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Abstract
Despite the success of genome-wide association studies (GWAS) in identifying loci associated
with common diseases, a significant proportion of the causality remains unexplained. Recent
advances in genomic technologies have placed us in a position to initiate large-scale studies of
human disease-associated epigenetic variation, specifically variation in DNA methylation
(DNAm). Such Epigenome-Wide Association Studies (EWAS) present novel opportunities but
also create new challenges that are not encountered in GWAS. We discuss EWAS study design,
cohort and sample selections, statistical significance and power, confounding factors, and follow-
up studies. We also discuss how integration of EWAS with GWAS can help to dissect complex
GWAS haplotypes for functional analysis.
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Introduction
Elucidating the genetic and non-genetic determinants of human complex diseases represents
one of the principal challenges of biomedical research. In recent years, genome-wide
association studies (GWAS) have uncovered >800 single nucleotide polymorphism (SNP)
associations for more than 150 diseases and other traits1. Although the complete genetic
basis is not yet known for any human complex disease, re-sequencing of exomes, and
ultimately whole genomes, holds promise to identify most of the remaining causal genetic
variations. However, there is now increasing interest in exploring how non-genetic variation,
including epigenetic factors, could influence complex disease aetiology2-4.

The epigenome of a cell is highly dynamic, being governed by a complex interplay of
genetic and environmental factors5. Normal cellular function relies on the maintenance of
epigenomic homeostasis, which is further highlighted by numerous reported associations
between epigenomic perturbations and human diseases, notably cancer4. However, most
studies of such associations to date have been performed either with inadequate genome
coverage (e.g. tens to hundreds of loci) but adequate sample size, or approaching genome-
wide coverage (thousands of loci) but inadequate sample sizes. Consequently, for any given
human complex disease, we remain unaware of the proportion of phenotypic variation that is
attributable to inter-individual epigenomic variation. This problem can only be elucidated by
large-scale, systematic epigenomic equivalents of GWAS – epigenome-wide association
studies (EWAS) as first proposed in 20086. At least for DNAm, technology is now available
that is directly comparable in resolution and throughput to the highly successful GWAS
chips that allow genotyping of around 500K SNPs.

But how does one conduct an EWAS? In addition to considerations that are common to both
GWAS and EWAS (e.g. adequate technology and sample size), the design of EWAS has
specific considerations with respect to sample selection. DNAm patterns are specific to
tissues and developmental stages, and also change over time. Furthermore, EWAS
associations can be causal as well as consequential for the phenotype in question - a
difference from GWAS that presents considerable challenges. Here, we discuss these
considerations in the context of designing and analyzing an effective EWAS, keeping in
mind that EWAS are likely to evolve, as did GWAS, as information and experience
accumulate.

Epigenetic Variation and complex disease
Types of epigenetic information

Epigenetic information in mammals can be transmitted in multiple forms5, including
mitotically stable DNAm, post-translational modifications of histone proteins, and ncRNAs.
For DNAm, the predominant form is methylation of cytosines in the context of cytosine-
guanine dinucleotides (CpG). However, recent results suggest that CpH methylation (where
H = C/A/T) may be more common than previously appreciated7,8. Catalysed by Ten Eleven
Translocation (TET) methylcytosine dioxygenases, 5-hydroxymethylation9,10 of cytosines
(hmC) is yet another form of DNAm. Although details are still unclear, increasing evidence
suggests a role of hmC in gene regulation and differentiation11 Histone modifications
include, to name but a few, mono-, di- or tri-methylation, acetylation, and citrullination of
one or more amino acids in the N-terminal tails of core histones5. More recently, it has been
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discovered that ncRNAs can self-propagate and be transmitted independently of the
underlying DNA, in other words they can ‘epigenetically’ transmit regulatory
information12,13. ncRNAs include short micro RNAs (miRNA), Piwi-interacting RNAs
(piRNA), large intervening non-coding RNAs (lincRNA) and others12.

Epigenetic variation in health and disease
The full spectrum of epigenetic marks is currently unknown, but is potentially enormous,
considering that the diploid human epigenome contains >108 Cs of which >107 are CpGs,
and >108 histone tails, that can all potentially vary. The best-studied epigenetic mark is
DNAm and Box 1 illustrates the most common features and contexts in which DNAm
varies. DNAm variation at a single CpG site is known as a methylation variable position
(MVP), which can be considered as the epigenetic equivalent of a SNP14. Very rarely, CpGs
on only one of the two strands of DNA per allele are methylated. This is known as hemi-
methylation, and probably reflects post-replication lag in DNAm maintenance in
proliferating cells. If DNAm is altered at multiple adjacent CpG sites, this is referred to as a
differentially methylated region (DMR); DMRs vary considerably in length, they are
typically <1Kb but can exceed 1Mb15. Until recently, MVPs and DMRs were mostly studied
in the context of core promoters, CpG islands (CGIs) and imprinted differentially
methylated regions (iDMRs), however, it is becoming increasingly clear that DNAm is
highly dynamic even outside of such regions. For example, a recent study found that tissue-,
and cancer-specific DMRs preferentially occur in regions adjacent to CGIs, so-called CGI
shores16. DNAm also plays a key role in silencing repeat elements, which may also impact
on disease aetiology17,18.

The role of DNAm variation in complex disease has mainly been explored in the context of
cancer, in what may be considered as early EWAS. Findings from these studies have been
extensively discussed4,19, the key general conclusions being that tumour development is
associated with gain of DNAm at CGIs, loss-of-imprinting, and epigenetic remodelling of
repeat elements, particularly loss of DNAm at satellite DNA20,21. For non-malignant
common complex diseases such as diabetes or autoimmunity, the epigenetic component is
only just beginning to be investigated. Observations that support an epigenetic component in
these diseases include the following. First, monozygotic twin (MZ) concordance for any
complex disease is almost never 100% and recent small-scale EWAS of MZ twins
discordant for systemic lupus erythematosus22 and autism spectrum disorders23 have found
intra-MZ pair disease-associated epigenetic differences. Second, for several complex
diseases, e.g. Type 1 Diabetes24, the incidence is rising in the general population and
frequently altered in migrant populations, suggesting a role for non-genetic factors. Third,
epidemiological evidence suggests that a sub-optimal in utero/early childhood environment
can impact on disease outcomes (such as type 2 diabetes) in adulthood, a phenomenon
termed developmental reprogramming25. Currently, the prime candidate for the molecular
memory of the in utero environment is epigenetic modifications, including DNAm26-28.

Epigenetic variation as a consequence or cause of disease
As mentioned above, epigenetic variation can be causal for disease or can arise as a
consequence of disease. Epigenetic variation could arise either directly or indirectly as a
consequence of disease, and examples could include long-term alterations in immune-related
cells in autoimmune disorders, altered metabolic regulation in type 2 diabetes, or somatic
mutation-induced epigenetic alterations in cancer. However, distinguishing this from
epigenetic variation that is causative of the disease process is not straightforward (as we
discuss in greater detail below), but is critical since it will help elucidate the functional role
of the disease-associated variation and potential utility in terms of diagnostics or
therapeutics. A key step towards this goal is to determine whether the variation is present
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prior to any overt signs of disease. In this regard it is useful to consider how such epigenetic
variation could arise prior to disease. Firstly, it could be inherited and hence be present in all
tissues including the germline (i.e. transgenerational epigenetic inheritance), although the
extent of this phenomenon is not fully known. Secondly, it could arise stochastically and be
present soma-wide if it happens in early (e.g. in utero) development29,30 or be limited to one
or a few tissues31,32 if it were to happen post-natally or during adult life. Thirdly, it could be
environmentally-induced, either by adult life-style related factors such as diet or smoking33,
or even in utero i.e. developmental reprogramming (described above).

It is also possible that the underlying genotype influences epigenetic variation, as recently
demonstrated by several studies34-39. Loci harbouring genetic variants that influence
methylation state have been termed methylation quantitative trait loci (methQTLs)34. In
most methQTL, the correlations with cis-genotype are most pronounced. There is some
evidence that genetic variation can also influence epigenetic states in trans, but this does not
seem to be as prevalent as cis-effects38. Also, it is important to note that in most of these
previous studies, the true causative genetic variant was not unequivocally identified, and the
majority of methQTLs didn’t demonstrate a strict one-to-one relationship between cis-
genotype and epigenotype. Rather, a given genotype generates an increased probability of
methylation. Feinberg and Irizarry have recently argued for the existence of genetic variants
in mouse and human genomes that do not change the mean phenotype but rather the
variability of phenotype; this could be mediated epigenetically via variably methylated
regions (VMR, see also Box 1)2. The existence of methQTLs provides a strong argument for
integrated GWAS/EWAS to uncover genotypes that exert their function through epigenetic
variation (discussed later).

methQTLs can also affect allele-specific methylation (ASM, see also Box 1). In this context,
the steady-state methylation levels differ across the two alleles within the same cell.
However, ASM can also occur in the absence of any specific genotype-epigenotype
correlations. For example, parental imprinting, X-inactivation, random mono-allelic
methylation of one allele, are all instances of ASM not due to differences in underlying
genotype between methylated and unmethylated alleles.

Finally, it is also worth considering the possibility that in some cases disease-associated
epigenetic variation could arise prior to disease-onset, but still not be causative for the
disease per se. This type of epiphenomenon could be due to confounding, when an
environmental factor such as smoking, or a genetic variant, induces both aberrant epigenetic
states and disease.

These potential relationships between epigenetic variation and complex disease have
important implications for the design and analysis of EWAS. First, they will determine the
most relevant tissue and cell types to be sampled. Second, ‘reverse causation’ and
confounding are particular issues for EWAS study design. Despite the considerable evidence
of epigenetic perturbations in cancer4, and emerging evidence in other non-malignant
diseases22,23,40-42, none of these studies has been able to conclusively distinguish causal
from consequential epigenetic variants, a problem that has long been recognised43. Although
any EWAS association with disease is potentially an advance, being able to identify the
direction of causality will greatly aid in determining the utility of the epigenetic variation,
e.g. as a marker of disease progression, as a target for reversal by treatment with an epi-
drug, or as a measure of drug response by monitoring the kinetics of drug-induced
epigenetic changes.
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Profiling epigenetic variation
One of the major developments that enabled large-scale GWAS was of powerful but
affordable genetic profiling technologies, in particular SNP arrays. Only recently have
epigenomic profiling technologies reached the stage that large-scale EWAS have begun to
be feasible. This requires that the mark/molecule is stable, amenable to high-throughput
analysis, easily accessible in routine clinical samples, and that automatable whole-genome
profiling methods are available. Currently, DNAm (and specifically CpG methylation) is the
most suitable mark for EWAS. Other epigenetic marks may be as or more important, but are
neither yet as easily accessible as DNAm in clinical specimens nor as amenable to high-
throughput processing. In addition, there are numerous well-established correlations
between different epigenetic marks, and hence profiling DNAm can, albeit indirectly,
provide information about histone modification states and RNA dynamics5.

In principle, sequencing- and array-based profiling technologies can be used for EWAS. The
most common of both these technologies have been extensively reviewed44 and
independently benchmarked45,46, and are listed in Box 2. As is typical for this type of study,
the choice comes down to balancing coverage, resolution, accuracy, specificity, throughput
and cost47, Ultimately sequencing-based technologies are likely to prevail, but array-based
methods like those used for GWAS are in our view the currently most suitable methods for
EWAS. As described in Box 2, there are options for custom and off-the-self platforms
covering the choices described above. Of these, the recently released Illumina 450K
Infinium Methylation BeadChip looks in our view most promising for the first wave of
EWAS, offering a good balance of genome-wide coverage (>450K CpG sites), resolution
(single base pair) and throughput (12 samples per chip and up to 96 samples per run).

Study designs for EWAS
In this section, we discuss the most informative study designs for EWAS with respect to
types of study subjects and addressing the issue of reverse causation. Figure 1 illustrates
some of the advantages and disadvantages for the four examples discussed.

Retrospective (case-control)
The most commonly used GWAS design involves unrelated individuals recruited on the
basis of their phenotype (e.g. cases and controls). Many case-control samples are already
available, in some cases with genotype and expression data that can be integrated with
epigenomic data. However, a retrospective study cannot determine whether the identified
epigenetic variants are due to disease-associated genetic differences, post-disease processes
or disease-associated drug interventions. Early examples of using case-control studies to
identify associations between epigenetic variation and clinically relevant phenotypes have
included studies on metabolic dysfunction48 and treatment with tamoxifen49.

Parent-offspring pairs
These could be useful in EWAS that aim to identify transgenerational transmission of
epigenetic marks (Box 3). It has recently been demonstrated that feeding F0 male mice
either a high-fat or low-protein diet from weaning to the time of mating, results in F1
offspring with altered metabolic phenotypes28,50. Given that the sperm passes on very little,
if any, cytoplasmic material to the offspring, these examples suggest the transgenerational
transmission of epigenetic variants induced by the sub-optimal diet of the F0 males. A
similar strategy using epigenomic profiling of parent-offspring trios could be used in
humans. For example, if there is evidence to suggest that paternal environment influences
phenotypic outcomes in the offspring, then one could perform integrated epigenomic and
genomic profiling in the offspring to identify altered epigenetic variants, and the genetic
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information could be used to eliminate the possibility that genetic modifiers are causing the
epigenetic variation. Such study designs will need to employ profiling methods able to
detect allele-specific differences, be adequately powered, and have reliable measures of
parental environmental exposures.

Monozygotic (MZ) twins
MZ twins discordant for a disease of interest represent a useful resource for EWAS as any
identified disease-associated epigenetic variant cannot be due to germline genetic
variation32,51. However, unless the twins are recruited longitudinally, which is rarely
possible, these studies cannot be used to distinguish between cause and consequence for the
reasons discussed earlier. Recruiting large numbers of discordant MZ twins for a well-
powered study is a potential problem, but some large twin resources are available (see under
Links).

Longitudinal cohorts
Longitudinal cohort designs follow initially disease-free people (ideally from birth) over the
course of many years, recording disease events and other phenotypic changes and taking
biological samples. They are expensive to establish, but many such studies are already
underway, some involving appropriate tissues for EWAS (see under Links). For example,
the British 1946 birth cohort52 offers samples and data spanning 65 years so far for over
5000 individuals. Two major advantages of such studies, compared with many case-control
designs, are the avoidance of confounding due to differences in the recruitment of cases and
controls, and of bias due to case-control differences in the measurement of risk factors.
Longitudinal studies can also be invaluable for establishing the temporal origins and
stability of disease-associated epigenetic variation, and hence help to distinguish causal from
consequential epigenetic variants. If environmental influences are also recorded, it may be
possible to relate these to epigenetic changes.

Longitudinal cohorts of disease discordant MZ twins would convey the additional advantage
of ruling out genetic influences on disease-associated epigenetic variation, but such cohorts
are rarely available for EWAS of common diseases. A compromise two-phase study design,
involving a disease-discordant MZ twin cohort for the discovery phase and a different
longitudinal cohort for the replication phase is discussed below.

Choice of tissue for EWAS
In GWAS, most tissue types are suitable for identifying germline genetic variation and DNA
extracted from patient blood or blood cell-derived cell lines is usually used. However,
disease-associated epigenetic variation can be tissue-specific. Since the majority of EWAS
use live individuals, DNA samples can only be easily accessed from certain sources such as
blood, buccals, saliva, hair follicles, urine and faeces. Blood and blood subtypes for
instance, are relevant for autoimmune diseases or blood-based cancers, and any tissue will
suffice if the epigenetic variant is present soma-wide (as will be the case if induced during
developmental reprogramming in early embryogenesis).

However, for many diseases alternative tissue sources need to be explored. These could
include assaying cell-free serum DNA which comprises DNA from proliferating cells that is
shed into the blood (as happens for most cancers), or post-mortem DNA, which is however
less suitable if the aim is to establish causality. In fact, until epigenomic profiling can be
routinely performed non-invasively (e.g. through imaging techniques53) and/or using very
small tissue biopsies54, it will remain challenging to perform effective EWAS for brain-
based and certain other diseases.
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Another important issue is tissue heterogeneity. All tissues are composed of multiple cell
types (e.g. blood contains >50 distinct cell types). If the disease-associated variation is
restricted to a certain cell type that represents only a small proportion of the tissue sampled,
then the variation may not be detected. The disease state itself can also alter the composition
of cell types in a tissue (e.g. inflamed tissue will have a slightly different composition of cell
types than non-inflamed tissue), and hence measured epigenetic differences between cases
and controls may only reflect differences in cell type composition and not true epigenetic
differences.

Finally, blood-spot (or Guthrie) cards are another valuable source of DNA. These are
routinely created in many developed countries immediately after birth using either cord- or
heel prick blood. Biobanks that include DNA and possibly other tissue, as well as
phenotypic information, have been set up in several countries (see Links for examples).

Examples of EWAS study design
There isn’t a single EWAS design that will suit all purposes, but rather the most suitable
design depends on the required outcome. This is best illustrated in the form of two
hypothetical examples, from the many possible EWAS designs that could be conducted:

An EWAS for disease-risk epigenetic markers
Let’s assume that we are interested in identifying DNAm variants that arise prior to the
onset of an autoimmune disease. We could start by performing genome-wide DNA
methylation analysis of MZ twins discordant for the disease to identify disease-associated
MVPs in immune-effector cells (i.e. a disease-relevant blood cell subset) that cannot be due
to genetic variation. Then, we could take these MVPs and assay them in the same type of
immune-effector cells from a prospective cohort, to look at DNAm at these sites in unrelated
individuals sampled both before and after disease onset. Any MVPs that can be validated
prior to disease onset are then candidate causal variations, and cannot be due to post-disease
effects such as long-term medication or immune-related effects. Key follow-up studies could
include correlation with gene expression and other epigenetic marks to investigate the
affected pathways. Overall, this EWAS design combines analysis of a disease-relevant tissue
from two independent cohorts that allow for discovery and validation of MVPs and
elimination of various confounding factors.

An EWAS for drug-response epigenetic markers
Several cancer studies have identified epigenetic variants that can potentially be used to
monitor disease progression and even response to treatment4. Some of these variants were
detected by assaying DNA shed by the primary tumour into the patient’s serum, hence
providing a relatively straightforward means of assessing progression55. An EWAS could
also measure the DNAm state in serum from singleton patients that suffer from a given form
of cancer, prior to, during, and following drug treatment. This could potentially identify
epigenetic markers that predict the best response to treatment in real time. The root cause of
the cancer-associated epigenetic variants (i.e. genetic or environmental) need not be known,
nor would the primary tumour need to be directly analyzed, for the variant to be an effective
measure of progression or response.

Statistical considerations for EWAS
Sample size and power

In 2005, just as the GWAS wave was about to break, Wang et al. published an influential
review56 arguing for large sample sizes to detect small effects, and they highlighted the role
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of both minor allele frequency (MAF) and effect size in determining the power of a test of
SNP association. They also discussed predictions from population genetics theory of the
MAF spectrum over SNPs within a population, and the (limited) theory and data to predict
effect size distributions. The corresponding arguments are no less compelling for EWAS,
but the relevant parameters are even more difficult to predict, because of the paucity of data
and relevant theory. DNA alleles do not typically vary across cells, and can now be typed
with very low error rates. By contrast, methylation states may be tissue-specific, and can
vary over cells within a tissue, over alleles within a cell (ASM) and in rare cases over DNA
strands within an allele (hemi-methylation). Thus, for a tissue sample from one individual,
the methylation state measured at a CpG site lies between zero and one, since it is an
average over cells, alleles and strands and is further blurred by measurement error. Here, we
use the limited available information about frequency spectra of DNA methylation variants,
and their effect sizes for common disease, to tentatively propose power calculations under
three scenarios. It remains unclear how realistic the proposed scenarios are but we hope at
least to stimulate further discussion and investigation into this important aspect of EWAS
study design.

A recent methylome analysis reported that on average 68% of CpG sites were methylated in
human peripheral blood mononuclear cells57. There was great variation across genomic
contexts: CpG sites in regions of high CpG density were almost always unmethylated, as
were CGIs and 5′-UTRs; by contrast, 3′-UTRs, introns and repetitive elements were
predominantly methylated. The rate of ASM was estimated to be between 0.3% and 0.6%
(more than that attributable to imprinting alone). Hemi-methylation was found to be very
rare (<0.2% which included non-CpG methylation and incomplete bisulfite conversion). The
methylation spectrum was not symmetric: there were few sites close to being 100%
methylated, but almost entirely unmethylated sites were not uncommon.

In Figure 2 (a,b) we have hypothesized methylation spectra for three different classes of
individuals (“methylated”, “intermediate” and “unmethylated”) in order to generate overall
frequency spectra in cases and controls. These form the basis of the power simulations,
reported in Table 1. The difference in mean methylation rate between cases and controls
provides a popular summary of effect size, but it does not reflect differences in variances or
other features of the methylation spectrum. It also does not reflect the relative magnitude of
methylation rates, whereas if a rare epigenotype in controls is almost absent in cases, this is
likely to be more important than the same difference of mean rates for a more common
epigenotype.

Odds ratios are well-established measures of genetic effect sizes for binary phenotypes. If
we regard the mean methylation rate at a site in cases (or controls) to represent the
methylation probability for a randomly-chosen DNA strand in the case (or control) tissue
samples, then we can compute a methylation odds ratio. We call this methOR; it is the same
as the ordinary OR except that the sampling unit is a DNA strand, rather than an individual.
Thus, the methOR is the odds for a random DNA strand in the tissue sample from a random
case to be methylated, divided by the same odds for controls. This provides a measure of
effect size that incorporates relative magnitudes, but like the mean difference in rates it also
does not allow for difference between cases and controls of features of the methylation
spectrum such as its variance. As for other odds ratios, methOR is comparable across
prospective and retrospective studies, and its value only measures association and does not
imply causation.

Table 1 gives simulation-based power estimates for three sets of methylation spectra from
Figure 2. They have similar methORs, while the case-control differences in mean
methylation rates are the same for (a) and (b) but not (c). The fact that the power values
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differ between (a) and (b) emphasizes that there is no single-number measure of effect size
since power depends on the entire methylation spectra in cases and controls. However, for
the logistic regression analysis conducted in our simulations, methOR gives a better guide to
power than the difference in rates. When methOR is around 1.25, a sample size of 800 cases
+ 800 controls is adequate to achieve 80% power at a significance level of α = 10−6 for
scenario (c), but not (a) or (b) (see next section for a discussion of genome-wide significance
for EWAS). When methOR is around 1.5, a sample size of 400 + 400 gives 80% power at α
= 10−6 for (b) and (c), but not (a).

Very little is currently known about actual differences in methylation spectra at epigenetic
variants implicated in disease, and recommendations about sample size will need to evolve
with emerging data. A recent report58 on the effects of smoking on methylation identified
one very strong association at a CpG site located in F2RL3, for which the median
methylation rates were 95% for never-smokers and 83% for heavy smokers, giving a
difference of 12% and methOR=2.7. Methylation status was much less variable in never
smokers than in heavy smokers (inter-quartile ranges 0.94-0.96 and 0.78-0.88, respectively).
For such a strong effect the sample size of 65 heavy smokers and 56 non-smokers was
adequate to detect the association, but smoking is known to be among the most important
environmental factors for health and other effect sizes of interest are likely to be much
smaller. If we regard 1.5 to be a target methOR value, then it would seem to be not cost
effective to pursue an EWAS with fewer than 400 cases and 400 controls, and 800 of each
would be preferable to achieve good power. This is much less than the 2,000 cases and
controls that became the de facto standard minimum sample size for GWAS following the
Wellcome Trust Case Control Consortium (WTCCC) study59, reflecting the fact that effect
sizes for EWAS and GWAS are not directly comparable. It seems likely that effect sizes and
hence power will vary substantially according to genomic context, in which case genome-
wide ranking by p-values is unsatisfactory60 and Bayesian measures of support that take
power into account are more appropriate. Currently, however there remains little
information to inform Bayesian prior distributions of effect sizes.

Genome-wide significance
In GWAS, the establishment of genome-wide thresholds for significance is complicated by
correlations between the genotyped SNPs61. In EWAS, there are analogous correlations
among DNAm sites in DMRs, but these correlations typically extend to at most a few
kilobases, though to date they have only been reported in non-disease contexts. Based on
what we discussed above on co-methylation, ASM and hemi-methylation, the vast majority
of CpG methylation can be expected to be symmetric across strands and across alleles in
somatic cells. Thus, the ~28 million CpG sites in the haploid human genome correspond,
due to correlation within DMRs and methylation symmetry, to substantially fewer
independent methylation states. If a set of 500K CpG sites were evenly spaced, the average
spacing between sites may be large enough to allow an assumption of independence, in
which case a significance level α = 10−6 per site gives probability 0.36 of no false positives
(= type 1 error rate) under the null and this might be regarded as a liberal threshold for a
possible EWAS association. If 5 million CpG sites were assayed, we would expect 5 false
positives under the null at this α level. Correlation among neighbouring sites means that a
specific calculation is required to identify a stringent standard for epigenome-wide
significance (global type 1 error < 0.05), which will typically lie between 10−8 and 10−7.

Confounding in EWAS—GWAS can be affected by two sources of confounding. Firstly,
with retrospective ascertainment there is a risk of systematic differences between cases and
controls in the handling or processing of samples (known as technical confounding, which
includes batch effects)62,63. Similar problems are possible for EWAS. Secondly,
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confounding can arise because the ancestry of cases differs systematically from that of
controls (known as population structure and cryptic relatedness)64. This causes confounding
in GWAS because any polygenic contribution to disease causation is correlated with
ancestry, and environmental exposures may also be correlated with ancestry for example due
to different geographic locations of ancestors. Whether or not “polyepigenetic” effects exist
seems unclear, but environmental exposures correlated with ancestry seem likely to impact
epigenetic studies.

Unlike GWAS, environmental factors can also directly confound an EWAS, by affecting
both epigenotype and phenotype, which can inflate type 1 error and exaggerate effect size
estimates. Potential confounders such as age65 and smoking behaviour should if possible be
adjusted for in a regression analysis. Even if a measured covariate is not a confounder, but
for example has an independent effect on phenotype, then adjusting for it can allow better
delineation of the direct epigenetic effect.

Fortunately the large numbers of SNPs in a GWAS allow many possibilities to detect and
correct confounding63, including genome-wide adjustment of association statistics,
regression adjustment using principal coordinates and mixed regression models64. Similar
methods are likely to be effective to detect and adjust for confounding in EWAS. For
example, leading principle coordinates of genome-wide methylation states may encapsulate
unmeasured confounders, so if these are also correlated with phenotype then it may be
appropriate to include these as covariates in a regression analysis, as is common for GWAS
analyses. Indeed if GWAS data is also available on the EWAS study individuals, it may be
appropriate to adjust for leading principle coordinates of both genetic and epigenetic states.

Analysis of multi-stage studies—The values in Table 1 assume a single-stage study
but as discussed above the possibilities of confounding, correlation with genotype and of
reverse causation often argue for a two-stage study design, for example including a
discordant MZ twin stage followed by a longitudinal cohort stage. In simple settings it is
optimal if the sample size in each stage is inversely proportional to the square root of the
cost per individual in that stage66. The question arises as to whether the second stage should
assay all the sites from the first stage, or whether costs can be reduced by assaying in stage 2
only a limited set of “hits” from stage 1. The relatively low cost and additional information
argue for the former strategy in general, unless stage 1 is large enough to eliminate all but a
handful of potential hits. In either case it is broadly speaking optimal to conduct a single,
joint analysis of results from both stages. If stage 1 involves MZ twin pairs, a paired analysis
may be appropriate (such as a paired t-test) if there is substantially more variation among
than within twin pairs. A combined two-sample case-control analysis is then not appropriate,
but it is straightforward to combine test statistics from the two stages using standard meta-
analysis techniques.

Replication for EWAS—Particularly in the early days of GWAS studies, replication of
hits in an independent study was important in weeding out false positives that arose through
technical or design flaws in the initial study. Arguably GWAS study design has improved to
the extent that replication is less crucial now since there are many checks available on the
quality of the primary study, but replication is still seen as highly desirable and is typically
relatively easy to achieve. Ideally replication should be carried out by an independent group
of researchers, preferably using a different study design and different laboratory techniques,
yet studying the same polymorphism in the same population and with the same phenotype
definition. In practice it is impossible to demand all this, and what constitutes a satisfactory
compromise is a matter of debate, although there are some broad points of consensus67. For
EWAS, the same issues arise and in addition the issues of correlation with genotype and
reverse causation should both be addressed in replicate analyses. Thus a replication is
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potentially more demanding for EWAS than GWAS, yet limited availability of tissue
samples and study subjects mean that replication will be harder to achieve. As EWAS begin
to develop it would be inappropriate for reviewers and editors to impose overly strict
replication requirements analogous to those used in the current mature phase of GWAS. In
particular, we should avoid any encouragement for researchers to hold back samples or
resources from the primary study in order to use them later to claim “replication”. Lessons
should be learned from the GWAS experience: the primary study needs to be well powered,
and rigorous quality checks imposed on the EWAS data. If replication is not immediately
feasible this should not preclude publication, but the need for further confirmation of results
should be acknowledged. The appropriate level of tolerance of false positives from the
primary study depends on several factors, including the costs of follow-up analyses. If these
costs are not too excessive it may be optimal to initially tolerate some false positives in
order to minimise false negatives. The field of EWAS needs to develop similarly to GWAS,
with standards tightening over time with progressive learning from accumulated experience.

Post-EWAS follow up studies
The ultimate aim of EWAS, like GWAS, is to provide a better understanding of disease
aetiology, and to lead to the development of novel therapeutics and diagnostics. Typical
follow-up experiments to determine the etiological role of disease-associated epigenetic
variation could include correlation with other epigenetic modifications and collectively how
they impact on gene expression. This could be achieved using ChIP-seq experiments, either
for the many histone modifications known to correlate with DNAm68 or for transcription
factors whose binding may be modulated – positively or negatively – by methylation at their
target sites69. If a large effect size can be determined for a single site, then one could
validate the link to the disease-associated phenotype by modulating the expression of the
gene in question either in in vitro systems or model organism studies. However, a more
likely scenario is of many disease-associated epigenetic variants each conferring only a
small disease risk, as is suggested by the few small-scale EWAS to date22,23,40-42. In this
case, it may be more fruitful to use approaches that integrate both computational and
experimental methodologies to look at perturbations of entire transcriptional networks. The
issue of reverse causation is also important in post-EWAS experiments, both in terms of
which variants to follow-up, and the experimental approaches.

Even if the etiological role of any identified epigenetic variant proves elusive, it may still be
possible to use them as predictive biomarkers. In this regard, the combination of chemical
stability and ontogenetic plasticity make DNAm ideally suited as a biomarker. Translating
any molecular marker including DNAm differences into clinically informative biomarkers
has turned out to be more challenging70 than had been expected but progress has been made.
Following earlier setbacks, a multi centre study identified, validated and replicated
hypermethylation at SEPT9 as a blood-based DNAm biomarker for colorectal cancer in
200871, leading to a commercial test in early 201072. But enthusiasm is tempered with
caution, as illustrated by the problems encountered by the cancer community in identifying
biomarkers that predict which patients would benefit from a particular therapy70. The main
problem has been the inability to select patients with a molecularly well-defined disease
phenotypedue in large part to the heterogeneity of cancer tissues. Molecular heterogeneity is
also an issue, though expected to be less important, for the common diseases that are being
targeted by the first wave of EWAS.

Based on this experience, a systematic approach such as the recently launched OncoTrack
project (see under Links) is needed to advance the field. Two bodies in particular - the
Biomarkers Consortium and the AACR-FDA-NCI Cancer Biomarkers Collaborative - have
recently issued a comprehensive report on the current state of affairs and future directions73.
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The response of the community has been positive with calls like ‘Bring on the
biomarkers74” and pledging to replace the patched framework of fragmented research by a
co-ordinated ‘big-science’ approach (such as OncoTrack) which has proved successful for
efforts like the human and cancer genome projects. Based on this and other efforts, we can
be cautiously optimistic that similar progress will also be made for epigenetic biomarkers.

Integration of EWAS and GWAS
The correlations that have been observed between genotype and epigenotype (methQTLs)
are encouraging for the prospects of further integrated analysis. A recent study39 analysing
SNPs, gene expression and DNAm in 77 HapMap cell lines identified SNPs that affect both
gene expression and DNAm and provides evidence for shared genetic and epigenetic
mechanisms affecting multiple QTLs. In this way, EWAS can be used to investigate genetic
predispositions that exert their function through epigenetic mechanisms. A possible strategy
involves designing of a custom array tiled across haplotypes identified by disease-associated
GWAS SNPs, profiling it for differential DNAm and analysing the data stratified for risk
SNPs rather than cases and controls. Using this strategy a recent study75 successfully
integrated GWAS and EWAS data to identify haplotype-specific DNA methylation (HSM)
in a Type 2 Diabetes and Obesity susceptibility locus. In the future, it may well be possible
to do similar analyses for additional and combinatorial epigenetic marks to capture certain
chromatin disease states e.g. based on altered bivalency status that are currently not easily
captured by DNAm. Using multivariate Hidden Markov analysis of recurrent and spatially
coherent combinations of epigenetic marks, a recent study76 reported 51 distinct chromatin
states for human T cells that look highly promising for possible integration with GWAS data
of blood-based diseases.

Conclusions and future directions
The success of GWAS in identifying disease-associated genetic variations clearly warrants
the development of complementary approaches to identify additional variations that cannot
be captured with GWAS. As outlined in this article, EWAS has the potential to do just that
by capturing disease-associated epigenetic variations such as differential DNA methylation.

The single most useful resource empowering GWAS was the availability of a detailed SNP
map of the human genome77,78 which allowed the selection of so-called tag SNPs for
comprehensive variation coverage and cost-efficient profiling. DNAm is correlated over
tissue-specific blocks of CpG sites spanning up to 1 Kb79. Knowledge of this block structure
for different tissues and cell types has and will continue to improve the selection of CpG
sites for EWAS as new methylome maps become available. Currently, such high-resolution
maps are available for human embryonic stem cells, foetal fibroblasts and peripheral blood
monocytes8,57, informing potential EWAS on early developmental disorders and blood-
based diseases. As part of the recently launched International Human Epigenome
Consortium (IHEC), 1000 reference epigenomes (including methylome maps) will be
generated for human tissues and cell types over the coming years. In this context, these maps
can be considered as the epigenetic equivalent to the human haplotype map and can be
expected to significantly accelerate and improve our ability to conduct EWAS for many
common diseases.

In addition to improving study design – for which we have discussed the key issues in this
Review - the main challenge for EWAS will be access to appropriate samples. A useful
starting point would be to establish the proposed Biobank Central (see under Links) which
will allow researchers to electronically search for specific combinations of samples and
associated data as required for EWAS. Initiation of new birth and other longitudinal cohorts
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should also be encouraged and existing collections should ensure that samples are suitable
for EWAS and related studies that are likely to require chromatin (not just DNA) in the
future. Finally, appropriately powered and designed EWAS need to be conducted to enable
the development of tools for the analysis, interpretation and integration of EWAS data. To
achieve this will require close cooperation between scientists, clinicians, resource providers
and funding agencies as pioneered for GWAS. At the time of writing, the first wave of
EWAS was still underway and an international conference (see under Links) has been
arranged for later this year to discuss first results.
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Glossary

Alelle-specific
Methylation
(ASM)

The presence of DNA methylation on only one of the two alleles
present in a cell. This could be due to parental imprinting, random
methylation of one allele, or due to genetic effects.

Bivalent
chromatin

Chromatin that contains both activating and repressing epigenetic
modifications at the same locus.

Core promoters Region upstream and downstream of Transcriptional Start Site
(TSS), typically defined as the interval −60 to +40 bases from TSS.

Core histones The proteins that form the nucleosome which is composed of two
copies each of histones 2A, 2B, 3 and 4. Together they form a
histone octamer around which 147 bases of genomic DNA are
wrapped.

CpG islands
(CGIs)

Regions of the genome (typically 500 bp - 2 kb) that contain a
higher than expected frequency of CpG sites. CGIs are frequently
unmethylated and found near promoter regions.

Epigenome The complete collection of epigenetic marks, such as DNA
methylation and histone modifications, and other molecules that
can transmit epigenetic information such as non-coding RNAs, that
exist in a cell at any give point in time.

Epimutation A heritable aberrant epigenetic state.

Exome The part of a genome that encodes exons for translation into
proteins.

Genome-wide
association studies
(GWAS)

A genome-wide study of designed to identify genetic associations
with observable trait/disease/condition e.g. diabetes.

Imprinted genes Genes that are expressed in a parent-of-origin specific manner.

Loss-of-imprinting
(LOI)

ParentalImprinting results in the epigenetic silencing of one allele
of a gene due to its parental origin. Aberrant disruption of
imprinting leads to both alleles being expressed i.e. loss-of-
imprinting.

Satellite DNA Type of non-coding, repetitive DNA that is a component of
functional centromeres and the main structural constituent of
heterochromatin.
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Methylation
quantitative trait
loci (methQTL)

DNA variants that influence the DNA methylation state either in
cis- or trans.

Reverse causation Refers to an association between A and B being due to B causing A
rather than the presumed A causing B.

Methylation-
sensitive
restriction enzyme
digestion

Procedure to cleave double-stranded DNA depending on the
methylation status of the enzyme’s recognition site. Some enzymes
only cleave when recognition site is methylated and others only
when site is unmethylated.

Affinity
enrichment

In this context, refers to a procedure to enrich methylated DNA
fragments from a pool of methylated and unmethylated fragments
using affinity reagents such as antibodies against 5-methylcytosine
or other methyl-biding proteins.

Reduced
representation
bisulfite
sequencing
(RRBS)

A procedure for single base resolution methylation analysis using
bisulfite DNA sequencing of a representative part of a genome,
typically 10%.

Bayesian The two main statistical schools are the Classical, or frequentist,
school that dominated 20th century science and measures the
strength of evidence against a hypothesis using p-values, and the
Bayesian school, developed in the 19th century but currently
undergoing a resurgence, which attempts to compute the posterior
probability that the hypothesis is true.

Population
stratification

refers to any systematic pattern of mating in a population, which
entails differences in allele frequencies between different parts of
the population. These differences can be problematic if the
different parts of the population are unequally represented in
phenotypic groups, such as cases and controls, as this can lead to
spurious associations between alleles and phenotypes.

Principal co-
ordinate analysis

a multivariate statistical technique that is related to Principal
Components Analysis but investigates individuals rather than
variables. It is often used to investigate population structure in a
sample of individuals whose relatedness has been estimated from
genome-wide genotype data.
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Box 1

Definition of features known to vary in DNA methylation (DNAm).

This rapidly increasing list of features is not meant to be complete but intends to illustrate
the key loci and contexts in which DNAm is known to vary.

Methylation variable position (MVP). A CpG site that shows differential methylation e.g.
between different disease states as illustrated below. Given recent findings on non-CpG
methylation, potentially all Cs could be MVPs.

Differentially methylated region (DMR):A region of the genome at which multiple
adjacent CpG sites show differential methylation..DMRs can occur in many different
contexts such as:

iDMR - imprinting-specific differentially methylated region

tDMR - tissue-specific differentially methylated region

rDMR - reprogramming-specific differentially methylated region

cDMR - cancer-specific differentially methylated region

aDMR -ageing-specific differentially methylated region

Variably methylated region (VMR). These are defined by increased variability rather
than gain/loss of DNAm.

Allele-specific methylation (ASM). These are positions or regions that vary in DNAm
depending on the parent-of-origin, the presence of a polymorphism or as a result of a
stochastic event.

Haplotype-specific methylation (HSM). This is a differentially methylated region that is
defined by a set of co-inherited SNPs (a haplotype).

CpG islands (CGIs). These are regions enriched for CpG sites. The majority of CGIs are
unmethylated in all cell types.

CGI shores. These are regions immediately adjacent to CGIs and display higher variation
in DNAm than CGIs despite their lower density of CpG sites.

The below figure shows different types of DNAm variation that can be identified with
EWAS. For the purpose this simplified illustration, the cases and controls are assumed to
have methylated or unmethylated CpG states only. Real samples will contain populations
of different cells and hence display much more heterogeneous methylation levels across
the full dynamic range between 0-100%.
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Box 2

Profiling technologies for EWAS

Lack of suitable technology has been a major bottleneck for EWAS in the past.
Fortunately, this is no longer the case and a variety of both array- and sequencing-based
methods are now readily available. As these have been already been extensively
reviewed44,47,80 and benchmarked45,46,81,82, they are only briefly described here along
with some additional technologies that may also be suitable for EWAS as guidance for
the variety of choices available.

Array-based technologies:

CHARM83: Comprehensive High-Throughput Relative Methylation; utilizes
methylation-sensitive restriction enzymes.

Infinium84: The Infinium assay uses two different bead types (for methylated and
unmethylated DNA) to detect CpG methylation of bisulfite treated DNA; utilizes
chemical conversion of DNA.

Technologies that can be used in conjunction with arrays or sequencing:

HELP-chip/seq85: HpaII tiny fragment Enrichment by Ligation-mediated PCR; utilizes
methylation-sensitive restriction enzymes.

MethylCap-chip/seq86: Methyl capture using the methyl binding domain of protein
MeCP2; utilizes affinity enrichment.

MBD-chip/seq87,88: Methyl capture using complex of methyl binding proteins MBD2
and MBD3L1; utilizes affinity enrichment.

MeDIP-chip/seq89,90: Methylated DNA immunoprecipitation with antibody against 5-
methylcytosine; utilizes affinity enrichment.

Sequencing-based technologies

BS-seq8: Whole-genome Bisulfite Sequencing; utilizes chemical conversion of DNA.

RRBS91: Reduced Representation Bisulfite Sequencing; utilizes chemical conversion of
DNA.

Of these, the BS-seq approach - bisulfite conversion of randomly fragmented DNA
followed by sequencing - provides the highest level of coverage and resolution,
negligible bias towards CpG dense regions, and a direct read-out of non-CpG
methylation92,93. Like all methods based on bisulfite conversion, BS-seq is not able to
distinguish between methylated and hydroxymethylated cytosine bases94. Except for the
reduced representation (RRBS) method which provides about 10% genome coverage,
whole-genome BS-seq is currently too expensive for EWAS profiling, although costs
keep falling rapidly. Affinity-based enrichment methods such as MeDIP-, MethylCap-
and MBD-seq are more economical and highly automatable95 but are less quantitative
and don’t provide single base resolution. In our view, the recently released Infiumium
450K BeadArrays seem well suited for EWAS profiling with respect to throughput, cost,
resolution and accuracy. However, like other non sequencing-based methods this assay is
susceptible to certain polymorphisms not known or considered at the time the array was
designed.

Of course, the trade-off with all these methods is that many CpG sites are not profiled. As
there is no epigenomic equivalent of the HapMap project which helped elucidate some of
the genetic variation in the human genome77,78, we are not aware of the level of normal
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epigenetic variation that exists in human populations, or even which sites are the most
relevant for disease aetiology. A true understanding of complex disease epigenomics will
therefore only be realized when whole-genome methods become more affordable,
possibly using techniques such as nanopore96 and single molecule real-time97 sequencing
which are currently being developed. These will allow direct (i.e. no bisulfite, restriction
or enrichment modifications required) and simultaneous determination of DNA
methylation, DNA hydroxymethylation and DNA sequence in a single reaction.
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Box 3

Transgenerational Epigenetic Inheritance

In mammals, epigenetic states are extensively reprogrammed between generations, and
this is associated with the reinstatement of the pluripotent state that exists in very early
development. However, a few studies have shown that occasionally epigenetic states are
not completely reprogrammed, resulting in the transgenerational transmission of
epigenetic states. The strongest evidence for this phenomenon in mammals comes from
various mouse models such as Avy, and AxinFu (Refs29,30). In these models, the
characteristic phenotype is associated with DNA methylation variation at the relevant
locus. Interestingly, these states are not always completely reprogrammed between
generations, thereby resulting in the range of phenotypes in the offspring being
influenced by the phenotype of the parent, even in the absence of genetic heterogeneity.
Establishing transgenerational epigenetic inheritance in humans is a far more challenging
task since the outbred nature of human populations means that it is difficult to distinguish
true epigenetic inheritance from the inheritance of genetic variants that determine
variable epigenetic states. Nevertheless, several reports suggest that transgenerational
epigenetic inheritance in humans may occur. If true, then we may need to reconsider
whether some estimates of heritability are confounded by transgenerational epigenetic
inheritance. For example, a given epigenetic state may be induced in the germline by
environmental factors such as diet, and these states are passed on to the next generation,
ultimately influencing phenotypic outcomes98. Indeed, in rats it has recently been
demonstrated that a high-fat diet in fathers alters beta islet function in the daughters28.
The true extent of this phenomenon is expected to become clearer in coming years.
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Figure 1. The different types of sample cohorts that could be used in an EWAS
Refer to text for a full discussion.
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Figure 2. Hypothetical DNA methylation frequency spectra in cases and controls
Methylation states in controls (solid curve) and cases for four effect sizes (other curves) are
shown under three scenarios. For (a) and (b), the proportions of individuals who are,
respectively, unmethylated, intermediate, or methylated in controls and the four sets of cases
are shown in the keys. The distributions of measured methylation states are assumed to
follow the following beta distributions (i) unmethylated individuals: beta(1.5,6) distribution,
which has mean = 0.2, SD = 0.14; (ii) intermediate individuals: beta(2,2), mean = 0.50, SD
= 0.22; (iii) methylated individuals: beta(6,1.5), mean = 0.80, SD = 0.14. For (c), the
methylation spectrum is assumed to follow a single beta distribution for controls and each
set of cases, and its parameters are shown in the key
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Table 1
EWAS power simulation

(Number of
cases, number

of controls)
Power (%) to detect an MVP

Scenario a meth OR = 1.24
md = 3.6%

meth OR = 1.49
md = 7.2%

meth OR = 1.78
md = 10.8%

meth OR = 2.10
md = 14.4%

(100,100) 0 0 0 0 2 0 18 1

(200,200) 0 0 4 0 55 11 99 78

(400,400) 1 0 66 21 100 98 100 100

(800,800) 20 3 100 99 100 100 100 100

Scenario b meth OR = 1.24
md = 3.6%

meth OR = 1.49
md = 7.2%

meth OR = 1.78
md = 10.8%

meth OR = 2.10
md = 14.4%

(100,100) 0 0 1 0 13 1 60 19

(200,200) 0 0 16 2 84 46 100 97

(400,400) 2 0 85 51 100 100 100 100

(800,800) 33 8 100 100 100 100 100 100

Scenario c meth OR = 1.27
md = 1.25%

meth OR = 1.54
md = 2.5%

meth OR = 1.82
md = 3.75%

meth OR = 2.11
md = 5.0%

(100,100) 1 0 37 10 95 77 100 99

(200,200) 7 1 95 78 100 100 100 100

(400,400) 50 19 100 100 100 100 100 100

(800,800) 98 88 100 100 100 100 100 100

Power (%) to detect an MVP at α = 10−6 (left entry in each cell) and α = 10−8 (right entry) for the sample sizes stated in column 1 under
scenarios (a), (b) and (c) of Figure 2. methOR = methylation odds ratio, the odds for a random DNA strand in the tissue sample from a random case
to be methylated, divided by the same odds for controls; md = difference in mean methylation rate between cases and controls. Analysis is via a
Wald test in logistic regression implemented in the R software.
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