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Abstract
We introduce an automated method, called prior feature Support Vector Machine- Markov
Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance
Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector
Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation
accuracy; however, the computation of eMRF is very expensive, which may limit its performance
on segmentation and robustness. In this study pSVMRF reduces training and testing time for
SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity
information and location priors are linearly combined, pSVMRF combines this information in a
nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the
proposed method using MR imaging of unstained and actively stained mouse brain specimens, and
compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are
used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens,
pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains,
stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%),
but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and
anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased
anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer’s
Disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen,
indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain
disorders.
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1. Introduction
Precise delineation of human neuroanatomical structures helps in the early diagnosis of a
variety of neurodegenerative and psychiatric disorders (Fischl et al., 2002). The importance
of human brain segmentation has given great momentum to the development of
segmentation methods, and considerable progress has been made. In the meantime, the study
of mouse models has also drawn substantial attention of the biomedical community due to
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the close evolutionary relationship between humans and mice, which enables scientists to
use mouse mutants as models of human neurological disease, and to understand structural
and functional changes of human brains (Kovacevic et al., 2005; Bock et al., 2006). For
example, transgenic mouse models which mimic neurodegenerative diseases were
investigated to study the functions of particular genes or other defects, and to test novel
therapeutic interventions (McDaniel et al., 2001). However, developing automated
segmentation methods for mouse brain MR images is a difficult task. First, the MR signal is
proportional to the voxel volume (Edelstein et al, 1986), around 1 mm3 for the human brain,
but more than 100,000 times smaller in higher resolution (21.5 µm) mouse brain images
necessary to resolve detailed anatomical features. Improvements in imaging technology,
complemented with the use of T1 shortening contrast agents (Johnson et al 2002, Badea et al
2007, Dorr et al, 2008) have allowed the segmentation of more than 30 mouse brain
structures based on MR images (Ma et al, 2005; Kovacevic et al, 2005; Badea et al 2007;
Dorr et al, 2008). These large image arrays (eg 1024×512×512 voxels, Badea et al 2007)
pose increasing computational demands. Second, most studies using mouse models require
large numbers of animals to achieve statistical power for detecting subtle variations in
neuroanatomy. This requirement translates into a pressing need for the development of high-
throughput segmentation methods for 3D brain images. The segmentation results should be
robust, consistent and with acceptable computational time. To handle these challenges, we
need to develop an automated mouse brain image segmentation method that is accurate,
reliable and fast.

Previous research on developing automated segmentation method for human and mouse
brain images includes the atlas based segmentation, the probabilistic information based
segmentation, and the machine learning based segmentation. The atlas based segmentation
method can involve nonlinear registration of a manually labeled atlas image to a new image
set. The label of each voxel in the atlas image is elastically matched to the image being
segmented. The segmentation performance can be improved by using an average atlas
obtained from multiple subjects instead of a single subject (Rohlfing et al., 2004). Most
existing methods for mouse brain segmentation have used the atlas based segmentation. Ma
et al. (2005) used six-parameter rigid-body transformation and nonlinear registration to
segment T2*-weighted MRM images of C57BL/6 mouse brains into 20 structures using an
atlas image of a single mouse brain. Kovacevic et al. (2005) used an average atlas for atlas
based segmentation of the MR images of 129S1/SvImJ mouse brain. The probabilistic atlas
based segmentation incorporates different kinds of probabilistic information based on multi-
spectral MR signals (Fischl et al., 2002). The probabilistic information on MR intensity is
modeled as a Gaussian distribution. The prior probability of a label at one voxel location in
the 3D image provides the location prior, and the pair wise probability of a labeling, given
the labels of neighboring voxels is defined by the MRF theory. Ali et al. (2005) adapted
Fischl’s method to segment T2, Proton Density (PD) and diffusion-weighted MRM images
of the C57BL/6 mouse brain into 21 neuroanatomical structures.

Machine learning based segmentation was used in human brain segmentation, and uses
various classifiers to assign each voxel to a number of classes. For example, Artificial
Neural network (ANN) was used to segment MR images into three tissues types: white
matter, gray matter and cerebrospinal fluid based on T1, T2 and PD-weighted MR signal
intensity (Reddick et al., 1997). Powell et al. (2008) used probability map values, spherical
coordinates, T1 and T2-weighted MR signal intensity as input features for ANN and SVM to
segment MR images of human brains into eight structures. They showed that machine
learning based segmentation outperforms the atlas or probability based segmentation
methods. In our previous work (Bae et al., 2010), we segmented MRM images of the
C57BL/6 mouse brain into 21 neuroanatomical structures using an enhanced SVM model,
called Mix-Ratio sampling-based SVM (MRS-SVM), which relieved the data imbalance
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problem in multiclass classification. Only the location and MR intensity are used as features
for the SVM model. The results showed much improved performance compared to the atlas-
based method and comparable classification performance to the probabilistic information
based method for larger structures (Bae et al., 2010).

Each segmentation method has its drawbacks. In the case of the atlas based segmentation,
registration errors can severely hurt the overall segmentation performance (Sharief et al.,
2008) since a poor registration can cause structure mismatches and boundary blurring. The
probability information based segmentation uses MR intensity information and contextual
information based on neighbors’ labels, as well as location information, which depend on
the registration quality. The additional information -- MR intensity information and
contextual information, could make up for the loss of segmentation performance resulting
from imperfect registration. Therefore, the probability information based segmentation is
less affected by the registration quality than the atlas based segmentation. This is why MRF,
a class of probability theory modeling contextual dependencies has been widely applied for
image segmentation (Li, 2009). However, the probability information based segmentation
methods use a weak classifier, multivariate Gaussian distribution, to model the MR intensity
information (Fischl et al., 2002; Ali et al., 2005). The contribution of MR intensity
information to the segmentation is undermined due to the poor discriminative power of the
classifier. We proposed a hybrid of probability information - machine learning based
segmentation, termed eMRF (Bae et al., 2009) where SVM is employed to replace the weak
classifier in the probability information based method. In the eMRF method, the overall
segmentation performance was improved by employing SVM to model the MR intensity
information instead of Gaussian distribution. Using manual labeling as golden standard, the
eMRF method overall provides 10.05% higher percentage voxel overlap (VOP) and 23.84%
less label volume difference (VDP) compared with the atlas based segmentation, and 2.79%
higher percentage voxel overlap and 12.71% less label volume difference compared with the
probability information based segmentation. Note for labeling overlap, higher is better, for
label volume difference, less is better. While the machine learning based segmentation
improves the segmentation accuracy, it requires enormous computation time. The long
training and testing time and the difficulty in model parameter selection limit the practical
application of the method to large data-sets and large samples. Powell et al. (2008) reported
that it took a day to train a neural net for the classification of one structure from others even
though they used a random sampled data (500,000 voxels per structure) instead of using the
whole data set. It is known that the training time for SVM is approximated as O(N4) where
N is the total number of training data points. For mouse MRM images (128×128×256), N is
over 16 millions. Hence, in the eMRF study, it took ~ 7 days for training and the 4.82 hours
for testing using a 3.4-GHz PC. The classification performance of classifiers largely depends
on the selection of model parameters (e.g. kernel functions and related parameters for
SVM). To find the best model parameters for a data set, additional large number of runs
with different parameter settings should be conducted. However, the long training and
testing time for the brain image segmentation make it prohibitive to run large number of
experiments, which implies that the best performance of the machine learning based
segmentation would be difficult to obtain due to computing concerns. The robustness of the
algorithm for mutant mice which has large anatomical variability is also difficult to be
assessed.

In this study, we develop a new algorithm that samples fewer voxels, enabling the
identification of optimal parameters for the machine learning classifier. This new algorithm
is called prior feature SVM-MRF (pSVMRF) which is robust and computational efficient.
pSVMRF integrates the good classification ability of SVM into the MRF image
segmentation framework. Both voxel location prior and MR intensity are used as input
features for the training and testing of SVM. Adding the location prior as the input features
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is inspired by the previous work of Powell et al. (2008). The probabilistic outputs of the
prior feature SVM (pSVM) are treated as inputs to the MRF segmentation formula. The
contribution of the SVM and contextual information is controlled with two model
parameters. This is different from the eMRF method, where the MR intensity information
and location prior are combined linearly by weights that are tuned by grid-search. Since in
the new approach the training sample size is small in each experiment, we can easily run a
large number of experiments to find the best SVM parameters to give the best and robust
classification performance.

We assess segmentation performance and compare the new segmentation method with two
other methods: MRF (Ali et al. 2005), and eMRF (Bae et al., 2009) for the segmentation of
MRM brain images of adult C57BL/6 mice. To test the robustness of the algorithm when
faced with increased anatomical variability, we add two different strains: BXD29, a
recombinant inbred strain derived from an intercross between C57BL/6 and DBA/2J, and a
double transgenic mouse model of Alzheimer Disease (AD), overexpressing mutant amyloid
precursor protein (Jankowsky, Slunt et al, 2005).

2. Methods
2.1. MRF based image segmentation

The contextual dependency is a general and meaningful way to model the spatial property
(Zhang et al., 2001). MRF theory is a class of probability theory for modeling the contextual
dependencies of physical phenomena such as image pixels and correlated features. It has
become increasingly popular in many image segmentation problems and image
reconstruction problems. In the field of medical image segmentation, MRF has been used for
brain tissue segmentation (Held et al., 1997; Zhang et al., 2001; Awate et al., 2006),
neuroanatomical structure segmentation (Fischl et al., 2002; Ali et al., 2005), detection of
microcalcification in digital mammograms (Yu et al., 2006) and detection of multiple
sclerosis lesions in MR images (Khayatia et al., 2008), etc.

Let S = {1,2, …, n} be the set of sites in a image, X be a vector of site’s signal, and Y be the
associated labeling vector, that is, X = {xi, i ∈ S} and Y = {yi, i ∈ S}. Let N be a
neighborhood system defined as N = {Ni, i ∈ S} where Ni denotes the set of sites
neighboring site i. Y is said to be a MRF on S with respect to a neighborhood system N if
and only if

(1)

where S-{i} denotes the set difference. The condition of (1) means that only neighboring
labels have direct interaction with each other, and the joint probability P(Y) can be uniquely
determined by its local conditional probabilities.

According to Hammersley-Clifford theorem (Li, 2009), the probability P(Y) of an MRF can
be equivalently specified by a Gibbs distribution as follows:

(2)

where Z is a normalizing constant and Vc(Y) is a clique potential function over all cliques c
∈ C. A clique c is a subset of sites in S that are all neighbors of each other, and C is a set of
cliques or the neighborhood of the clique under study. The value of Vc(Y) depends on a
certain configuration of labels on the clique c. For the image segmentation problem, the
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posterior probability of the label of a site, given specific signal, can be formulated using
Bayesian theorem and the Hammersley-Clifford theorem as:

(3)

 in the right hand side in (3) is the sum of the log likelihood function of the
given labeling for the site's signal. Usually a multivariate Gaussian distribution is used for
modeling P(X|Y) (Held et al., 1997; Zhang et al., 2001; Fischl et al., 2002; Ali et al., 2005),
which is based on the assumption of Gaussian relationship between features and labels. This
assumption is too restrictive to model the complex dependencies between features and labels
in some cases. By employing a machine learning classifier, such as SVM, the performance
of the MRF based image segmentation was improved since SVM is generally better at
modeling the complex dependencies due to the virtue of the non-linear transformation (Lee
et al., 2005; Bae et al., 2009). The well-accepted generalization ability of SVM is explained
in next section.

2.2. Segmentation enhancement by SVM
SVM has received a lot of attention from the machine learning and pattern recognition
community due to the following reasons (Abe, 2005). First, SVM works well for classifying
objects which are not linearly separable. The objects are mapped from their input space into
a high-dimensional feature space by kernel transformations; thus SVM can separate objects
which are not linearly separable. Secondly, SVM has good generalization ability. SVM
attempts to maximize the separation margin between the classes, so the generalization
performance does not drop significantly even when the training data are scarce. In addition,
SVM can achieve a global optimal solution because it is solved with quadratic
programming. Because of the generalization ability of SVM, it has accomplished great
success in a variety of applications including fault detection, fraud detection, handwritten
character recognition, object detection and recognition, text classification. In the field of
medical image classification, SVM has been used for brain tumor recognition (Luts et al.,
2007), brain states classification of functional MRI (Mourao-Miranda et al., 2005), breast
cancer detection in dynamic contrast-enhanced MRI (Levman et al., 2008), knee bone
segmentation in MR images (Bourgeat et al., 2007).

The basic idea of SVM is to construct an optimal hyperplane which gives maximum
separation margin between two classes. Assuming a binary classification problem with a n
dimensional training set xi ∈ Rn with its label set yi ∈ {+1,−1}, where i=1, 2, …, m. The
hyperplane f(x), that separates the given data, is defined as:

(4)

where w is the n dimensional normal vector perpendicular to the hyperplane, b is a bias term
and Φ(xi) is a non-linear transformation which maps the samples into a higher-dimensional
dot-product space called the feature space. The optimal hyperplane is obtained by solving
the following optimization problem:

(5)

where ξ = {ξ1, …, ξm} is a slack variable and C is the penalty parameter which controls the
balance between the model complexity and classification error. The proper value of penalty
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parameter (C) is determined by the training set to avoid overfitting. The non-negative slack
variable (ξi) allows (5) to always yield feasible solutions by relieving the constraint of
maximum margin.

The constrained optimization problem in (5) can be converted to an unconstrained
optimization problem by introducing the non-negative Lagrangian multipliers αi, and the
unconstrained optimization problem is converted to a Lagrangian dual problem by
introducing the Karush-Kuhn-Tucker (KKT) condition. The optimal solution αi

* of the dual
problem yields the following optimal hyperplane:

(6)

where xi are support vectors and K(x, xi) is a kernel function defined as K(x, xi) = Φ(x)T

Φ(xi). The kernel function performs the nonlinear mapping implicitly so that we can avoid
the complexity of mapping and the curse of dimensionality resulted from the nonlinear
mapping. Commonly used kernel functions are linear, polynomial and RBF among which
nonlinear kernel function, RBF has been recommended in many studies. For example, a
comparative study on SVM using fMRI to decipher brain patterns concludes RBF
outperforms linear SVM significantly (Song et al., 2011). Our study on Alzheimer disease
(AD) diagnosis using MRI imaging indicates that RBF kernel outperforms both linear and
polynomial kernels for differentiating AD patients with normal individuals (Zhang et al.,
2008). Therefore, in this study we used the Radial Basis Function (RBF) kernel, defined as
follows:

(7)

where γ in (7) is a parameter related to the span of an RBF kernel.

2.3. Brain image segmentation by eMRF
In our previous research (Bae et al., 2009) we proposed eMRF method, in which we
integrate three different types of information – MR intensity, voxel location and contextual
relationship with neighboring voxels’ labels –to improve the overall segmentation
performance, and the MR intensity information is modeled by an enhanced SVM, which
takes different sampling ratio for different brain structures. The three pieces of information
are linearly combined with the model parameters which control their relative contributions.
The model parameters are determined through a training process to maximize the
segmentation performance. The experimental results from using the eMRF method showed
that the integration of the probability information based segmentation and the machine
learning based segmentation can improve the overall segmentation performance, compared
with the atlas based segmentation method and the MRF method (Ali et al., 2005). This is
because it takes advantage of the classification ability of machine learning classifiers, in
addition to the virtue of the location information and the contextual information of the
probability information based segmentation, which are critical information for classifying
each voxel in a 3D image into the multiple classes.

Even though employing machine learning classifiers for brain image segmentation improves
the overall segmentation performance, computation time remains a big challenge. As stated
earlier, the eMRF method requires long training and testing times due to the difficulty in
selection of SVM parameters. These drawbacks are mainly associated with the large data
size. The number of data points in a 3D MRM images with the matrix of 128×128×256 is
more than 4 million. Multiplied by the number of training sets this number is ~ 16 million.

Wu et al. Page 6

Neuroimage. Author manuscript; available in PMC 2013 February 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



The number of data for training and testing directly affects the training and testing time of
SVM. Therefore it is desirable to use the minimum number of data necessary to produce
comparable classification performance. The key to solve the problem of the large data sets is
to reduce the number of the training data while maintaining the classification performance of
classifiers. The pSVMRF method proposed in the next section is built based on the eMRF
method, but tries to reduce the training and testing time while maintaining the segmentation
performance.

2.4. The proposed segmentation method: pSVMRF
Let S = {1,2, …, n} be the set of voxels in a 3D MR image, X be a vector of voxels signal
intensity, and Y be the associated labeling vector, that is, X = {xi, i ∈ S} and Y = {yi, i ∈ S}.
A location prior vector of a voxel, li, has m elements, where m is the number of structures to

be segmented and . Let K be the set of the classes to which voxels will be assigned,
i.e. K = {1,2, …, m}, and L = {li} is the collection of location prior vectors. The kth element
of the location prior vector of the voxel i is defined as:

(8)

where q is the number of the images in the training set and r(i) is location function which
informs us the location of the voxel i in the 3D image. Using Hammersley-Clifford theorem
and the assumption of P(Y)>0 and P(X,L)>0, the posterior probability of having a label
configuration Y given a MR intensity vector X and a location prior vector L is formulated as
follows:

(9)

where w1 and w2 are model parameters which control the contribution of the two terms in
(9) to the posterior probability P(Y|X,L). Based on the MRF theory, the prior probability of
having a label at a given site i is determined by the label configuration of the neighborhood
of the site i. The Hammersley-Clifford theorem enables us to calculate the joint probability
P(Y) as a sum of the clique potential functions. We use a first order neighborhood system of
a 3D image as a clique, which consists of the adjacent six voxels in the four cardinal
directions in a plane and the front and back directions through the plane. The clique
potential function Vi(yi,yNi), called contextual potential function, in (9) will have a higher
value when the number of neighbors that have the same label increases. This function is,
thus, defined as

(10)

where n(Ni) is the number of voxels in a neighborhood of site i.

The location information of a voxel in a 3D image after registration is important for
classification of the voxel into the neuroanatomical structures. Fischl et al. (2002) pointed
out that if the image registration does well, only small numbers of neuroanatomical
structures are available at a given location in a 3D brain atlas and the location information
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have anatomical meaning so that it can help in classification. Powell et al. (2008) included
probability map values as input features for the machine learning based segmentation. The
probability map was created by calculating the probability of a neuroanatomical structure
being located at a voxel location in the atlas space across all subjects in a training set. For
example, given four subjects, if one out of four subjects labeled voxel i as structure k, and
three out of four subjects labeled voxel i as structure l, in the probability map for structure k,
the value for voxel i is 25% while the probability map for structure l will have 75% for
voxel i. Separate probability maps for each structure were calculated and included as one of
elements in the input vectors for the binary classification of ANN and SVM in Powell et
al.’s experiment. Taking a similar approach, pSVMRF employs a prior feature SVM
(pSVM), which includes the features from MR intensity and location prior vectors, for
simultaneously modeling the MR intensity information and location information. Similar to
eMRF, OAO (One-Against-One) method is applied to train SVM for classifying the kth class
against the lth class since it is more efficient on large datasets than OAA (One-Against-All)
and AAO (All-At-Once) (Hsu and Lin, 2002). Thus, overall n*(n−1)/2 models will be
trained. In each SVM training, the location prior being derived from the specific probability
map with respect to the specific structure together with MR intensity for each voxel are
being the input features for the model.

Since pSVM performs a multiclass classification of SVM, the number of elements in the
location prior vector is identical to the number of structures to be segmented. Each element
of the location prior vector represents the number of times a particular structure occurs at a
given location in all the brain images of the training set. The location prior vector defined in
(8) can model all the probabilities of the m structures being located at a specific location and
be used as a feature for the multiclass classification. As explained earlier, SVM can enhance
linear separation by mapping the original input space into a high-dimensional feature space
using the nonlinear transformation. By adding the MR intensity information and the location
prior vector as input features, we anticipate that pSVM can boost the separability with the
power of nonlinear transformation of SVM. The first term, Ai(yi, xi, li), in (9) is called as the
observation potential function that models the MR intensity information and the location
information. To be incorporated into pSVMRF, the decisions made by pSVM need to be
probabilistic output. Platt (2000) proposed a method for mapping the SVM outputs into
posterior probability by applying a sigmoid function. The observation potential function for
voxel i is defined as follows, for class k:

(11)

where fk(xi,li) is the SVM decision function for class k, α and β are the parameters
estimated from the training data. That is, SVM model is trained using the MR intensity (x̱i)
and location (ḻi) to determine the belonging of voxel i to class k (yi= −1, 1). Let us define a
new training set (ti, x̱i, ḻi), where ti here is the target probabilities defined as:

(12)

The parameters α and β can be found by solving the following minimization problem (Platt
2000):

(13)

Wu et al. Page 8

Neuroimage. Author manuscript; available in PMC 2013 February 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



where pi is defined in (11). We used Matlab to solve the optimization problem (13) and
obtain the values of α and β values for each class. The next step is to find the label
configuration Y* that maximizes the posterior probability P(Y|X,L) in (11), i.e., argmax

. This is known as the maximum a posterior (MAP) solution. Because of
the highly complicated interactions among multiple labels, it is very difficult to find the
optimal solution of the joint probability P(Y|X,L). We adopt a local search method called
iterated conditional modes (ICM), which maximize local conditional probabilities iteratively
by using the greedy search in the local optimization. It is expressed as

(12)

The ICM algorithm sequentially updates  by switching the different labels to
find the maximum value of P(yi|xi, li). We use the MAP solution based on the location prior
vector as the initial estimator y(0) of the ICM algorithm. In this study, the algorithm
continues until no improvement is made and the iteration which gives the best solution and
terminates the algorithm is the optimal terminating point. We estimate the optimal
terminating point from the training process and apply the terminating points for predicting
labels of new testing data.

3. Results and Discussion
3.1. Performance Measurements

To estimate the performance of segmentation methods, we use the two performance metrics:
volume overlap percentage (VOP) and volume difference percentage (VDP) (Fischl et al.,
2002; Ali et al., 2005). They are calculated by comparing the automated labeling with the
manual labeling (gold standard) of each voxel. Denote LA and LM as labeling of the
structure k by automated and manual segmentation respectively, and V(L) as a function
which calculates the volume of the labeling. VOP and VDP for a structure k are defined as:

(13)

VOP is the larger the better, VDP is the smaller the better. VOP is more sensitive to the
spatial difference of the two labels than the volumetric difference, but VDP is more sensitive
to the volumetric difference. To estimate the overall segmentation performance of a
particular method, we use average VOP (AVOP) and average VDP (AVDP), which are
calculated by dividing the sum of VOP or VDP for all structures by the number of
structures.

3.2. Implementation of the segmentation method
We assessed the performance of pSVMRF using MRM images of mouse brains acquired by
the Center for In Vivo Microscopy, at Duke University Medical Center, and previously used
in Ali et al., (2005); Sharief et al., (2008); Badea et al. (2010). T2-weighted MRM mouse
brain images from five formalin-fixed C57BL/6 male mice (approximately 9 weeks in age)
were used. Image acquisition parameters were: TE/TR = 30/400 ms, bandwidth 62.5 kHz,
field of view = 12×12×24 mm and matrix size = 128×128×256, 86 µm isotropic resolution.
A 9-parameter affine registration was applied to each image. 21 manual labels were used as
gold standard to evaluate segmentation accuracy. Table 1 presents the 21 neuroanatomical
structures and abbreviations used in this study.
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Two different strains were introduced to test the segmentation, a BXD29 and an AD mouse
models (Jankowsky et al, 2005). These mice and an additional set of five C57BL/6 were
actively stained (Johnson et al, 2002), and imaged as described in Sharief et al., (2008).
Imaging consisted of two protocols: T1 weighted (3D spin warp, TE/TR 5.2/50 ms, field of
view 11×11×22 mm, matrix size 512×512×1024), and MEFIC enhanced T2 weighted
acquisitions (3D CMPG, TR 400 ms, echo spacing 7 ms, 7 echoes, field of view 11×11×22
mm, matrix size 256×256×512) (Sharief and Johnson, 2006) were used to provide intensity
priors. T1 images were re-sampled to match the resolution (43 microns) of the T2 weighted
image set. Using both image channels, 33 manual labels were produced for the C57BL/6
brains, and a set of 7 labels was traced to test the BXD and AD segmentation.

The implementation of the pSVMRF method consists of two steps. The first step is to build
the pSVM models and test the models. The pSVM models were trained using the randomly
sampled training set, consisting of 300 randomly selected data points from each of the
structures (all neuroanatomical structures to be defined, and one added miscellaneous
structure). Each of the training and testing data has the input feature vector, which consists
of one feature for T2-w MR signal intensity and additional N features (N=22 for the
formalin fixed, N=34 for actively stained specimens) for the location prior. As mentioned
earlier, the selection of the penalty parameter (C) and RBF kernel parameter (γ) greatly
affects on the classification accuracy and the generalization ability of SVM. We conducted a
grid search to find the best penalty parameter and the best RBF kernel parameter using the
five-fold cross validation, which can help in avoiding the overfitting problem and estimating
the generalization ability. Each of the trained pSVM models was tested on each of the
testing data to calculate the observation potential function in (11). The training and testing
time of the pSVM models for the randomly sampled mouse brain dataset (formalin fixed)
were 1.12 minutes, and 14.24 minutes respectively, using a 3.4-GHz PC and LibSVM for
Matlab (Chang and Lin, 2001). Since SVM can transform the linear combination of the MR
intensity and location prior vector to a nonlinear combination that can help in classification,
pSVM could train a better model using a small number of data (6,600 voxels for each
formalin mouse, 10,200 voxels for each actively stained mouse). In the eMRF method (Bae
et al., 2009), a large size of training set (472,100 voxels per a mouse), which is over-
sampled from some classes, was needed for the SVM training. That results in a very long
training and testing time: 7.56 days for training and 4.82 hours for testing.

The second step was to implement the ICM algorithm to calculate the contextual potential
function in (10) and the posterior probability P(Y|X,L) in (9). We did a grid search over the

range  to find the best model parameters, which
were chosen as w1=0.89 and w2=0.11 for observation and contextual functions, respectively.
During the grid search for model parameters, a large number of the ICM implementations
with the different parameter values were performed. Each of the ICM implementations run
until there was no change in labels assignment, but the best solution was achieved at the first
iteration from every ICM implementation. In this grid search, we tried to find the model that
has the maximum AVOP and the minimum AVDP. Since one model has the maximum
AVOP and the other model has the minimum AVDP, we could not find a best model which
satisfied both criteria. Therefore, we calculated the margins of AVOP and AVDP compared
with those of the MRF method (Ali et al., 2005). Total margin, which is sum of the two
margins, was used as the criterion for selecting the best model. Fig. 1 provides the plot of
the total margin vs. iterations of the ICM algorithm, with the best pSVMRF model of
w1=0.89 and w2=0.11. The maximum of the total margin was achieved at the first iteration
within 11.86 minutes using a 3.4-GHz PC. Therefore, we chose the first iteration as the
optimal terminating point for this pSVMRF model. This optimal terminating point will then
be used for testing new mouse brain images. Since the ICM algorithm is a local optimization
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algorithm and does not guarantee a global optimal, the optimal terminating point should be
determinined based on the model and data set. Estimating and using the optimal termination
point enables the ICM algorithm to converge much faster at better solution.

3.3. Validation of the segmentation method
To validate the proposed method, pSVMRF, we first test on MR images of five C57BL/6
mice using a five-fold cross validation. Each of the five mice was used as the testing set
while the remaining four mice were used as the training set. The results are compared with
two existing methods: the MRF method (Ali et al., 2005) and the eMRF method (Bae et al.,
2009). In Table 2, the segmentation performances of the three automated mouse brain image
segmentation method are estimated based on VOP and VDP. The performance estimates in
Table 2 are based the average values from testing all the mice using the five-fold cross
validation. The upper rows include VOP and the lower rows include VDP. A ‘+’ sign always
means that pSVMRF method outperforms the other methods for the specific structure and
‘−’ means that pSVMRF underperforms. pSVMRF outperformed eMRF in 16 structures,
there was no change in one structure and a slight underperformance in 4 structures. Major
improvements in segmentation performance were noted for the olfactory bulbs (from 83% to
91%), pons (from 80% to 86%), and trigeminal tract (from 74% to 82%). In comparison to
MRF, pSVMRF outperformed in 14 structures, most notable in the cases of optic tract (53%
to 73%), trigeminal tract (from 64% to 82%), and pons (73% to 86%). Table 3 presents the
comparisons of the overall segmentation performance and the computation time of the three
automated segmentation methods. Overall pSVMRF outperforms the two existing methods.
AVOP and AVDP of pSVMRF are improved by 2.55% and 9.57% compared with eMRF,
and by 5.41% and 21.07% compared with MRF. The total testing time of pSVMRF in
Matlab, which includes the testing time of pSVM testing and the ICM algorithm, was 26.10
minutes, which is improved by 92.85% compared with the testing time of eMRF (364.4
minutes). The testing time of MRF (15 minutes) is less than pSVMRF. However, pSVMRF
can produce 26.48% (total margin from MRF) more accurate segmentation than MRF by
spending 16 minutes more. The proposed method, pSVMRF, gives better segmentation than
eMRF and MRF, within a short testing time.

Even though pSVMRF outperforms eMRF in 16 structures out of 21, eMRF is still better
than pSVMRF in some small structures such as GP, PAG, OPT and TRI. This results from
the fact that eMRF use Mix-ratio sampling based SVM (MRS-SVM; Bae et al., 2008) and
an over-sampled training set for some smaller structures to improve the classification
performance for these structures. In contrast pSVMRF uses the same number of training
data from each of the structures regardless their size. MRF is also better than pSVMRF in
some small structures such as GP, PAG, AC and INTP even though pSVMRF is better for
most structures. That is because MRF relies more on the contextual information, which
enhances the identification of the smaller structures, for segmentation than pSVMRF. The
proposed method, pSVMRF, still needs to be improved for the smaller structures.

The combination of higher resolution imaging and higher contrast given by active staining
boosted segmentation accuracy, relative to that obtained for the formalin fixed brains, as
illustrated in Fig. 2 for adult C57BL/6 mice. The percent voxel overlap (VOP) increased
substantially for smaller structures like the anterior commissure (from 50.76% to 83.5%),
corpus callosum (from 65.59% to 85.44%), substantia nigra (78.36 to 91.55%) and
ventricles (72.56 to 81.72%). For hippocampus and caudate putamen the VOP values were
more similar. VOP changed from 87.07 o 87.67% for hippocampus, and increased from
97.67% to 90.87% for caudate putamen).

To test the robustness of the pSVMRF on mutant mice which has large anatomical
variability, we examined the performance of the segmentation in two new strains, BXD29
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the APP/TTA mouse model of AD, and contrasted it with the baseline accuracy for stained
C57BL/6 mice, imaged using the same protocol, and using a full sampling strategy for
training/classification. We evaluated the segmentation qualitatively (Fig. 3) and
quantitatively (Fig. 4).

Segmenting the overall brain is a very accurate process (>90% VOP), even in strains other
than the C57BL6 used for generating priors. However, the increased anatomical variability
introduced by new strains resulted in overall decreased performance for a subset of
structures including: hippocampus, caudate putamen, anterior commisure, corpus callosum,
substantia nigra and ventricles. When using 7 labels only during training, the larger
structures such as hippocampus and caudate putamen could be segmented with accuracy of
~80% and greater. The hippocampus VOP was 94.11±0.73% for C57BL6, vs.: 85.81±1.19%
for the other two strains, while for caudate putamen VOP was 92.21±0.71% for C57BL/6,
and 83.48±5.93% for the new strains). Smaller white matter tracts and nuclei, and especially
the widely variable ventricles remain challenging for the automated segmentation task. VOP
for the corpus callosum was 86.11±10.06% for C57BL/6, but 59.54±6.06% for the
additional strains, while for the substantia nigra VOP was 64.31±2.12% for C57BL/6, and
61.81±10.0% in the other strains.

Multiple avenues exist to increase accuracy of the segmentation. Improved registration,
together with a denser sampling strategy, has the potential to increase segmentation
accuracy, while increasing computational demands. For example the use of a full sampling
strategy on C57BL/6 mice yielded VOP values of 92.38±0.20% for Hc, versus 87.67±0.86
for under-sampled data. Similarly for CPu the VOP was 94.58±0.9%, versus 90.87±0.16%.
However the VOP for other structures, including ventricles did not increase using this
strategy, e.g. VOP for ventricles was 81.72±0.19% for under-sampled strategy but only
75.92±4.33 for the full sampling strategy. We noted that a denser parcellation of the brain
yields in general better segmentation results, compared to a reduced set of labels, embedded
in the larger brain area, perhaps by more accurately constraining individual regions
definition.

4. Conclusion
Given recent imaging technology development, we can acquire higher resolution mouse
brain images which have eight times larger data than the current data. Hence, there has been
a pressing need for computationally efficient segmentation method. We have presented an
automated method for mouse brain images, pSVMRF, which is a computationally efficient.
It integrates pSVM and MRF for a more accurate and faster segmentation by modeling the
three kinds of information which are critical for the brain image segmentation. Even though
eMRF produced a more accurate delineation of the mouse brain MRM images than the atlas
based segmentation and the probability information based segmentation by integration of
SVM and MRF, eMRF suffers from the long training and testing time due to the use of
SVM which requires of the long training and testing time. To reduce the training and testing
time of SVM, we use pSVM which relies on location priors as well as MR intensity
information as input features. By the virtue of nonlinear transformation of these two critical
pieces of information, pSVM can train better models with a small size of training sets and
reduce the testing time by 92.85% compared with the SVM testing of eMRF. By using the
optimal termination point for the ICM implementation, the ICM algorithm converges much
faster with the better solution. The AVOP and AVDP of pSVMRF are improved by 2.55%
and 9.57% compared with eMRF, and by 5.41% and 21.07% compared with MRF. In the
future, we will make efforts to improve the performance of smaller structures in which
pSVMRF still produces poorer performance than the other two methods.
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The C57BL/6 is a widely used mouse strain, at the basis of a large number of derived
strains, and therefore was chosen to create priors, and training the classifier. There is a wide
interest in segmenting other mouse strains, many of them having a C57BL/6 background, to
identify anatomical phenotypes. While more studies on larger groups of animals from
different strains are required to validate and optimize a more general segmentation/
anatomical phenotyping task in the future, we have shown the initial applicability of the
method to other strains as well, including a recombinant inbred mouse strain derived from
parental C57BL/6 and DBA2 (BXD29), and a model of Alzheimer’s disease (APP/TTA).
The improvements in accuracy while reducing the computational time will allow us to
address the issue of brain segmentation in larger population studies, and higher resolution
images, therefore facilitating image based phenotyping of mouse models of neurological and
psychiatric conditions.
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Highlights

1. A new method called pSVMRF is proposed for 3D mouse brain segmentation.

2. The proposed pSVMRF outperforms existing methods in terms of accuracy.

3. pSVMRF is more computationally efficient comparing to published eMRF.

4. pSVMRF has the potential to handle extra high resolution mouse brain images.

5. pSVMRF is capable to segment mutant mice brain images.
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Fig. 1.
Convergence of the ICM algorithm with w1=0.89 and w2=0.11.
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Fig. 2.
Increased segmentation accuracy was obtained for the higher resolution, actively stained
sets, relative to the formalin fixed sets, particularly in smaller structures like the anterior
commissure (ac: from 50.76% to 83.5%), corpus callosum (cc: 65.59% to 85.44%),
substantia nigra (SN: 78.36 to 91.55%) and ventricles (VS: 72.56 to 81.72%). For
hippocampus and caudate putamen the values are more similar (~87% for Hc, and increased
from 87.67 to 90.87 % for CPu).
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Fig. 3.
Visual assessment of comparable coronal levels through the brains C57BL/6, BXD29 and
APP/TTA mouse model of AD, overlaid with automatically generated labels. The labeled
regions are: anterior commisure (ac), corpus callosum (cc), caudate putamen (CPu),
hippocampus (Hc), susbtantia nigra (SN) and the ventricular system (VS).
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Fig. 4.
Segmenting strains other than the one used for generating the priors (C57BL/6) is a more
challenging task, as illustrated by the examples of a BXD29 and an APP/TTA mouse model
of AD. Using a full sampling strategy, but only a subset of 7 labels, yields VOP for
hippocampus, ranging from 94.11±0.73% in the C57BL/6 (for the 5 specimens) to 86.65%
for the BXD29 and 84.97% for APP/TTA mouse. For the caudate putamen VOP ranges
from 92.21±0.71% for C57BL6, to 87.68% for BXD29 and 79.28% for APP/TTA. However
smaller white matter tracts and nuclei, and especially the ventricles remain challenging for
automated segmentation (eg. VOP for corpus callosum 86.11±2.12% in C57BL/6, 55.25%
in BXD29, and 63.83% in APP/TTA).
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Table 1

List of the 21 neuroanatomical structures and abbreviations

Cerebral cortex (CORT) Inferior colliculus (INFC) Pontine nuclei (PON)

Cerebral peduncle (CPED) Medulla oblongata (MED) Substantia nigra (SNR)

Hippocampus (HC) Thalamus (THAL) Interpeduncular nucleus (INTP)

Caudate putamen (CPU) Midbrain (MIDB) Olfactory bulb (OLFB)

Globus pallidus (GP) Anterior commissure (AC) Optic tract (OPT)

Internal capsule (ICAP) Cerebellum (CBLM) Trigeminal tract (TRI)

Periacqueductal gray (PAG) Ventricular system (VEN) Corpus callosum (CC)
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Table 3

Comparisons of overall segmentation performances and computation time for the pSVMRF, eMRF and MRF
methods.

AVOP AVDP Testing Time (min)

pSVMRF 82.13 8.63 26.1

eMRF 80.09 9.54 364.4

MRF 77.91 10.93 15.0
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