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Abstract
Hydrogen sulfide (H2S) has long been recognized as a toxic molecule in biological systems.
However, emerging studies now link controlled fluxes of this reactive sulfur species to cellular
regulation and signaling events akin to other small molecule messengers, such as nitric oxide,
hydrogen peroxide, and carbon monoxide. Progress in the development of fluorescent small-
molecule indicators with high selectivity for hydrogen sulfide offers a promising approach for
studying its production, trafficking, and downstream physiological and/or pathological effects.

Introduction
For centuries, hydrogen sulfide (H2S) has been viewed primarily as a noxious chemical
species that is naturally produced by geological and microbial activities [1]. Exposure to this
colorless, flammable gas, which gives rotten eggs their distinctive odor, can trigger eye and
respiratory tract irritation [2]. Inhalation of excess H2S can result in loss of consciousness,
respiratory failure, cardiac arrest, and, in extreme cases, death [3]. On the other hand, more
recent studies have challenged this traditional view of H2S as a toxin and have shown that
mammals can also produce H2S in a controlled fashion [4], suggesting that this reactive
sulfur species is important in maintaining normal physiology [5]. H2S may arise from non-
enzymatic processes, including release from sulfur stores and metabolism of polysulfides
[6,7]. In mammalian systems, H2S may also be produced by two pyridoxal-5′-phosphate
(PLP)-dependent enzymes, cystathionine gamma lyase (CSE) and cystathionine beta
synthase (CBS), as well as cysteine aminotransferase and mercaptopyruvate
sulfurtransferase (CAT/MST). These enzymes catalyze an assortment of reactions that
produce H2S from sulfur-containing biomolecules such as cysteine and homocysteine (Fig.
1a) [8,9]. The presence of these enzymes in human tissues ranging from the heart and
vasculature [10,11], brain [12,13,14], kidney [15], liver [16], lungs [17,18], and pancreas
[19] presages widespread physiological roles for H2S in the body (Fig. 1b). Moreover, a
variety of disease phenotypes have been linked to inadequate levels of H2S, including
Alzheimer’s disease [20], impaired cognitive ability in CBS-deficient patients [21], and
hypertension in CSE knockout mice [22]; excessive H2S production in vital organs may be
responsible for the pathogenesis of other diseases such as diabetes [23,24,25]. These seminal
studies have patently established H2S as an essential physiological mediator and cellular
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signaling species [26,27], but our understanding of H2S chemistry and its far-ranging
contributions to physiology and pathology is still in its infancy.

The complex biological roles of H2S and potential therapeutic implications provide
compelling motivation for devising new ways to monitor its production, trafficking, and
consumption in living cells, tissues, and whole organisms. Traditional methods for H2S
detection [28], including colorimetric assays [29,30], polarographic sensors [31], and gas
chromatography [32,33], typically result in sample destruction and/or are limited to
extracellular detection. As such, fluorescent molecular probes offer an appealing approach
for the detection of H2S and other reactive small molecules because of their cell
permeability and high sensitivity. A key challenge for selective detection of H2S within the
cellular milieu is the comparatively high concentrations of biological sulfur species such as
glutathione as well as cysteine residues. In this review we provide a brief survey of recent
chemical strategies for fluorescence detection and imaging of H2S in biological systems
(Table 1) [34].

H2S-mediated reduction of azides to amines
To expand our laboratory’s program in the area of redox biology, particularly on reaction-
based detection methods for studying the chemistry and biology of the oxidative signaling
molecule H2O2 via chemospecific boronate [35–45] and ketoacid [46] oxidations, we noted
that the selective reduction of azides by H2S could provide amines under mild conditions
[47,48] and sought to utilize this reaction-based switch as a new approach to molecular H2S
probes. Specifically, we found that by masking a rhodamine with an azide functional group
we could generate Sulfidefluor-1 (SF1) and Sulfidefluor-2 (SF2) probes that give fluorescent
turn-on responses upon H2S-mediated reduction of the aryl azide to the corresponding
aniline (Fig. 2a). These probes show high selectivity for H2S over a range of reactive sulfur
species, including abundant cellular thiols such as glutathione and cysteine, as well as a host
of reactive oxygen and nitrogen species. Moreover, these first-generation probes are capable
of monitoring changes in H2S levels in living cells. Exogenous addition of micromolar
NaHS produces a robust fluorescent response in HEK293T cells and related mammalian cell
lines (Fig. 3) [49]. We have now developed a series of next generation of H2S probes that
are capable of monitoring endogenous H2S fluxes and are actively pursuing biological
studies in a variety of models. Concomitant to our work, Wang showed that nonfluorescent
DNS-Az, a dansyl fluorophore modified with a sulfonyl azide, reacts rapidly with H2S
concentrations as low as 1 μM in phosphate buffer, releasing strongly-fluorescent dansyl
amide [50]. Upon ultraviolet excitation, DNS-Az can detect H2S concentrations from 5 to
100 μM in bovine serum, presaging that this promising platform and related motifs can be
applied to bioanalytical assays.

Shortly after our initial publication appeared, we were pleased to see that the concept of
H2S-mediated reduction of azides to amines was extended to other fluorophore scaffolds by
several laboratories (Fig. 2a), establishing the generality of this reaction-based switch for
selective H2S detection. Han reported Cy-N3, an azido-heptamethine cyanine dye that
functions as a unique ratiometric internal charge transfer (ICT) probe for H2S [51]. Cy-N3
displays a 40 nm red-shift in fluorescence emission wavelength upon azide reduction. With
a detection limit of 80 nM H2S, Cy-N3 can respond to changes in H2S levels in RAW264.7
macrophages. To the best of our knowledge, this probe is the first ratiometric fluorescent
indicator for H2S. Pluth reported a 4-azido-1,8-naphthalimide probe, Hydrosulfide
Naphthalimide-2 (HSN2), along with a nitro analog, which can react selectively with H2S to
give a turn-on response and can operate in living cells with good signal-to-noise ratios [52].
Recently, Ai and coworkers developed the first genetically-encoded H2S probe by
substituting p-azidophenylalanine (pAzF) for Tyr66 in circularly-permuted green fluorescent
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protein (cpGFP) [53]. Conversion of the azide to the amine in cpGFP-Tyr66pAzF facilitates
formation of the mature chromophore and elicits a fluorescent turn-on response. Finally,
Cho and colleagues prepared the first two-photon H2S probe, featuring an azide-modified
benzothiazole-fluorene that was used to image H2S in rat hippocampal slices at depths of
90–190 μm [54]. Taken together, this selection of probes illustrates the versatility of the
azide functionality as an H2S trigger, and further elaborations of this strategy will allow
modulation of emission colors, targetability, imaging modalities, and probe reactivity.

Trapping of H2S via nucleophilic addition
In parallel to the work on azide reduction strategies, several other reaction-based H2S probes
detect the analyte by acting as electrophiles. Initial nucleophilic addition of H2S to the probe
results in a thiol which performs a subsequent nucleophilic addition to a second electrophilic
site and leads to cyclization to generate a fluorescent molecule (Fig. 2b). Using this general
strategy, He, Jiao, and co-workers have designed elegant probes which position an aldehyde
group ortho to an αβ, -unsaturated acrylate methyl ester on an aryl ring [55]. Following
nucleophilic attack of H2S on the aldehyde functionality, the trapped thiol undergoes an
intramolecular Michael addition to the unsaturated ester to produce a
dihydrobenzothiophene derivative. While other thiols can reversibly add to the aldehyde, the
resulting thioacetal product cannot perform a second nucleophilic addition, imparting the
probe with selectivity for H2S. Two reagents—the blue-emitting SFP-1, based on a 1,3,5-
triaryl-2-pyrazoline fluorophore, and SFP-2, based on a BODIPY dye—utilize this Michael
addition trigger and displays selective reaction with H2S. SFP-2 exhibits a 13-fold increase
in fluorescence intensity upon reaction with 50 μM Na2S and demonstrates fluorescent
properties suitable for imaging in living cells, with a H2S detection range in cells from 0–
200 μM.

Another clever probe by Xian’s laboratory employs a related strategy, using a disulfide and
an ester group as the two electrophilic sites for reaction with H2S [56]. H2S displaces 2-
thiopyridine, resulting in a persulfide where the terminal sulfur attacks the ester, cyclizing to
form a benzodithiolone and simultaneously releasing methoxyfluorescein. The probe
responds to 50–500 μM H2S in bovine plasma and 250 μM H2S in cells. This reagent
demonstrates selectivity for H2S over other biological thiols in vitro, because displacement
of the thiopyridine by a substituted thiol results in a mixed disulfide which does not undergo
cyclization. Xian and coworkers reported two additional probes that feature
benzylidienemalonate or cyanoacrylate moieties as sites for Michael addition; these probes
also release methoxyfluorescein upon reaction with H2S [57].

Copper sulfide precipitation
The classic gravimetric precipitation of CuS from Cu2+ complexes has been successfully
employed as a strategy to detect H2S by a fluorescence response (Fig. 2c). Nagano reported
H2S imaging probe 1 (HSip-1), which consists of a cyclen macrocycle attached to
fluorescein [58]. Binding of Cu2+ to the cyclen receptor quenches fluorescence. Upon
reaction with a sulfide donor such as Na2S or NaHS, CuS precipitates and releases unbound
cyclen-AF, which displays enhanced fluorescence. HSip-1 rapidly detects sulfide
concentrations as low as 10 μM in vitro, and the membrane-permeable diacetate derivative
can be loaded into cells to detect 100 μM changes in Na2S. Zeng and Bai have utilized a
similar approach in the design of their L1 sulfide probe, which combines a fluorescein with
a pendant 8-hydroxyquinoline ligand for copper binding [59]. Coordination of copper to L1
quenches fluorescence and produces a spectral shift when the probe is converted to the
L1Cu metal complex. Addition of sulfide anion triggers precipitation of CuS and
regeneration of L1, resulting in a fluorescent turn-on as well as a colorimetric change from
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pink to yellow in the presence of sulfide at 10–100 μM concentrations. Utilizing this
strategy, Zeng and Bai prepared another copper-containing probe with a lower detection
limit of 1.7 μM [60]. This L1Cu′ probe displays 25–30-fold fluorescence enhancement
upon reaction with H2S. In these reports the authors have demonstrated that HSip-1 and
L1Cu undergo CuS precipitation preferentially in the presence of sulfide (S2−) over other
sulfur-containing compounds such as sulfates, biologically-relevant thiols, and selected
reactive oxygen and reactive nitrogen species. However, as alternative Cu2+ complexes may
react with other sulfur species such as reduced glutathione [58], appropriate chelating groups
must be screened and selectivity studies performed to confirm specific H2S detection.

Conclusions and outlook
The rapid development of several first-generation molecular H2S probes by a wide range of
chemical approaches illustrates the promise for studying the roles of H2S in intact biological
systems with unprecedented spatial and temporal resolution. As the field continues to
advance and a wider series of H2S indicators become available, we can envision probes
tailored for specific models of interest including cells, tissues, and whole organisms,
allowing the elucidation of intricate and dynamic inter- and intracellular events involving
H2S production or depletion. Further exploration of H2S biology in a variety of systems will
undoubtedly reveal how this reactive sulfur species modulates cellular and physiological
conditions, offering deeper insight into redox biology and the dynamic interplay that occurs
between reductive and oxidative species in complex cellular and in vivo environments.
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Highlights

• Hydrogen sulfide (H2S) can mediate physiology and disease pathology in
mammalian systems.

• The development of molecular probes for H2S detection allows H2S to be
studied in intact cells, tissues, or whole organisms.

• Current probes employ a variety of reaction-based strategies to achieve
selectivity for H2S over other biological thiols.
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Figure 1.
Biology of H2S in the human body. (a) Selected major biochemical pathways for H2S
production. Two PLP-dependent enzymes, cystathionine β-synthase (CBS) and
cystathionine γ-lyase (CSE), are found in the cytoplasm and synthesize H2S. Biochemical
studies show that CBS primarily catalyzes the formation of cystathionine from
homocysteine and cysteine, whereas CSE facilitates the α,β-elimination of cysteine by
water, producing serine and H2S. Two additional enzymes located in the cytoplasm and
mitochondria, cysteine aminotransferase (CAT) and mercaptopyruvate sulfur transferase
(MST), have also been identified as sources of H2S. CAT acts upon keto acids and cysteine
to yield mercaptopyruvate, from which H2S is released by MST. (b) Selected physiological
effects and biological roles of H2S in the human body and enzymes responsible for H2S
production in various tissue types.
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Figure 2.
Selected molecular probes for the detection of hydrogen sulfide. (a) The H2S-mediated
reduction of azides to amines has been applied to rhodamine (SF1 and SF2), dansyl (DNS-
Az), cyanine (Cy-N3), 8-naphthalimide (HSN2), protein (cpGFP-Tyr66pAzF), and fluorene
(FS1) scaffolds which display a range of fluorescent responses and sensitivities. (b) Attack
of H2S at the aldehyde group and subsequent intramolecular Michael addition converts
SFP-1 and SFP-2 to fluorescent dyes. Nucleophilic addition of H2S to Xian et al. probe 1
results in displacement of 2-thiopyridine and persulfide formation; intramolecular
cyclization due to nucleophilic attack of the thiol on the ester group generates
benzodithiolone and releases 3-O-methoxyfluorescein. Two probes containing
benzylidienemalonate and cyanoacrylate as Michael acceptors (Xian et al. probe 5 and probe
6) react to trap H2S in a similar manner. (c) Reaction of H2S with Cu2+ precipitates copper
sulfide from the weakly fluorescent copper complex HSip-1, releasing Cyclen-AF which
exhibits enhanced fluorescent properties. L1Cu and L1Cu′ also produce a fluorescent turn-
on response following CuS precipitation.
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Figure 3.
Confocal microscopy images demonstrating detection of changes in H2S levels in living
cells by SF1. (a) SF1 alone incubated in HEK293T cells. (b) Cells loaded with SF1 followed
by incubation with NaHS. (c) Brightfield images of the field of cells in (b) overlaid with
images of Hoescht stain at 37 °C. Scale bar represents 50 μm. Adapted with permission
from the American Chemical Society. [49]
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Table 1

Summary of fluorescent H2S probes.

Azide-based λex (nm) λem (nm) Detection limit Response in vitro

SF1 490 525 5–10 μM 7-fold turn on after 60 min at 25 °Ca (10 μM probe, 100 μM NaHS, 20
mM HEPES, pH 7.4)

SF2 492 525 5–10 μM 9-fold turn-on after 60 min at 25 °Ca (10 μM probe, 100 μM NaHS, 20
mM HEPES, pH 7.4)

DNS-Az 340 535 1 μM 40-fold turn-on after 3 min (30 μM probe, 30 μM NaHS, 20 mM PBS,
0.5% Tween-20, pH 7.5)

Cy-N3 625
710 (–N3)

750 (–NH2) 0.08 μM
F750nm/F710nm = 0.6 before reaction to 2.0 after complete conversion to

amine after 20 min at 37 °C (10 μM probe, 100 μM NaHS, 40 mM
HEPES, pH 7.4)

HSN2 432 542 1–5 μM 60-fold turn-on after 45 min at 37 °C (5 μM probe, 500 μM NaHS, 50
mM PIPES, 100 mM KCl, pH 7.4)

cpGFP- Tyr66pAzF 480 510 10 μM 1.7-fold turn-on after 15 min at RT (5 μM probe with 50 μM NaHS,
PBS, pH = 7.4)

FS1 363 548 5–10 μM
21-fold TPEF enhancement after 120 min at 37 °C (5 μM probe, 100

μM Na2S, 20 mM HEPES, 100 mM KCl, pH 7.2)

H2S trapping λex (nm) λem (nm) Detection limit Response in vitro

SFP1 300 388 --
>10-fold turn-on after 60 min at 37 °C (10 μM probe, 50 μM Na2S, 9:1 10

mM PBS:CH3CN, pH 7.4)

SFP2 465 510 5 μM >13-fold turn-on after 60 min at 37 °Ca (5 μM probe, 50 μM Na2S, 20 mM
PBS, pH 7.0)

Xian et al. Probe 1 465 515 1–10 μM
55–70-fold turn-on after 60 min at 25 °C (100 μM probe, 50 μM NaHS, 9:1

PBS:CH3CN, pH 7.4)

Xian et al. Probe 5 476 513 1 μM 11-fold turn-on after 30 min at 25 °C (5 μM probe, 100 μM NaHS, 10 mM
PBS, pH 7.4)

Xian et al. Probe 6 476 513 1 μM 160-fold turn-on after 30 min at 25 °C (5 μM probe, 100 μM NaHS, 10
mM PBS, pH 7.4)

CuS precipitation λex (nm) λem (nm) Detection limit Response in vitro

HSip-1 491 516 10 μM 50-fold turn on immediately at 37 °C (1 μM probe, 10 μM NaHS, 30 mM
HEPES, pH 7.4)

L1Cu 495 534 ~5 μM >4-fold turn-on immediately (20 μM probe, 40 μM S2−, 1:1 PBS:CH3CN
v/v, pH 7.2)

L1Cu′ 494 523 1.7 μM
25–30-fold turn-on after 1 min at RT (10 μM probe, 20 μM H2S, 6:4

HEPES:CH3CN v/v, pH 7.0)

a
Reaction not complete at indicated time.
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