
Vol. 28 no. 23 2012, pages 3139–3140
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts573

Genome analysis Advance Access publication September 28, 2012

Creating reusable tools from scripts: the Galaxy Tool Factory
Ross Lazarus1,*, Antony Kaspi1, Mark Ziemann1 and The Galaxy Team
1Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Galaxy is a software application supporting high-

throughput biology analyses and work flows, available as a free

on-line service or as source code for local deployment. New tools

can be written to extend Galaxy, and these can be shared using

public Galaxy Tool Shed (GTS) repositories, but converting even

simple scripts into tools requires effort from a skilled developer.

Results: The Tool Factory is a novel Galaxy tool that automates the

generation of all code needed to execute user-supplied scripts, and

wraps them into new Galaxy tools for upload to a GTS, ready for

review and installation through the Galaxy administrative interface.

Availability and implementation: The Galaxy administrative interface

supports automated installation from the main GTS. Source code and

support are available at the project website, https://bitbucket.org/

fubar/galaxytoolfactory. The Tool Factory is implemented as an install-

able Galaxy tool.

Contact: ross.lazarus@channing.harvard.edu

Received on July 12, 2012; revised on September 7, 2012; accepted

on September 17, 2012

1 INTRODUCTION

Galaxy (Blankenberg, 2010; Goecks, 2010; Nekrutenko and

Taylor, 2012) is a web accessible application for high-throughput

genomics, exposing popular third-party data sources and stand-
ard bioinformatics analysis packages in an integrated and per-

sistent framework, designed to support biologist users

performing reproducible analyses. There is a free public site

(http://usegalaxy.org), and all Galaxy source code can be

deployed locally (http://getgalaxy.org), where new tools can be
created and installed to suit specific local requirements.

Rapid change seems to be one of the few constants in modern
high-throughput biology so reporting and data transformation

requirements also change rapidly. In groups where an established

analysis framework such as Galaxy is used, software developers

can create and expose new tools for local users, but even rela-
tively simple tools require at least a few hours of skilled devel-

oper effort to implement, install and test. When a new simple

transformation or report is needed, users will route around per-

ceived damage, taking their data out, performing the required

transformation with some quickly written code and then import-
ing the transformed data back in to Galaxy for downstream

analysis. Undesirable consequences are inevitable in terms of

core scientific values such as reliability, repeatability and validity,

when manual steps are performed outside an automated mana-
ged infrastructure.

Many Galaxy users are capable of writing scripts to perform

the required transformations, but lack the specific skills to con-
vert these into Galaxy tools. This skill gap motivated us to build

an automated method to run and test a user-supplied script
inside Galaxy, and then to generate a new shareable Galaxy

tool wrapping that script, requiring minimal specialized Galaxy
skills and minutes rather than hours of developer effort once the

script works correctly.

2 METHODS

Like many other Galaxy tools, the Galaxy Tool Factory (GTF) is imple-

mented in Python. The required Galaxy tool wrapper descriptor is in

XML as documented at http://bit.ly/Ui55jp. The GTF is run like other

Galaxy tools, but instead of executing a standard bioinformatics analysis

package, it calls an interpreter to execute a user-supplied script. Rscript,

Perl, Python and shell scripts are currently supported, and extension to

other interpreters is feasible. The GTF can only be executed by a local

Galaxy administrator, whose login ID is listed in the ‘admin_user’ con-

figuration parameter in universe_wsgi.ini, as it performs no security

checks or sand boxing of the supplied script, as discussed later.

Each time the GTF is executed in Galaxy, the supplied script is run,

and outputs are returned as a new persistent history item. This new result

has the usual Galaxy ‘redo’ button, which conveniently recreates the GTF

form complete with the script exactly as it was run, supporting rapid

iterative script development through the standard Galaxy web interface.

When the script works correctly, a complete new Galaxy tool can be

generated, exposing the simple task defined by the small piece of now

correctly working code (Box 1) pasted into the GTF form. Help text and

other documentation to be shown to the user can also be pasted into

the form, and are added to the generated tool as shown in Figure 1.

The optional new tool is generated as a Galaxy Tool Shed (GTS,

http://bit.ly/vwkB83) -compatible archive, ready to be uploaded as a

new GTS repository.

Tasks are limited to being passed one history input file and one history

output file, with no variable parameters. If multiple output files and

images are written by the script, links to these can be automatically

generated and presented to the user in an optional HTML history output.

The first and second command line parameters are used to pass the

Galaxy input and output file paths, respectively, so the script must parse

and deal with these correctly. An example in R that reads these paths is

shown in Box 1. Working examples in Perl, Python and shell script are

provided in the GTF documentation and on the tool form for testing and

modification.

3 RESULTS

All of the routine coding required to convert a working script
(e.g. Box 1) into a simple but fully integrated reusable and share-

able Galaxy tool is automated by the GTF. A GTS-compatible
compressed archive, containing the script, user interface and a

functional test based on reproducing the supplied test case, is*To whom correspondence should be addressed.

� The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3139

https://bitbucket.org/fubar/galaxytoolfactory
https://bitbucket.org/fubar/galaxytoolfactory
http://usegalaxy.org
http://getgalaxy.org
http://bit.ly/Ui55jp
http://bit.ly/vwkB83

generated. GTS repositories can be searched, selected, reviewed
and installed through the Galaxy administrative interface. GTF-
generated tools perform identically to the same script wrapped

by a skilled Galaxy developer. A developer can unpack the
source code for a simple GTF-generated tool and edit it to add
user-controlled parameters and new history outputs if needed,

but alternative Galaxy tool interface generation methods
described later may be preferred for complex requirements.

4 DISCUSSION

Complex computational pipelines for high-throughput data are
often implemented as a sequence of relatively simple discrete
steps, which typically read data from an input file, perform a
transformation or calculation and then write an output file that

serves as an input for a subsequent step. GTF-generated tools
implement this simple model, ideal for creating simple compo-
nents for work flows. The GTF currently supports popular

scripting languages and makes it easy to test and debug them,
and then generate complete simple work flow-compatible tools.
Only a local administrative user can actually execute the GTF

because it performs no parsing or sand boxing of the supplied
script, and therefore exposes insecure unrestricted scripting. It is
recommended that users run it on private development clones,
uploading tools to a GTS when they are ready for installation to

production Galaxy sites. Installed GTF-generated tools run with
normal Galaxy security, but administrators are urged to review
all source code before installation.

The GTF creates complete Galaxy tools from scripts that per-
form simple transformation and reporting tasks. If multiple files
and images are written, the HTML option automatically gener-

ates a complete web page of navigable links for the user.

The Bioconductor RGalaxy package can process R functions
(http://www.bioconductor.org/packages/devel/bioc/html/

RGalaxy.html) into Galaxy tool code. The CLI-mate (http://
climate.lumc.nl/generate) resource generates Galaxy tool inter-
faces. Both require additional coding effort, and neither creates

functional tests or integrates directly with Galaxy and the GTS.
However, they can create complex tool interfaces with multiple

user controllable parameters that are outside GTF scope.
Well-designed frameworks may help reduce risk and improve

the repeatability, validity and efficiency of high-throughput biol-
ogy analysis infrastructure for biologist users. Minimizing effort,

and in turn,minimizing opportunities for users to introduce errors
into analysis stepsmay help improve reliability. Standardized pro-

cedures can help maintain validity. Eliminating redundant coding
effort will likely improve efficiency.

5 AVAILABILITY

The Galaxy administrative interface supports automated instal-

lation (https://bitbucket.org/galaxy/galaxy-central) from the
GTS. Source code under an approved open source license and
support are available at the project website, https://bitbucket.

org/fubar/galaxytoolfactory.

6 CONCLUSION

The GTF executes user-supplied scripts in popular bioinfor-
matics scripting languages and optionally turns them into reus-

able, shareable and inter-operable Galaxy tools, ready for work
flows. GTF-generated tools run securely, but the GTF itself is

not recommended for installation in production Galaxy in-
stances. Generated tools can be uploaded and published through

a GTS, which in turn supports automated tool installation into
Galaxy servers. Once installed, when executed by a local user,

GTF-generated tools pass a user-selected input file (Fig. 1) to the
script provided at tool generation and return the output as a new

history item. Supporting sharing and reuse of simple community-
developed tools will help minimize the risks and costs of ad hoc

local data transformation in high-throughput biology analyses.

Funding: The Galaxy Team is supported by NIH grants
HG005133, HG005542, HG004909 and HG006620, as well as

NSF grant DBI 0543285. Additional funding is provided,
in part, under a grant with the Pennsylvania Department

of Health using Tobacco Settlement Funds. The Department
specifically disclaims responsibility for any analyses, interpret-

ations or conclusions.

Conflict of Interest: None declared.

REFERENCES

Blankenberg,D. et al. (2010) Galaxy: a web-based genome analysis tool for experi-

mentalists. Curr. Protoc. Mol. Biol., Chapter 19, Unit 19.10.1–21.

Goecks,J. et al. (2010) A comprehensive approach for supporting accessible, repro-

ducible, and transparent computational research in the life sciences. Genome

Biol., 11, R86.

Nekrutenko,A. and Taylor,J. (2012) Next-generation sequencing data interpret-

ation: enhancing reproducibility and accessibility.Nat. Rev. Genet., 13, 667–672.

Fig. 1. User interface generated for script in Box 1

Box 1. Example R script for a simple Tool Factory tool

Write the transpose of a tabular input file

ourargs ¼ commandArgs(T)

inf ¼ ourargs[1]

outf ¼ ourargs[2]

inp ¼ read.table(inf, head¼F, row.names¼NULL, sep¼’\t’)

outp ¼ t(inp)

write.table(outp,outf, quote¼F, sep¼‘\t’, row.names¼F, col.names¼F)

3140

R.Lazarus et al.

http://www.bioconductor.org/packages/devel/bioc/html/RGalaxy.html
http://www.bioconductor.org/packages/devel/bioc/html/RGalaxy.html
http://cli-mate.lumc.nl/generate
http://cli-mate.lumc.nl/generate
https://bitbucket.org/galaxy/galaxy-central
https://bitbucket.org/fubar/galaxytoolfactory
https://bitbucket.org/fubar/galaxytoolfactory

