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ABSTRACT

Summary: Frozen robust multiarray analysis (fRMA) is a single-array

preprocessing algorithm that retains the advantages of multiarray al-

gorithms and removes certain batch effects by downweighting probes

that have high between-batch residual variance. Here, we extend the

fRMA algorithm to two new microarray platforms—Affymetrix Human

Exon and Gene 1.0 ST—by modifying the fRMA probe-level model

and extending the frma package to work with oligo ExonFeatureSet

and GeneFeatureSet objects.

Availability and implementation: All packages are implemented

in R. Source code and binaries are freely available through the

Bioconductor project. Convenient links to all software and data pack-

ages can be found at http://mnmccall.com/software

Contact: mccallm@gmail.com
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The majority of methods for the preprocessing and analysis of
microarray gene expression data rely upon the simultaneous ana-

lysis of multiple arrays (Hochreiter et al., 2006; Irizarry et al.,
2003; Li and Wong, 2001). However, most traditional prepro-
cessing methods struggle with modern microarray applications,

such as large meta-analyses, because data preprocessed separ-
ately cannot be combined without introducing artifacts
(McCall et al., 2010; Ramasamy et al., 2008). Furthermore, clin-

ical applications necessitate the analysis of individual arrays, and
datasets that grow incrementally must be preprocessed each time
a new array is added.
Frozen robustmultiarray analysis (fRMA) (McCall et al., 2010)

addressed these challenges by implementing a modified version of
the RMA algorithm (Irizarry et al., 2003). Additionally, by mod-
eling probe-specific variances, fRMA showed improved precision

of gene expression estimates and reduced susceptibility to
batch effects (McCall et al., 2010; McCall and Irizarry, 2011).
The fRMA algorithm was initally implemented on two of the

most widely used microarray platforms—Affymetrix GeneChip
Human Genome U133A and U133 Plus 2.0. Since then, it has
been implemented for several other platforms.

In 2007, Affymetrix released two new microarray platforms—
Human Exon 1.0 ST (HuEx) andHumanGene 1.0 ST (HuGene).
In contrast to previous platforms that targeted the 30 end of tran-
scripts, these new platforms contain probes for each exon. This

design change allowed researchers to assess exon-level expression

and detect alternative splicing. However, it also posed a challenge

to those who wanted to use these arrays to assess gene expression

using the same preprocessing algorithms that were designed for

the previous generation of Affymetrix microarrays. Specifically,

the majority of preprocessing algorithms assume that each probe

within a probeset was designed to measure the expression of the

same target transcript; however, when a probeset is composed of

probes targeting different exons, this assumption may be violated

due to alternating splicing. This is particularly problematic given

that splice variants are estimated to occur in 35–59% of genes

(Modrek et al., 2002).
By summarizing probes at the exon level, one revalidates the

assumption that each probe within a probeset is measuring the

same target. This is more feasible for the HuEx platform, which

often has four probes per exon, than for the HuGene platform,

which contains fewer probes (roughly 35% of exons are targeted by

only one probe). However, the small number of probes per probeset

limits the ability to generate robust estimates of expression.
To address these limitations and aid researchers seeking to

assess gene-level expression using HuEx or HuGene arrays, we

have implemented a modified version of the fRMA model for

gene-level summarization:

Yijkln ¼ �in þ  ln þ ’jln þ �jkln þ "ijkln ð1Þ

Varð�jklnÞ ¼ �
2
jn;Varð"ijklnÞ ¼ �

2
jn,

with Yijkln representing the log2 background corrected and nor-

malized intensity of probe j, targeting exon l, of gene n on array i

in batch k. Identical to the standard fRMA model, �in represents
the expression of gene n on array i and is the parameter of inter-

est. Here, ’jln represents the global probe effect for the jth probe

targeting the lth exon of gene n, and  ln represents the exon effect

for the lth exon of gene n. These parameters are both constrained

to sum to zero within exon and gene, respectively. Finally, �ijkln is
a random effect representing the batch-specific change in the

global probe effect. This model is fit as described in McCall

et al. (2010) with an additional step to estimate the exon effects,

 ln. For a new array, gene-level expression estimates are ob-

tained as robust-weighted averages of the probe- and exon-effect

adjusted expression values.

By using a large biologically diverse database of microarrays

from a large number of different laboratories spanning sev-

eral years, the fRMA algorithm is able to differentiate between*To whom correspondence should be addressed.
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outliers and probes that show a consistent susceptibility to batch
effects. These batchy probes are downweighted during summar-
ization to minimize their effect on expression estimates. HuEx

and HuGene arrays add an additional layer of complexity—
when summarizing at the gene level, a probe may show high
between-batch residual variance due to either batch effects or

alternative splicing (Fig. 1). The former should be down-
weighted, whereas the later may contain highly interesting bio-
logical information that could be captured by subsequent

analysis of residuals, such as those proposed in Robinson and
Speed (2009). For this reason, even when summarizing to the
gene level, we weight probes based on their exon-level
between-batch residual variance. Unfortunately, this is only feas-

ible for exons targeted by multiple probes. For single-probe
exons, it is impossible to assess residual variance at the exon
level and, therefore, impossible to distinguish between batch ef-

fects and splice variants. For these probes, one must rely on
robust summarization methods and post-preprocessing
batch-effect correction algorithms such as ComBat (Johnson

et al., 2007) or Surrogate Variable Analysis (Leek and Storey,
2007).
The two versions of the fRMA algorithm described earlier are

implemented in the frma package and take advantage of the raw
data structures implemented in the oligo package (Carvalho and

Irizarry, 2010), allowing greater control over the level of sum-

marization. Specifically, this is handled by the target argument

passed to the frma function. The frozen parameter vectors for

HuEx and HuGene arrays were created using 240 arrays from

48 batches and 1005 arrays from 201 batches, respectively.

Here, a batch is defined as a unique tissue type/experiment

combination. The frozen parameter vectors are stored in the

huex.1.0.st.v2frmavecs and hugene.1.0.st.v1frmavecs annotation

packages.
The frmaTools package (McCall and Irizarry, 2011), which

allows users to create their own frozen parameter vectors, has

also been updated to work with oligo GeneFeatureSet and

ExonFeatureSet objects. This allows users to create custom vec-

tors for the HuEx and HuGene platforms and to implement

fRMA on other Affymetrix Exon and Gene ST platforms that

are not currently supported.

ACKNOWLEDGEMENTS

The authors thank the maintainers of GEO and ArrayExpress

for making the data publicly available, Marvin Newhouse and

Jiong Yang for helping manage the data and the members of

the La Calestienne Meeting, especially Hinrich Gohlmann and

Willem Talloen, for their helpful discussions.

Funding: This work was funded by National Institutes of

Health (CA009363 to M.N.M.), National Institutes of Health

(GM083084, RR021967 and GM103552 to H.A.J.) and partially

funded by National Institutes of Health (GM083084, RR021967

and UL1RR025005 to R.A.I.).

Conflict of Interest: none declared.

REFERENCES

Carvalho,B. and Irizarry,R. (2010) A framework for oligonucleotide microarray

preprocessing. Bioinformatics, 26, 2363–2367.

Hochreiter,S. et al. (2006) A new summarization method for affymetrix probe level

data. Bioinformatics, 22, 943–949.

Irizarry,R. et al. (2003) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics, 4, 249–264.

Johnson,W. et al. (2007) Adjusting batch effects in microarray expression data using

empirical Bayes methods. Biostatistics, 8, 118–127.

Leek,J. and Storey,J. (2007) Capturing heterogeneity in gene expression studies

by surrogate variable analysis. PLoS Genet., 3, e161.

Li,C. and Wong,W. (2001) Model-based analysis of oligonucleotide arrays: expres-

sion index computation and outlier detection. Proc. Natl Acad. Sci. USA, 98,

31–36.

McCall,M. and Irizarry,R. (2011) Thawing frozen robust multi-array analysis

(fRMA). BMC Bioinformatics, 12, 369.

McCall,M. et al. (2010) Frozen robust multiarray analysis (fRMA). Biostatistics, 11,

242–253.

Modrek,B. et al. (2002) A genomic view of alternative splicing. Nat. Genet., 30,

13–19.

Ramasamy,A. et al. (2008) Key issues in conducting a meta-analysis of gene expres-

sion microarray datasets. PLoS Med., 5, e184.

Robinson,M. and Speed,T. (2009) Differential splicing using whole-transcript

microarrays. BMC Bioinformatics, 10, 156.

Fig. 1. Residuals for probes targeting one of two exons are shown after

fitting a standard RMA model to 100 arrays from 20 different batches

(unique experiment/tissue combinations) at both gene (upper panels) and

exon levels (lower panels). For both exons, Probe 1 (solid black line)

appears to have a strong batch effect (high between-batch residual vari-

ance) when assessing probes at the gene level. However, in the case of

Exon 96 615750, the other three probes targeting this exon have nearly

the same pattern of residuals across batches. This suggests that the high

residual variance may be due to alternative splicing rather than a batch

effect. By assessing probes at the exon level (lower panels), one still ob-

serves the high between-batch residual variance seen for Probe 1 targeting

Exon 96 611 882 (left), but not for the probes targeting Exon 96 615750

(right). By evaluating probe behavior at the exon level, we are able to

distinguish between batch effects and splice variants
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