 409,703). The bars
are 95% CIs of the mean. Bottom panel: proportion of nulliparous
women who required operative vaginal delivery in relation to mater-
nal age among the 518 787 women delivered by a means other than
emergency Caesarean section. The bars are binomial 95% CIs.
Reproduced with permission from Smith et al. (2008).
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complications, when compared with women not using hormonal
contraception or exposed to the combined oral contraceptive pill.

The future: making eggs
The dogma, as outlined above, that female mammals are born with all
of the oocytes they will ever possess is based on a paper from Sir
Solomon Zuckerman published in 1951 (Zuckerman, 1951). Zucker-
man failed to find any experimental evidence that was inconsistent
with an earlier hypothesis (Waldeyer, 1870) that germ cell production
in female mammals ceases prior to birth [reviewed by (Zuckerman,
1971)]. This influential paper by Zuckerman formed the cornerstone
of our understanding and subsequent interpretation of experimental
and clinical observations relating to ovarian development, function
and failure for the next 50 years (Tilly and Telfer, 2009). The conse-
quences of this are extremely significant, not only in the context of
a loss of fertile potential but also in the broader picture of the
diverse spectrum of age-related health problems that emerge in post-
menopausal women linked to failure of their ovaries (Prior, 1998;
Buckler, 2005). If it were possible to repopulate adult ovaries with
new oocytes and follicles, the female biological clock would no
longer be an unreachable target to consider for clinical intervention.

In recent years there have been some exciting and controversial
developments in female reproductive biology relating to a body of evi-
dence that ovarian follicles may be formed during adult life by a rare
population of putative germline stem cells (Johnson et al., 2004; Tilly
and Telfer, 2009). Publications in support of oocyte renewal during
adulthood have ranged from morphometry-based studies highlighting
the mathematical improbability of a non-renewable oocyte pool
being established at birth in rodents (Johnson et al., 2004; Kerr
et al., 2006) to studies suggesting that oocyte regeneration can
occur following a pathological insult that initially depletes the resting
follicle pool (Johnson et al., 2005a; Borovskaya et al., 2006). These
studies reopened the debate on neo-oogenesis resulting in the publi-
cation of many critiques (Telfer et al., 2005; Johnson et al., 2005b).
However, the isolation and identification of oocyte-producing germline
stem cells, also called oogonial stem cells (OSC), as unequivocal proof
of their existence in ovaries of adult mammals in general, and humans
in particular, remained elusive. A breakthrough in identifying such a cell
was made in 2009 when putative germ line stem cells were isolated
from adult mouse ovaries (Zou et al., 2009) and a more recent
study (White et al., 2012) has now shown that a rare population of
germ line stem cells can be extracted from adult human ovaries.
This new study provides compelling evidence for the existence of a
population of cells within adult human and mouse ovaries that can
be multiplied in vitro and are capable of forming oocyte-like structures
based upon morphology and expression of oocyte-specific biomarkers
(e.g. DDX4, KIT and LHX8; White et al., 2012). Most importantly, fol-
lowing a period of differentiation these cells from mouse ovaries were
capable of being fertilized and forming embryos (White et al., 2012).
Unfortunately because of regulatory restrictions, fertilization of these
cells from human ovaries has not yet been attempted.

This new work represents a major breakthrough by identifying cells
with apparent germ line potential in both mouse and human ovary.
However, many challenges lie ahead and many questions require
answers before a practical and convincing demonstration of develop-
mental potential of the oocyte-like structures derived from human

cells is obtained. Clearly these ‘oocyte-like’ cells derived from the pro-
genitor population in vitro require the somatic cell support of paracrine
and junctional communication to form follicles and develop into func-
tional oocytes. Combining these ‘oocyte-like’ cells with more conven-
tional human ovarian culture models (Telfer et al., 2008) may facilitate
follicle formation and growth, and enable detailed analysis and testing
of any resulting oocytes to be carried out (Rodrigues et al., 2008;
Telfer and Albertini, 2012). If these oocytes proved to be normal,
this would indeed widen options for fertility preservation and treat-
ment of ovarian ageing.

As exciting as these new findings are, caution needs to be exercised
in evaluating the immediate significance of the work to our under-
standing of the in vivo biology of ovarian function, as well as the ultim-
ate relevance of this work to reproductive health in women. The
successful purification and characterization of what appear to be
bona fide OSCs from adult ovarian tissue in mice and humans, while
important, does not immediately equate to proof that these cells
serve a contributory role in determining the size of the post-natal fol-
licle pool or the timing of ovarian failure under normal physiological
conditions. Even if activity of the OSCs in vivo can be demonstrated
and it is accepted they function to sustain the adult follicle pool by par-
tially offsetting the high rate of follicle loss through atresia, it remains a
fact that natural menopause happens approximately halfway or so
through a woman’s chronological lifespan. Nonetheless, these cells
will remain an important target for future clinical applications.
Studies such as these move us closer towards the application of
stem cell-based regenerative medicine and the possibility that this
may 1 day become a safe and effective strategy to control the
timing of age-related ovarian failure and menopause when it might
be clinically desirable to do so.

Conclusion
Ageing has incontrovertible effects on female reproductive function.
This is most obvious for the ovary, and our understanding of the
mechanisms by which oocyte quantity and quality decline with age is
improving. It is also becoming clear that other reproductive organs, in-
cluding the uterus, are detrimentally affected by age, and this may
underlie the increased prevalence of late pregnancy complications in
older women. These changes are in addition to age-related co-
morbidities, which together may have synergistic effects on reducing
the probability of a successful pregnancy outcome. At present, given
the detrimental impact of ageing on reproductive outcomes, increasing
public awareness and societal support for having a family at an earlier
age are required. Although our understanding of ovarian ageing has
improved dramatically and, in particular, the potential early identifica-
tion of individuals at greatest risk may allow us to redefine the concept
of family planning, therapeutic interventions at present remain limited.
The potential existence of stem cells capable of being used to restore
the primordial follicle, and thereby oocyte pool, raises the intriguing
possibility of novel in vivo and in vitro strategies to reduce the inexor-
able decline in female reproductive potential.
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