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Abstract
We investigated and compared three approaches for shotgun protein identification by combining
MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach,
we employed a unique mass identifier method where MS peaks matched to proteins identified
from an MS/MS database search are first subtracted before the MS peaks are used as unique mass
identifiers for protein identification. In the second method, we used an accurate mass and time tag
method by building a potential mass and retention time database from previous MudPIT analyses.
For the third method, we used a peptide mass fingerprinting-like approach in combination with a
randomized database for protein identification. We show that we can improve protein
identification sensitivity of low abundance proteins by combining MS and MS/MS information.
Furthermore, “one-hit wonders” from MS/MS database searching can be further substantiated by
MS information and the approach improves the identification of low abundance proteins. The
advantages and disvantages for the three approaches are then discussed.
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Introduction
Shotgun proteomics refers to the global analysis of the digested products of protein mixtures
such as tissues, cells, or protein complexes1,2. Multi-dimensional protein identification
technology is a popular approach for shotgun proteomic as it combines high resolution
separation with tandem mass spectrometry (MS/MS)3,4. In general, protein mixtures
resulting are proteolytically reduced to peptides. Peptide separation by multidimensional
high pressure liquid chromatography is directly coupled to a tandem mass spectrometer
followed by database searching using a computer algorithm such as SEQUEST5, Mascot6,
or OMSSA7. This approach has become a powerful method for identifying and quantifying
proteins8–11.

One inherent disadvantage to the shotgun protein identification method outlined above is the
dependency on the acquisition of tandem mass spectra. For current technologies, it is still
impossible to perform tandem mass spectrometry on every single ion in a chromatographic
window with a +/− 3 amu precursor isolation window, although the current generation of
tandem mass spectrometers has increased acquisition of MS/MS by a factor of 5–10. This
limitation leads to undersampling of complex peptide mixtures and thus usually one needs to
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perform multiple MudPIT analyses to increase acquisition of measurable peptide
species12,13. It would be desirable to utilize data from the first round of mass spectrometry
(MS1 or simply MS) to supplement protein identification and this usually requires high mass
accuracy mass spectrometers.

One type of instrument that has high mass accuracy capability is the Fourier transform ion
cyclotron resonance mass spectrometer (FT-ICR-MS). FT-ICR-MS has the ability to
measure peptide masses at low ppm levels14. This creates the possibility of using the mass
of a single peptide as a unique identifier for protein identification provided that the mass of
the amino acid composition of the peptide is unique in a database. By using this concept,
Smith and colleagues have developed and refined an accurate mass tag (and later accurate
mass and time tag, AMT) approach for MS-based high throughput proteomics study using
FT-ICR-MS14–17. Strittmatter et al.18 also experimented with the use of LC Time-of-fight
(TOF) MS for AMT tag protein identification, since current TOF instrument can provide
resolutions of larger than 10,000 and 2–5 ppm mass accuracies. For the AMT approach
developed by Smith and colleagues using either FT-ICR-MS or TOF-MS, the protein
identifications are obtained from MS information. Recently, an attempt was made to apply
AMT to the more recent hybrid instruments such as the LTQ-FT or LTQ-Orbitrap19.

Another common MS-based method for protein identification is peptide mass fingerprinting
(PMF)20–23. This method is most commonly applied to purified or highly enriched proteins
often isolated by 2-dimensional gel electrophoresis. PMF is most effective when attempting
to identify single proteins but an iterative approach has been used to improve the
identification of single mixtures of proteins24,25. PMF has also been combined with 2-
Dimensional chromatography of intact proteins in studies of cell lysates26. Giddings et al
developed an interesting variation of PMF to identify Open Reading Frames (ORFs) in
bacterial genomes27. Statistical or probability based approaches for PMF analysis help to
assess the quality of matches but no PMF approaches have attempted to assess the false
discovery rate associated with analysis21, 27–29.

The linear ion trap-Orbitrap is a hybrid Fourier Transform mass spectrometer that combines
the efficiency and sensitivity of the linear ion trap with the high mass accuracy and high
resolution of the Orbitrap mass analyzer30,31. The LTQ-Orbitrap has been shown to be able
to routinely achieve sub 5-ppm mass accuracy at a dynamic range of more than 500032 and
thus should be suitable for a protein identification approach using the accurate mass and
time tags.

Here we investigated and compared three methods for shotgun protein identification by
combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. The
intent was to extend the amount of information that could be obtained from a MudPIT type
of experiment and provide additional supporting information from MS/MS based “one hit
wonders”. In the first approach, we employed a unique mass identifier method where
orphaned m/z values (no MS/MS for the m/z value) were matched to sequences in a
database after the proteins identified by MS/MS were removed from the database. In the
second approach, we used an accurate mass and time tag method by building a potential
mass and time tag database from previous MudPIT analyses. The third method used a PMF
method using the orphaned m/z values that incorporated a randomized database to assess the
false discovery rate. We show an improvement in protein identification sensitivity of low
abundance proteins by combining MS and MS/MS information and add additional
information to substantiate “one hit wonders”. Finally, the advantages and disadvantages for
the three approaches are discussed.
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Experimental Procedures
Yeast whole cell lysate experiment

A protease-deficient Saccharomyces cerevisiae strain BJ546033 was purchased from
American Type Culture Collection (Manassas, VA). The strain was grown to mid log phase
(OD 0.6) in YPD, and cells collected by centrifugation were lysed as described previously3.
The lysed cells were separated into three fractions (soluble, lightly and heavily washed), and
the soluble fraction was used in this study. The soluble fraction of cells was digested by a
method slightly modified from the one described previously3. Urea was added to the soluble
fraction of the cell lysate to denature the proteins. Proteins were then reduced with TCEP,
alkylated using iodoacetamide (IAM), and subsequently digested with trypsin. The digestion
process was stopped by adding formic acid to a final concentration of 1%. The protein digest
was aliquoted and stored at −80 °C prior to use.

The protein digest was pressure-loaded onto a fused silica capillary desalting column
containing 5 cm of 5 um Polaris C18-A material (Metachem, Ventura, CA) packed into a
250-um i.d. capillary with a 2 um filtered union (UpChurch Scientific, Oak Harbor, WA).
The desalting column was washed with buffer containing 95% water, 5% acetonitrile, and
0.1% formic acid. After desalting, a 100-um i.d capillary with a 5-um pulled tip packed with
10 cm 3-um Aqua C18 material (Phenomenex, Ventura, CA) followed by 3 cm 5-um
Partisphere strong cation exchanger (Whatman, Clifton, NJ) was attached to the filter union
and the entire split-column (desalting column-filter union-analytical column) was placed
inline with an Agilent 1100 quaternary HPLC (Palo Alto, CA) and analyzed using a
modified 13-step separation described previously3. The buffer solutions used were 5%
acetonitrile/0.1% formic acid (buffer A), 80% acetonitrile/0.1% formic acid (buffer B), and
500 mM ammonium acetate/5% acetonitrile/0.1% formic acid (buffer C). Step 1 consisted of
a 100 min gradient from 0–100% buffer B. Steps 2–12 had the following profile: 3 min of
100% buffer A, 2 min of X% buffer C, a 10 min gradient from 0–15% buffer B, and a 97
min gradient from 15–45% buffer B. The 2 min buffer C percentages (X) were 10, 15, 20,
25, 30, 35, 40, 45, 50, 60, 70% respectively for step 2 to step 12 analyses. The final step, the
gradient contained: 3 min of 100% buffer A, 20 min of 100% buffer C, a 10 min gradient
from 0–15% buffer B, and a 107 min gradient from 15–70% buffer B.

As peptides eluted from the microcapillary column, they were electrosprayed directly into an
LTQ-Orbitrap mass spectrometer (ThermoFisher, San Jose, CA) with the application of a
distal 2.5 kV spray voltage. A cycle of one full FT scan mass spectrum (400–2000 m/z,
resolution of 60,000) followed by 5 data-dependent MS/MS acquired in the linear ion trap
with normalized collision energy (setting of 35%) was repeated continuously throughout
each step of the multidimensional separation. Application of mass spectrometer scan
functions and HPLC solvent gradients were controlled by the XCalibur data system.

Overall data analysis outlines
The general outline is shown in [Supplementary Figure 1]. We investigated three data
analysis flows to more fully utilize the data generated by the new generation of hybrid mass
spectrometers that produce large numbers of tandem mass spectra and high mass accuracy
precursor ions. In the first approach [Supplementary Figure 1A], we employed a unique
mass identifier method where “orphaned” m/z values (i.e. m/z values with no associated
MS/MS) that match to proteins identified from the MS/MS database search are first
subtracted before the m/z values are used as unique mass identifiers for protein
identification. In the second method [Supplementary Figure 1B], we used an accurate mass
and time tag method by building a potential mass and retention time database from previous
MudPIT analyses. For the third method [Supplementary Figure 1C], we used a peptide mass
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fingerprinting approach together with randomized databases using the m/z values obtained
from high mass accuracy precursor scans of a regular MudPIT analysis. The details of these
three approaches are given below.

Approach One: MS peak subtraction and unique identifiers
MS and MS/MS data are collected on an LTQ-Orbitrap mass spectrometer in the format of
the instrument’s raw file. Each raw mass spectrometry data file obtained from the LTQ-
Orbitrap is converted to an MS2 file using RawExtract, an in-laboratory software program
([Supplementary Figure 1A])34, which contains the MS/MS measurements. Each raw file is
also processed by using the software ICR-2LS (Anderson, G.A., http://ncrr.pnl.gov/
software/) to give a list of deisotoped MS measurements (m/z’s). A regular database search
using the SEQUEST algorithm is then performed on MS2 (MS/MS data) to obtain a list of
identified proteins P1, as described in the section “Analysis of tandem mass spectra”. The
deisotoped m/z’s are then matched to predicted tryptic peptides (allowing up to 1 internal R
or K, see [Supplementary Figure 2]) from the list of identified proteins P1. The remaining m/
z’s are further matched to predicted singly modified tryptic peptides from the identified
proteins set, P1, and then subtracted from the orphaned m/z list. We considered common
post-translational modifications ([Supplementary Table 1]) including: (1) Phosphorylation
(Serine, Threonine, Tyrosine); (2) N-terminal acetylation; (3) Oxidation (Methionine,
Tryptophan); (4) Lysine acetylation; (5) Arginine mono-methylation; (6) Arginine di-
methylation. Finally the remaining m/z’s are used as unique identifiers by matching to
predicted tryptic peptides from the remaining proteins in the database. This will generate a
second list of identified proteins P2. The two protein lists P1 and P2 are then pooled together
to give the combined identified proteins PT.

Approach Two: MRT database construction and accurate mass and time tagging
Tandem mass spectra data from previous replicate MudPIT runs were analyzed using the
procedure outlined in the section “Analysis of tandem mass spectra”, with the additional
action of recording the retention time for each identified peptide. To be able to assess false
positive rates for the AMT method, reverse peptide identifications are built into the potential
Mass and Retention Time (MRT) database. The protein identification false positive rate is
set at 5% for each individual MudPIT experiment.

After the MRT database is constructed, accurate mass and time tagging is performed as
follows. Each raw file is processed by using the software ICR-2LS to give a list of
deisotoped MS measurements (m/z’s). The deisotoped MS peaks are then used as accurate
mass and time tags for protein identification by matching to the potential MRT database.
Under this experiment, we allowed a 5 ppm mass tolerance and 5% retention time tolerance
when performing accurate mass and time tagging. AMT will generate a list of identified
proteins P2. The MS/MS data are processed as usual to give the list of identified proteins P1.
The two protein lists P1 and P2 are pooled together to give the combined identified proteins
PT.

Approach Three: Peptide mass fingerprinting using MudPIT-based MS data
In this approach we use a randomized protein database to analyze the MS data for protein
identification by peptide mass fingerprinting under a specific false positive rate. For protein
identification from tandem mass spectra, estimation of false positive rates using a reversed
protein database is becoming a standard method.4 However, for protein identification using
peptide mass mapping randomized protein databases are not used to assess false discovery
rates but may be a good choice as we show below.
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Randomized databases are generated as follows ([Supplementary Figure 3A]). The target
protein database is first read and the amino acid frequencies and protein length information
are recorded. Two randomized protein sequence databases are then generated, both
conserving the amino acid frequencies of the target protein database. The first randomized
protein database R1 is comprised of N (N should be reasonably large. We choose N =
10,000) randomized proteins, each of length L0 ( L0 = 500 in this study). The second
randomized database R2 has the same number of protein entries as the target database, with
each protein entry having the same length for its corresponding entry in the target database.
The first randomized database R1 is used to estimate μ and σ of the number of m/z hits of
the collected m/z list to a randomized protein. R2 is used to estimate false discovery rate
([Supplementary Figure 3B]).

For each MudPIT run, all deisotoped MS1 peaks are first matched to predicted tryptic
peptides from the randomized database R1, allowing up to one internal tryptic site for each
predicted tryptic peptide ([Supplementary Figure 3B]). For each protein entry in R1, the
number of redundant matching MS1 peaks (peaks matched to same tryptic peptides within
the protein entry, referred to as “redundant MZ hits”) and unique matching peaks (peaks
matched to different tryptic peptides within the protein entry, referred as “unique MZ hits”)
are recorded. The distribution of unique MZ hits for Replicate 1 follows a normal
distribution while the distribution of redundant MZ hits does not (data not shown). The
normal distribution (of unique MZ hits) enables us to assess the significance of protein
identification by MS mass mapping. For this purpose, the mean and standard deviation of
the number of unique MZ hits are calculated. For Replicate 1 with a 5 ppm mass tolerance,
the mean of unique MZ hits is 42.8789 with a standard deviation of 8.4879.

After mean and standard deviation of the number of m/z hits of the collected m/z list to a
randomized protein were obtained, we used the following protein identification scoring
formula

(1)

where x is the number of non-redundant m/z hits, L is the length of the protein, L0 is the
common length of the randomized protein database R1, μ is mean of unique MZ hits to the
randomized protein database R1, and σ is the standard deviation of unique MZ hits to the
randomized protein database R1.

A z score is then calculated for each protein entry according to the number of unique MZ
hits according to [Equation (1)]. The distributions of z scores for R2 and the target database
for Replicate 1 are shown in [Figure 1]. The distribution of z scores for R2 follows a
standard normal distribution with mean z scores of 0.0298 (≅ 0) and a standard deviation of
0.9926 (≅ 1). However, the distribution of z scores for the target database does not follow a
standard normal distribution. The mean z score for the target database is −0.0439 with a
standard deviation of 1.6309 – we have more protein entries in the two tails. By using a
certain z score cut off, we obtained a list of proteins from the target database and the
randomized database R2. The false discovery rate can then be estimated by the proportion of
protein hits to R2 in this list of identified proteins.

Analysis of tandem mass spectra
Tandem mass spectra were analyzed using the following software analysis protocol. MS/MS
were searched with the SEQUEST algorithm5 against a yeast protein sequence database
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concatenated to a decoy database in which the sequence for each entry in the original
database was reversed4. All searches were parallelized and performed on a Beowulf
computer cluster consisting of 100 1.2 GHz Athlon CPUs35. No enzyme specificity was
considered for any search. SEQUEST results were assembled and filtered using the
DTASelect (version 2.0) program36,37. DTASelect 2.0 uses a quadratic discriminant analysis
to dynamically set XCorr and ΔCn thresholds for the entire dataset to achieve a user-
specified false positive rate. The false positive rates are estimated by the program from the
number and quality of spectral matches to the decoy (reverse) database.

Retention time normalization
For multi-dimensional LC-MS/MS experiments, the retention time could be difficult to
normalize. On the other hand, since we perform five MS/MS measurements following every
MS measurement, peptide identifications from MS/MS experiments provide useful
information for retention time normalization.

For experiment e1 and experiment e2, each with a collection of peptide identifications from
the SEQUEST search, the mean difference of retention time for all pairs of matching
peptides between the two experiments can be calculated using the following formula:

(2)

where n is the number of matching peptide pairs between the two experiments, and
t(pe1, pe 2)i indicates the retention time difference for the i-th pair (pe1, pe2) of all the
matching peptides. Using experiment e1 as a reference, the retention times for experiment e2
can then be normalized by adding μt to every retention time entry. The result of
normalization of retention time of Replicate 5 using Replicate 4 as a reference is given in
[Supplementary Figure 4].

Experimental Results and Discussions
We performed six replicate 13-step MudPIT analyses on soluble yeast proteins. We used
half of the dataset (Replicates 4, 5, and 6) for the construction of the potential MRT
database, and the other half (Replicates 1, 2, and 3) for testing the scoring schemes. The MS
and MS/MS information for Replicates 1, 2, and 3 are given in [Supplementary Table 2].
The false positive rates of identified proteins are controlled to be under 5%. Actual false
positive rates might vary from case to case since sometimes it is impossible to control a false
positive rate to be close to 5% under a specific filtering criterion.

Protein identification by MS/MS database search
The first protein identification set P1 is obtained from MS/MS database search by using
SEQUEST followed by the validation program DTASelect 2.0. The protein identification
false positive rate was set at 5% (at protein level) for each individual experiment for
Replicates 1, 2, and 3. Under the above filtering criteria, we identified 1307, 1372, and 1347
proteins for Replicate 1, 2, and 3, respectively. When 2 peptides are required for an
identification, we identified 860, 904, and 894 proteins from Replicate 1, 2, and 3,
respectively. When the data from Replicates 1, 2, and 3 are pooled together and filtered by
DTASelect2.0 requiring 2 peptides for each protein, we obtained 1119 proteins at a 0.44%
false positive rate. The data are summarized in [Table 1]. For proteins identified by
SEQUEST, roughly 34% of proteins are identified by a single peptide (P1, “one-hit
wonder”).
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Potential MRT database construction
Protein identifications by SEQUEST from Replicates 4, 5, and 6 were used to construct the
potential MRT database. To be able to assess the false positive rates of the accurate mass
and time tagging approach, we built the reverse peptide/protein hits into the MRT database.
The false positive rate was set at 5% (protein level) for each individual experiment. [Table
2] gives a summary of the MRT database constructed from three replicate MudPIT runs. As
estimated from reverse protein hits, the false positive rate for the whole potential MRT
database was 1.38% at the peptide level, and 7.29% at the protein level. The overall false
positive rate (7.29%) was higher than each individual experiment (5%) since the true
positive proteins tend to overlap while the false positive proteins tend to be different.

Protein identification by peak subtraction and unique identifiers
From the set of identified proteins by SEQUEST, we generated theoretical tryptic peptides
by requiring fully tryptic termini and allowing up to one internal tryptic site (see
[Supplementary Figure 2]). Theoretical (M+H)+’s are then calculated for each theoretical
peptide. From the set of deisotoped m/z’s obtained from MS1 measurements, we can
calculate observed (M+H)+ by using the formula MPlusH = mz · z − z + 1, where mz
indicates the measured m/z and z indicates the charge of the ion. The observed (M+H)+’s are
then matched to theoretical (M+H)+’s by allowing a given ppm mass tolerance. The matched
(M+H)+’s are removed from the set of observed (M+H)+’s.

For the generation of predicted modified tryptic peptides, the nine common post-
translational modifications in [Supplementary Table 1] are considered. The N-terminal
acetylation refers to the N-terminal modification of proteins, not peptides. For each tryptic
peptide, all nine modifications are considered, but the number of modification is restricted to
one modification for each predicted modified peptide. For example, if the tryptic peptide is
MTALLEDQK and the peptide is located at the beginning of the protein, then the following
modifications will be considered and we will have four modified peptides (one for each
modification): (1) N-terminal acetylation; (2) Oxidation on M; (3) Phosphorylation on T; (4)
Acetylation on K.

Theoretical (M+H)+’s are then calculated for these predicted modified tryptic peptides and
matched to the observed (M+H)+’s by allowing a given ppm mass tolerance. The matched
(M+H)+’s are then removed from the observed (M+H)+’s.

The remaining observed (M+H)+’s are then used as unique identifiers for protein
identifications by matching to predicted tryptic peptides from the un-identified proteins in
the database. To safeguard from false positive identifications, a selection criterion is applied
to obtain the final list of protein identifications: a protein must be identified by at least by
two unique m/z measurements (two distinct peptides) to be included in the protein
identification set P2. By applying these procedures using a 5 ppm mass tolerance, we
identified 28, 63, and 28 proteins (P2) from Replicate 1, 2, and 3, respectively. Some
statistical details of peak matching are given in [Supplementary Table 3].

Protein identification by accurate mass and time tagging
We explored accurate mass and time tagging as outlined in [Supplementary Figure 1C]. For
this approach, all of the deisotoped MS1 peaks were used to search for matching peptides
and proteins from the potential MRT database. A peak is disqualified for peptide and protein
identification if it matches to two or more different peptides in the potential MRT database
under a specified mass tolerance (5 ppm in this study) and retention time tolerance (5% in
this study). More proteins and peptides are identified with increasing mass tolerance.
However, the false positive rates also increase with relaxation of mass tolerance. We used a
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5 ppm mass tolerance as the Orbitrap mass analyzer can routinely achieve 5-ppm mass
accuracy32. We found that the false positive rates increased gradually when the retention
time tolerance is relaxed, as shown in [Figure 2]. A 5% retention time tolerance provided a
reasonable false positive rate.

At 5 ppm mass tolerance and 5% retention time tolerance, we obtained 922, 1007, and 973
protein identifications at the false positive rate of 3.15%, 2.48%, and 2.67%, for Replicate 1,
2, and 3, respectively. When pooled together, these three replicates generated 1196 protein
identifications containing 4.68% false positives.

When the proteins identified by AMT were combined with SEQUEST search results, we
found that AMT results can further substantiate SEQUEST protein identifications. For
SEQUEST-identified proteins with single peptides (“one-hit wonders”), 17.00%, 15.38%,
and 15.89% proteins received additional peptide identifications from AMT, for Replicate 1,
2, and 3, respectively ([Table 1]). When the AMT-identified proteins and SEQUEST-
identified proteins are pooled together and further filtered with the requirement of at least
two distinct peptide identifications for each protein, we obtained 1240 proteins with a false
positive rate of 0.48% (i.e., 6 decoy matches). This is not achievable by using MS/MS data
or MS data alone. By combining MS and MS/MS information we can improve protein
identification sensitivity at high confidence level.

Protein identification by using peptide mass mapping
We also investigated the use of randomized protein databases for the estimation of false
positive rate for protein identification using MS mass mapping. As described in the
[Experimental Procedures] section, the target protein database is first read, and the amino
acid frequencies and protein length information are recorded. Two randomized databases R1
and R2 are then generated ([Supplementary Figure 3A]). Matches of MS1 peaks from each
MudPIT runs to the target database as well as the randomized databases R1 and R2 are
recorded.

A z score is then calculated for each protein entry according to the number of unique MZ
hits according to [Equation (1)]. Using a z score cutoff of 3.0 (or chance probability of
0.001349), we identified 192 proteins from the target database and 9 proteins from the decoy
database R2 for Replicate 1. Thus, the false positive rate at this z score cutoff for this
specific experiment is 4.21%. Under the same z score cutoff of 3.0, we identified 194 and
170 proteins from Replicate 2 and 3, respectively. By varying the z score cutoff, we can
obtain protein identifications for different false positive rates, as shown in [Table 3] for
Replicate 1 and [Supplementary Table 4] for Replicates 2, and 3.

We found that the actual false positive rate is very close to the predicted false positive rate,
as shown in [Table 3]. The column “Predicted Random ID” is calculated by the product of
the chance probability and the number of protein entries in the randomized database R2
(5996 as in this study). This further substantiates the validity of using randomized databases
for the assessment of false positive rate using PMF approach.

A validation of our PMF-like approach for protein identification using MudPIT data was
also supplied as supplementary material to this paper. The MudPIT-based PMF scoring
might be further improved with more sophisticated schemes by using other information
about the nature of each match, such as peptide length or missed tryptic sites.

Comparison of different scoring schemes
Comparison of protein identification using different scoring schemes is given in [Table 4].
SEQUEST search of MS/MS data identified 1566 proteins at 5.0% protein level false
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positive rate from three replicate MudPIT runs Replicate 1, 2, and 3. By using MS peaks not
matched to proteins identified from MS/MS database search as unique identifiers, we
identified 92 more proteins.

For peptide mass fingerprinting (PMF) using high mass accuracy MudPIT 2D-LC/MS data,
we use the concept of decoy databases. By using randomized databases, we are able to
assess the false positive rate of protein identification using PMF. Under this approach, we
identified 271 proteins at 3.32% false positive rate by using PMF alone from the three
MudPIT runs. Among these 271 proteins, 114 proteins are also identified by the SEQUEST
search, with 157 new proteins identified by PMF.

The big overlap of identified proteins between PMF and SEQUEST further statistically
validated the PMF method. Under a hypergeometric model, with a population size N=5996
(the size of the number of proteins in the yeast database) and number of successes k = 1566
in population (number of proteins identified by SEQUEST), a sample size n = 271 (number
of proteins identified by PMF) and number of successes x = 114 in sample (overlap between
SEQUEST and PMF), according to the following hypergeometric formula

the probability of the null hypothesis that the match occurred by chance is 3.83 × 10−9. The
157 proteins identified by PMF but not SEQUEST are of lower protein abundance
comparing to those identified by both PMF and SEQUEST (see below).

For accurate mass and time tagging, at 5ppm mass tolerance and 5% retention time
tolerance, we identified 1196 proteins at 4.68% false positive rate. When these proteins were
compared with the 1566 proteins by SEQUEST, 103 proteins were found to be unique.
When the proteins from SEQUEST and AMT are pooled together and filtered with an
additional criterion of at least two distinct peptide identifications for a protein identification,
we obtained 1240 proteins with a false positive rate of 0.48% (or 6 decoys). This is
unachievable by using either MS/MS database search or MS-based approaches alone. By
combining MS and MS/MS information, we can improve protein identification sensitivity
with high confidence.

In total, the three approaches identified 342 extra proteins [Supplementary Figure 5]. This is
a 21.8% improvement comparing to SEQUEST identification. These extra proteins are
found to be consistently of lower abundance. The average abundance for proteins identified
from SEQUEST is 2.63 × 104 copies per cell38, while the average abundances are 2.87 ×
103, 3.95 × 103, and 2.63 × 103 copies per cell for proteins identified by unique mass
identifiers, AMT, and PMF, respectively. Especially, for the 271 proteins identified by PMF,
the average abundance of the 114 proteins that overlap with those of SEQUEST is 4.78× 104

copies per cell, which is on average 18 fold more abundant than those identified by PMF
only. The data shows that our methods improve identification of low abundance proteins.

The unique identifier approach will probably work better when the genome of the studied
organism is relatively small15. When the genome is large, it is difficult to use accurately
measured masses as unique identifiers for protein identification, since the larger the genome,
the more peptides will have the same (or close) precursor masses. The AMT approach,
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however, is more powerful since it utilizes retention time as second dimensional information
for protein identification. The AMT approach can also leverage identifications from
previous experiments. Especially, “one-hit wonders” from a specific experiment can be
further substantiated by accurately measured precursor masses of previously identified
peptides as we showed here. Identifications by the AMT approach, however, are only
limited to previous experiments and thus are not suitable for discovering unknown peptides.
The PMF-like approach, instead, can identify proteins previously not identified. As we
showed here, more than half of the proteins identified by the PMF-like approach were not
identified by MS/MS database search. These proteins consistently have lower abundance
levels comparing to those identified by MS/MS database search. The PMF-like approach,
however, can not identify as many proteins as the MS/MS database search, as shown by
[Table 4] as well as our supplementary results on the 17 proteins mixture. Nevertheless, the
PMF-like approach could be a protein identification method complementary to MS/MS
database search.

Conclusions
In this study we investigated and compared three approaches to extend identifications from
shotgun experiments by combining MS and MS/MS information using LTQ-Orbitrap high
mass accuracy data. In the first approach MS peaks are first subtracted before being used as
unique mass identifiers for protein identification. In the second approach we explored the
use of LTQ-Orbitrap data for AMT tagging. For the third method we introduce the concept
of decoy (randomized) databases for large scale peptide mass fingerprinting. Comparing the
different methods, the approach of combining MS/MS database search and AMT tagging is
most promising from our data. In conclusion, by combining MS and MS/MS information,
we can improve protein identification sensitivity with high confidence. One-hit wonders
from MS/MS database search can be further verified by MS information and the approach
improves the identification of low abundance proteins.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scoring MZ Hits using randomized databases (Replicate 1). Blue solid line, distribution of z
scores computed from unique MZ hits to the randomized yeast database R2; Red dash line,
distribution of z scores computed from unique MZ hits to the yeast database (target
database).
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Figure 2.
Effect of retention time tolerance on protein identification using the accurate mass and time
tag approach.

Lu et al. Page 14

Anal Chem. Author manuscript; available in PMC 2012 November 29.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Lu et al. Page 15

Table 1
SEQUEST ID summary at 5% FP

P1: Proteins identified by one single peptide; P2: Proteins identified by two or more peptides. The number in
the parentheses of P1 proteins indicate the number of proteins that can be further verified by more peptides
from the AMT approach.

Replicate 1 Replicate 2 Replicate 3

# Proteins 1307 1372 1347

P1 447(76) 468(72) 453(72)

P2 860 904 894

FP 4.85% 4.96% 4.75%
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Table 2

MRT database summary.

#Forward #Reverse FP

Copies 15516 130 0.84%

Peptides 8837 122 1.38%

Proteins 1673 122 7.29%
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Table 4

Comparison of different scoring schemes. Numbers in the parenthesis indicate the false positive rates for the
identified proteins.

Rep 1 Rep 2 Rep 3 Total

SEQUEST 1307 (4.85%) 1372 (4.96%) 1347 (4.75%) 1566 (4.98%)

SS1 (5 ppm, >= 2 Unique Peptides) 28 (NA) 63 (NA) 28 (NA) 105 (NA)

SS2 (5 ppm, 5% RT) 922 (3.15%) 1007 (2.48%) 973 (2.67%) 1196 (4.68%)

SS3 (5 ppm, z >= 3.5) 112 (1.79%) 101 (1.98%) 83 (1.20%) 159 (3.14%)

“NA” means “not available”.
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