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ABSTRACT

Motivation: Protein residue–residue contacts continue to play a larger

and larger role in protein tertiary structure modeling and evaluation.

Yet, while the importance of contact information increases, the per-

formance of sequence-based contact predictors has improved slowly.

New approaches and methods are needed to spur further develop-

ment and progress in the field.

Results: Here we present DNCON, a new sequence-based residue–

residue contact predictor using deep networks and boosting tech-

niques. Making use of graphical processing units and CUDA parallel

computing technology, we are able to train large boosted ensembles

of residue–residue contact predictors achieving state-of-the-art

performance.

Availability: The web server of the prediction method (DNCON) is

available at http://iris.rnet.missouri.edu/dncon/.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The prediction of protein residue–residue contacts is seen by

many as an important intermediate step for gaining traction on
the challenging task of tertiary structure prediction. This idea has

been spurred further recently by encouraging results that dem-

onstrate that predicted contact information can indeed be used

to improve tertiary structure prediction and effectively transform

some unfolded structures into their folded counterpart (Wu
et al., 2011). The addition of a contact guided structure modeling

category in the Critical Assessment of Techniques for Protein

Structure Prediction (CASP) on a rolling basis has also aided

in sparking interesting in residue–residue contact prediction.

Beyond the scope of tertiary structure prediction, protein resi-
due–residue contacts have been used in drug design (Kliger et al.,

2009), model evaluation (Wang et al., 2011) and model ranking

and selection (Miller and Eisenberg, 2008; Tress and Valencia,

2010).
Existing methods for residue–residue contact prediction can be

broadly categorized as sequence based or template/structure

based. Sequence-based methods attempt to predict contacts
from the primary sequence or information that can be derived

directly from the sequence. A number of these sequence-based

methods use various machine learning methods such as support

vector machines (Cheng and Baldi, 2007; Wu and Zhang, 2008),
neural networks (Fariselli et al., 2001; Hamilton et al., 2004;

Pollastri and Baldi, 2002; Tegge et al., 2009; Walsh et al., 2009;
Xue et al., 2009), hidden Markov models (Bjorkholm et al.,

2009), Markov logic networks (Lippi and Frasconi, 2009),

random forests (Li et al., 2011) and deep architectures (Di
Lena et al., 2012) to make residue–residue contact predictions.

Other sequence-based approaches have used evolutionary infor-
mation contained in multiple sequence alignments (MSAs) to

identify possible contacts (Gobel et al., 1994; Olmea and

Valencia, 1997; Vicatos et al., 2005). Methods using MSAs
were among the first sequence-based approaches tried but suf-

fered from low accuracies caused by indirect or transitive correl-
ations. More recent developments by Jones et al. (2012) using

large MSAs and sparse covariance matrices have been better able

to identify contacting residues from the alignments and resulted
in significant improvements in accuracy. Template-/structure-

based methods operate by extracting contact information from
structural data. For template-based methods, this structural data

comes in the form of templates (i.e. homologous proteins with

known structure). Once templates have been found and aligned,
residue–residue contacts are predicted using the contacts found

in the structures (Wu and Zhang, 2008).
Given the relatively high quality of the tertiary structure

models generated by template-based techniques, residue–residue
contact data is most useful when dealing with hard targets

(i.e. those for which a structural template does not exists or
hard to identify by sequence alone). For hard targets, the con-

formational search is much larger and overall model quality is

usually much lower. Thus, there is great interest in high quality
sequence-based residue–residue contact predictors that do not

rely on template data. Such contact predictors would be able
to provide additional information when generating models for

hard targets. Unfortunately, recent assessments of state-of-

the-art sequence-based contact predictors routinely report aver-
age accuracies in the 20–30% range, indicating a need for further

development and new methods and ideas (Ezkurdia et al., 2009;
Izarzugaza et al., 2007; Monastyrskyy et al., 2011).

Here we present a new sequence-based residue–residue contact
predictor using deep networks (DNs) and boosting. Our method

differs from other implementations of deep architectures owing

to its boosted nature, overall network architecture and training
procedure. More specifically, for training, we initially use an

unsupervised approach to learn patterns in the data and initialize*To whom correspondence should be addressed.
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parameters and then fine tune them with back propagation.

Furthermore, by using the computational power of graphical

processing units (GPUs) and CUDA, we were able to train

large boosted ensembles of DN classifiers achieving state-of-

the-art performance.

2 METHODS

2.1 Datasets and evaluation metrics

Several datasets were used to train and evaluate our residue–residue con-

tact predictor. The primary dataset, DNCON, was formed by an

advanced search of the Protein Data Bank filtering the results by 30%

sequence similarity and a resolution of 0–2 Å (Berman et al., 2000). The

results from this initial search were then filtered by sequence length and

disorder content, retaining sequences that were 30–300 residues in length

and contained fewer than 20% disordered residues (i.e. coordinates were

missing for fewer than 20% of the residues in the experimentally deter-

mined structure). The resulting set of proteins was then merged with the

training set from SVMcon and then filtered by three existing datasets

D329, SVMCON_TEST and CASP9, which were used as evaluation

sets. The filtering process ensured that the pairwise sequence identity

between the merged dataset and any sequence in the evaluation sets

was �25%. The end result of the search and filter process was our pri-

mary dataset, DNCON, consisting of 1426 proteins. This dataset was

then randomly split into two sets: DNCON_TRAIN consisting of 1230

proteins and DNCON_TEST consisting of 196 proteins. Supplementary

Figure S1 illustrates the entire dataset generation and filtering process.

The evaluation datasets used included D329, a set of 329 proteins used

to evaluate ProC_S3 (Li et al., 2011); SVMCON_TEST, a set of 48 short

to medium length proteins used to evaluate SVMcon (Cheng and Baldi,

2007); CASP9, a set of 111 targets used during the ninth Critical

Assessment of Techniques for Protein Structure Prediction (Moult

et al., 2011); CASP9_HARD, a subset of 16 targets taken from the

CASP9 set that are solely composed of free modeling (FM) or free mod-

eling/template-based modeling (FM/TBM) domains; and DNCON_

TEST. Owing to the filtering process used in the creation of our dataset,

all evaluation datasets are independent (i.e.525% sequence identity) to

the training set.

In this study, two amino acid residues are said to be in contact if the

distance between their C� atoms (C� for glycine) in the experimental

structure is58 Å. Short-range contacts are defined as residues in contact

whose separation in the sequence is �6 and512. Likewise, medium-range

contacts are residues in contact whose separation in sequence is �12 but

524 and long-range contacts are defined as having separation in the

sequence �24 residues. These definitions are in agreement with recent

studies and CASP residue–residue contact assessments (Eickholt et al.,

2011; Ezkurdia et al., 2009; Grana et al., 2005; Izarzugaza et al., 2007; Li

et al., 2011; Monastyrskyy et al., 2011; Tegge et al., 2009).

A common evaluation metric for residue–residue contact predictions is

the accuracy of the top L/5 or L/10 predictions where L is the length of

the protein in residues. In this context, accuracy (Acc) is defined as the

number of correctly predicted residue–residue contacts divided by the

total number of contact predictions evaluated. We also considered the

coverage (Cov) of residue–residue contact predictions, which is defined as

the number of correctly predicted contacts divided by the number of true

contacts. As predicting short-, medium- and long-range contacts have

varying degrees of difficulty, it is common to separate predicted contacts

by sequence separation and then calculate the accuracy and coverage of

the top L and L/5 predictions for each range. Note that this evaluation is

done on a per target basis and irrespective of the domain architecture.

Estimates for the standard error for accuracy and coverage were calcu-

lated using the sample mean and sample variance of the per-target

accuracies and coverages.

2.2 Restricted Boltzmann machine and deep belief

network

The general framework used for classifying residue–residue contacts was

a combination of restricted Bolzmann machines (RBMs) trained to form

DNs. A RBM is a two-layer network that can be used to model a dis-

tribution of binary vectors. In this model, a layer of stochastic binary

nodes representing feature detectors are connected via symmetric weights

to stochastic binary nodes that take on the values of the vectors to be

modeled (Hinton, 2002; Smolensky, 1986). Conceptually, the layer of

stochastic nodes corresponding to the feature detectors can be viewed

as the ‘hidden’ or ‘latent’ data and the other layer of nodes as the ‘visible’

data. The energy of a particular configuration of this network can be

defined by

Eðv, hÞ ¼ �
X
i

bivi �
X
j

cjhj �
X
i, j

hjvjwij ð1Þ

where vi and hj are the states of the i
th and jth nodes, bi is the bias for the

ith visible node, cj is the bias for the j
th hidden node and wji is the weight of

the connection between the ith visible and jth hidden nodes. A probability

can then be assigned to a configuration of visible data by

pðvÞ ¼
X
h

e�Eðv, hÞ

Z
ð2Þ

where Z is a normalizing constant and the sum is over all possible con-

figurations of h.

Training consists of adjusting the weights of the model such that real

data (e.g. training data) has a higher probability than arbitrarily chosen

configurations of visible nodes. This can be done using a process called

contrastive divergence, which adjusts the weights in a manner that seeks

to minimize an approximation to a difference of Kullback–Leibler diver-

gences (Hinton, 2002). The use of contrastive divergence learning as

opposed to maximum likelihood learning has to do with a problematic

term in the gradient of average log likelihood function, which is expo-

nential in nature and difficult to approximate. With contrastive diver-

gence, the problematic term cancels out. Full details are provided in

Hinton’s presentation on training products of experts (2002). In this

work, the weights in the n-th epoch of training were updated as follows:

�ðnÞwij ¼ " ð5vip
ð0Þ

j
4data �5p

ð1Þ
i p
ð1Þ
j 4reconÞ � �wij

n o
þ vw

ðn�1Þ
ij ð3Þ

�ðnÞai ¼ " ð5vi4data �5pð1Þi 4reconÞ

n o
þ vaðn�1Þi ð4Þ

�ðnÞbj ¼ " ð5pð0Þ
j
4data �5pð1Þj 4reconÞ

n o
þ vbðn�1Þj ð5Þ

In these equations, the angle brackets represent averages over the

batch. The subscripts ‘data’ and ‘recon’ are descriptors that illustrate

that the first average is taken over the data and the second average

over reconstructions of the data after one round of Gibbs sampling.

For54data, p
ð0Þ
j is the probability that the j-th hidden unit will be acti-

vated when driven by the data and calculated as

p
ð0Þ
j ¼ �

X
i

viwij þ bj

 !
ð6Þ

where �(�) is the sigmoid function. For54recon, p
ð1Þ
i is the probability

that the ith visible unit will be activated and is calculated as

p
ð1Þ
i ¼ �

X
j

hjwij þ ai

 !
ð7Þ

where hj is a binary value set to 1 with probability p
ð0Þ
j . The final value to

be computed is p
ð1Þ
j , which is the probability that the j-th hidden unit will
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be activated when driven by the probabilities of the reconstructed visible

nodes and calculated as

p
ð1Þ
j ¼ �

X
i

p
ð1Þ
i wij þ bj

 !
ð8Þ

In Equations 3, 4 and 5, " is the learning rate, � is the weight cost and �

the momentum. These parameters and update equations were used in

accordance with recent findings on how to train RBMs in practice

(Hinton, 2010). In our study, the learning rate " was set to 0.01 for w

and 0.1 for the biases, and the weight cost � was set to 0.0002. The

momentum � was initially set to 0.5 and after 5 epochs of training

increased to 0.9. Training a RBM was done using batches of 100 training

examples over 20 epochs. During training, the average free energy of the

training data was compared with that of a small holdout set taken from

DNCON_TEST to confirm that the RBM was not over-fitting the train-

ing data (Hinton, 2010).

RBMs are particularly useful to initialize weights in DNs. This can be

done by learning RBMs in a stepwise unsupervised fashion. After training

the first RBM, it is applied to the training data and for each training

example, the probabilities for activating each hidden node can be calcu-

lated and used to train another RBM. This process of training a RBM

and then using the hidden activation probabilities as inputs to the next

level can be repeated several times to create a multilayer network. For the

last level, a one-layer neural network can be added. All the nodes can

then be treated as real-value deterministic probabilities and the entire

network can be fine tuned using a standard back propagation algorithm

to adjust the parameters (Hinton et al., 2006; Hinton and Salakhutdinov,

2006).

To facilitate working with large RBMs and DNs, we implemented the

training and classification procedures in terms of matrix operations and

used CUDAMat (Mnih, 2009), a python library that provides fast matrix

calculations on CUDA-enabled GPUs. CUDA is a parallel computing

platform that provides high-level access to the computing cores of certain

graphics processing units (http://www.nvidia.com/object/cuda_home.

html). Using CUDAMat and GPUs allowed us to train DN classifiers

with on the order of 1 million parameters in under an hour.

2.3 Prediction of medium-/long-range contacts

For the prediction of medium- and long-range contacts, we trained

multiple ensembles of DNs. The inputs for each DN included

sequence-specific values for the residues in two windows centered

around the residue–residue contact pair in question, several pairwise po-

tentials, global features and values characterizing the sequence between

the contact pair (see Section 2.7 for details). The target was a single

binary value that represented the pair being in contact or not. For the

size of the windows, we tried lengths of 7, 9, 11, 13, 15, 17 and 19. The

overall size of the input feature vector varies from 595 (for windows 7

residues long) to 1339 (for windows 19 residues in length). The variability

in the size of the input vector stems from the fact that several features

used are residue specific, and consequently, as the number of residues

included in the input window grows so does the size of the input vector.

The overall architecture of the DN was (595–1339)-500-500-350-1 (see

Supplementary Fig. S2). Each layer was trained in a stepwise fashion

as a RBM using the previously described process with the exception of

the last layer, which was trained as a one-layer neural network. The entire

network was fine tuned using back propagation to minimize the

cross-entropy error and done over 25 epochs with mini batches of 1000

training examples (see Supplementary Fig. S3).

To create boosted ensembles of classifiers, we trained several DNs in

series using a sample of 90000 medium-/long-range residue–residue pairs

from a larger pool. The pool of training examples used came from the

training dataset, DNCON_TRAIN, and consisted of all medium- and

long-range contacts up to 120 residues in sequence separation and a

random sample of approximately twice as many non-contacting pairs.

Initially, the residue–residue pairs in the training pool were uniformly

distributed and had an equal chance of being included in the training

sample. After each round, the training pool was evaluated using the new

classifier and the pool was reweighted based on the performance of the

classifier. The probability of training data that was misclassified was

increased, whereas correctly classified data had its probability of selection

decreased. This was done using a variant of AdaBoost (Freund and

Schapire, 1997). More specifically, let xi represent the i-th example in

the training pool and yi " {0, 1} be the class of the i-th example. Also,

letWt(i) be the probability of selecting the i-th example from the training

pool in the t-th round of boosting and call the DN classifier trained in

round t to be mt(�), which outputs a value between 0 and 1. Now, after

each round of boosting, Wt(i) is updated via "t, �t and ht(�) in the fol-

lowing manner.

htðiÞ ¼
0 if mtðxiÞ50:5
1 if mtðxiÞ � 0:5

�
ð9Þ

"t ¼
X

htðxiÞ6¼yi

WtðiÞ ð10Þ

�t ¼
1

2

1� "t
"t

� �
ð11Þ

Wtþ1ðiÞ ¼
WtðiÞ

Zt
�

e��t if htðxiÞ ¼ yi
e�t if htðxiÞ 6¼ yi

�
ð12Þ

After 35 rounds of boosting, the final prediction for an input xi is given

by H(xi) and is a value between 0 and 1.

HðxiÞ ¼

P
ðmtðxiÞ40:5Þ�tP

t �t
ð13Þ

Supplementary Figure S4 shows a boosted ensemble.

Additionally, we found that after several rounds of boosting, the

weights of a number of particularly difficult training examples became

disproportionately large and dominated the selected training data.

Models trained on these sets did not generalize well and prohibited boost-

ing beyond 10 rounds. This phenomenon is not new and has been studied

elsewhere (Vezhnevets and Barinova, 2007). One solution was to reinitia-

lize the weights on all the training examples after 7 rounds, which in effect

joins bagging with several rounds of boosting. Another solution was to

combine reinitializing the weights with a trimming procedure, which

removed up to 30% of the hard training cases. This was achieved by

removing (i.e. trimming) those training examples that were 5 times

more likely to be selected than by chance.

2.4 Consensus predictions for medium-/long-range

contacts

In addition to training ensembles for various fixed-length windows, we

also averaged the prediction scores for contacts across ensembles. In all,

there were 490 classifiers with 35 coming from each possible combination

of window size (7, 9, 11, 13, 15, 17 or 19) and sampling scheme

(reweighted or reweighted with trimming).

2.5 Prediction of short-range contacts

For the prediction of short-range contacts, we trained one ensemble of

DNs. The input for each DN was a window 12 residues in length and the

target was all short-range contacts whose residue pairs were contained in

the window. In all, 400 features were used for each window and the target

contained 21 predictions. The overall architecture of the DN was

400-500-500-250-21 (Supplementary Fig. S5). Each layer was trained as

a RBM using the previous described process, and the entire network was
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fine tuned using back propagation to minimize the cross-entropy error

and done over 20 epochs with mini-batches of 1000 training examples. As

the 12 residue window slides across the sequence, most short-range resi-

due pairings appear and are predicted multiple times and the final pre-

diction for a residue–residue pair is calculated by averaging the predicted

values across all windows.

To create an ensemble of short-range predictors, we trained 30 DNs.

When selecting the training set for each model, we randomly sampled

80 000 short-range windows from a pool. For the short-range predictor,

the training pool consisted of all possible 12 residue windows contained in

the training dataset, DNCON_TRAIN. This resulted in a pool of 198 333

training examples. The initial probability of choosing a training example

was uniform and the probability of being selected was updated after each

round using a procedure similar to that outlined for the medium-/long-

range predictors. The only difference was in how the probabilities were

updated. As the output for short-range predictions had multiple values,

the probability of an example was increased in a way that was propor-

tional to the number of incorrectly classified targets for the example.

Equation 13 indicates how the weights were updated. � is the percentage

of the 21 short-range targets that were misclassified for a training

example.

Wtþ1ðiÞ ¼
WtðiÞ

Zt
�

e��t if htðxiÞ ¼ yi
e���t if htðxiÞ 6¼ yi

�
ð14Þ

The predicted value for a short-range residue–residue pair was the

average of the predictions across the ensemble.

2.6 DNCON

The sum of the aforementioned components is DNCON. It is a sequence-

based residue–residue contact predictor capable of predicting short-,

medium- and long-range contacts. For medium- and long-range predic-

tion, DNCON uses a consensus from the medium-/long-range boosted

ensembles. For short-range predictions, DNCON uses the short-range

ensemble trained on fixed windows of 12 residues. The entire boosted

network is used when making residue–residue contact predictions.

2.7 Features used and generation

The features we used for training our residue–residue contact predictors

are consistent with those used by many other predictors (Cheng and

Baldi, 2007; Li et al., 2011; Pollastri and Baldi, 2002; Tegge et al.,

2009). These included predicted secondary structure and solvent accessi-

bility, values from the position-specific scoring matrix (PSSM) and

several pre-computed statistical potentials. To obtain the PSSM,

PSI-BLAST (Altschul et al., 1997) was run for three iterations against

a non-redundant version of the nr sequence database filtered at 90%

sequence similarity. The secondary structure and solvent accessibility

were predicted using SSpro and ACCpro from the SCRATCH suite

(Cheng et al., 2005). The Acthely factors are scaled representations of

five numerical values that characterize a residue by electrostatic charge,

codon diversity, volume, polarity and secondary structure (Atchley et al.,

2005). Finally, we mention that all features which took values outside the

range from 0 to 1 were rescaled to be from 0 to 1 so as to be compatible

with the input layer of the RBM.

For short-range contact prediction, for each residue in the window, we

used 3 binary inputs to encode the predicted secondary structure (helix:

100, beta: 010, coil: 001), 2 binary inputs for solvent accessibility at the

25% threshold (exposed: 10, buried: 01), from the PSSM obtained from

PSI-BLAST we obtained 1 input for the information score of the residue

and 20 inputs for the likelihoods of each amino acid type at that position,

and 5 inputs for Acthley factors. Additional global features included 4

binary inputs to encode protein length (575: 1000, 75–150: 0100, 150–225:

0010,4225: 0001), 20 inputs for the percent representation of each amino

acid in the sequence, 3 inputs for the percentage of predicted exposed

alpha helix and beta sheet residues, and 1 input for the relative position

of the center of the window with respect to the sequence length (i.e. mid-

point/protein length). Thus for short-range predictions, there were a total

of 400 features (12� 31 local featuresþ 28 global features).

For medium- and long-range contacts, we used features coming from

two windows centered on the residue pair in question as well as pairwise

and global features. For each residue in a window, we used the same

features as in the short-range residue window (i.e. predicted secondary

structure and solvent accessibility, information and likelihoods from the

PSSM and Acthley factors). We also encoded these features for a small

window of five residues centered at the midpoint between the residue pair

to be classified. For global features, we used the same global feature set as

described for the short-range contact predictor (i.e. protein length, rela-

tive position of contacting pair, percentage of predicted exposed, alpha

helix and beta sheet residues) and an additional set of 11 binary features

to encode the separation of the residue pair in sequence (1–12, 13–18, 19–

26, 27–38, 39–50, 51–62, 63–74, 75–86, 87–98, 99–110, and 111–120).

Finally, we used a number of pairwise features that depended on the

residue pair, and these included Levitt’s contact potential (Huang et al.,

1996), Jernigan’s pairwise potential (Miyazawa and Jernigan, 1999),

Braun’s pairwise potential (Zhu and Braun, 1999), the joint entropy of

the contact pair calculated from the residue frequency counts in the

PSSM, the Person correlation coefficient and cosine calculated on the

residue frequency counts for the pair in the PSSM and the four-order

of weighted means for secondary structure and solvent accessibility for

the sequence segment between the residue pair (Li et al., 2011).

3 RESULTS AND DISCUSSION

3.1 Performance of DNCON

To evaluate our residue–residue contact predictor, we evaluated

its performance on a number of datasets and compared it with

two state-of-the-art contact predictors, ProC_S3 and SVMcon.

These methods were ranked as the best sequence-based residue–

residue contact predictors in CASP9 (Monastyrskyy et al., 2011).

Table 1 shows accuracy and coverage of the top L/5 and top L

predictions for ProC_S3, SVMcon and DNCON. The predic-

tions for SVMcon and ProC_S3 were downloaded from the of-

ficial CASP website (http://predictioncenter.org/download_area/

CASP9/predictions/). The evaluation dataset for this comparison

was CASP9_HARD, a set of 16 proteins that were comprised

solely of domains classified as FM or FM/TBM by CASP9 as-

sessors. The FM and FM/TBM classification indicates that tem-

plate-based information was scant or difficult to obtain for these

targets. As seen in Table 1, DNCON performed well on these

targets, achieving state-of-the-art performance for accuracy and

converge of long-range contacts when considering the top L or

L/5 contact predictions. Given the comparable performances of

the methods, we also examined if the methods were identifying

the same contacts or if they were in some sense complementary.

We discovered that while there was some overlap between pre-

diction sets (�18–30%), each method was identifying a number

of unique true contacts among those selected (see Supplementary

Tables S1–S3 for full details).
While evaluating residue–residue contacts on hard targets is

arguably the best means of evaluation (i.e. it is on these types of

targets that contact information may have the largest impact),

the drawback is that these datasets are usually composed of a

small number of targets. To increase the robustness of our evalu-

ation, we also compared DNCON with SVMcon and ProC_S3
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on larger datasets, namely SVMCON_TEST and D329. Table 2

presents the accuracy and coverage of the top L/5 and top L

predictions for SVMcon and DNCON on the

SVMCON_TEST, the dataset used to evaluate SVMcon.

Similarly, Table 3 presents the results for ProC_S3 and

DNCON on the D329, a dataset used to evaluate ProC_S3.

The predictions for SVMcon on the SVMCON_TEST dataset

were obtained by downloading SVMcon and made locally and

evaluated with our pipeline. Note that the values for ProC_S3 on

the D329 dataset are those reported by Li et al. (2011) in their

assessment of their method. Both of these evaluations show that

the performance of DNCON is on par with the two

state-of-the-art contact predictors (Table 3).

As an additional comparison between DNCON, ProC_S3 and

SVMcon, we evaluated each method on all valid CASP9 targets.

Again, the predictions for SVMcon and ProC_S3 were down-

loaded from the official CASP website. Note that this evaluation

was done using the entire protein and meant to complement the

assessment technique used by CASP assessors, which evaluates

predictions on a per domain basis. Tables 4 and 5 show the

results of the three methods when evaluated on long- and

medium-range contacts. Once again, DNCON performs com-

petitively against SVMcon and ProC_S3.
The final evaluation set used was DNCON_TEST, an

evaluation set of 196 proteins from the dataset that we

curated. Table 6 shows the performance DNCON on our evalu-

ation set. We also calculated the sensitivity of DNCON on

DNCON_TEST at the 95% specificity rate. For long-range con-

tacts, 38% of the true long-range contacts can be recovered at

the 95% specificity rate (i.e. 95% of non contacts are recovered).

For medium-range contacts, the sensitivity is 44% at the 95%

specificity level.

In addition to the evaluation on the entire DNCON_TEST

dataset, we also evaluated our method on three subsets of

DNCON_TEST. Using the CATH structure classification data-

base (Cuff et al., 2011), we indentified and grouped 140 of the

proteins in DNCON_TEST as mainly alpha, � (29), mainly beta,

Table 3. Performance of DNCON and ProC_S3 for medium and

long-range contact prediction on the D329 dataset

Method Acc(L) Acc(L/5) Cov(L) Cov(L/5)

DNCON[L] 0.191(0.005) 0.326(0.011) 0.149(0.005) 0.052(0.002)

ProC_S3[L]a 0.180 0.297 0.151 0.056

DNCON[M] 0.196(0.006) 0.368(0.011) 0.511(0.009) 0.190(0.005)

ProC_S3[M]a 0.209 0.410 0.520 0.227

aThese values are reported by Li et al. (2011) using same evaluation metrics. No

error estimates provided. Estimates of standard error are provided in parenthesis.

Contact range is denoted within brackets, L for long range and M for medium

range.

Table 2. Performance of DNCON and SVMcon for long- and

medium-range contact predictions on the SVMCON_TEST dataset

Method Acc(L) Acc(L/5) Cov(L) Cov(L/5)

DNCON[L] 0.193(0.019) 0.329(0.037) 0.197(0.019) 0.066(0.009)

SVMcon[L] 0.200(0.019) 0.285(0.032) 0.179(0.017) 0.056(0.008)

DNCON[M] 0.230(0.020) 0.427(0.036) 0.548(0.022) 0.200(0.017)

SVMcon[M] 0.257(0.019) 0.418(0.035) 0.518(0.026) 0.192(0.017)

Estimates for standard error are provided in parenthesis. Contact range is denoted

within brackets, L for long range and M for medium range.

Table 1. Performance of DNCON, ProC_S3 and SVMcon for

long-range contact prediction on CASP9_HARD, a set of 16 CASP9

targets that are solely composed of FM and FM/TBM domains

Method Acc(L) Acc(L/5) Cov(L) Cov(L/5)

DNCON 0.147(0.016) 0.229(0.033) 0.116(0.02) 0.036(0.009)

ProC_S3 0.134(0.029) 0.210(0.036) 0.081(0.015) 0.033(0.010)

SVMcon 0.123(0.014) 0.198(0.042) 0.087(0.017) 0.031(0.009)

Estimates for standard error are provided in parenthesis.

Table 5. Performance of DNCON, ProC_S3 and SVMcon for

medium-range contact prediction on the CASP9 dataset

Method Acc(L) Acc(L/5) Cov(L) Cov(L/5)

DNCON 0.189(0.017) 0.356(0.03) 0.513(0.042) 0.191(0.025)

ProC_S3 0.196(0.016) 0.371(0.055) 0.491(0.038) 0.198(0.029)

SVMcon 0.193(0.02) 0.312(0.033) 0.442(0.045) 0.167(0.028)

Estimates of standard error are provided in parenthesis.

Table 4. Performance of DNCON, ProC_S3 and SVMcon for

long-range contact prediction on the CASP9 dataset

Method Acc(L) Acc(L/5) Cov(L) Cov(L/5)

DNCON 0.172(0.016) 0.291(0.033) 0.128(0.02) 0.043(0.009)

ProC_S3 0.168(0.029) 0.282(0.036) 0.103(0.015) 0.041(0.01)

SVMcon 0.141(0.014) 0.233(0.042) 0.096(0.017) 0.034(0.009)

Estimates of standard error are provided in parenthesis.

Table 6. Performance of DNCON for short-, medium- and long-range

contact prediction on the DNCON_TEST dataset

Range Acc(L) Acc(L/5) Cov(L) Cov(L/5)

Short 0.213 0.509 0.705 0.333

Medium 0.207 0.380 0.508 0.187

Long 0.215 0.341 0.157 0.049
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� (30) and alpha beta, �� (81). These results are summarized in

Table 7. Interestingly, our method appears to have more diffi-

culty with mainly alpha proteins than with the mainly beta or

alpha beta mix. Difficulty in predicting mainly alpha proteins has

been noted elsewhere (Cheng and Baldi, 2007; Di Lena et al.,

2012) and is a starting point for future study.
Finally, we assessed our contact predictor by evaluating its

performance when considering neighborhoods. In this setting,

a predicted contact is considered correct if there is a true resi-

due–residue contact with 	� residues for small values of � (e.g.
for �¼ 1, a predicted contact [i,j] would be counted correct if

there were a true contact at [i,j], [i	1,j], [i,j	1] or [i	1,j	1]).

Table 8 states the accuracy of DNCON on the

DNCON_TEST dataset for �¼ 1 and �¼ 2. These results dem-

onstrate that while the predictions contain some noise, which

prohibits residue-level precision, in general, the contact predic-

tions are accurate and contain a strong signal. This strong signal,

particularly at the short and medium range, could provide valu-

able local information, which could be propagated and incorpo-

rated into the prediction of longer range contacts. Recent work

by Di Lena et al., has demonstrated that propagating neighbor-

ing contact predictions can indeed increase performance (2012).

Given the flexibility of the DN architecture and its ability to

handle a large number of input features, this type of local contact

information could easily be included for longer range predic-

tions. This is a line of investigation we are currently pursuing

for a future work. As for long-range contact predictions, these

too exhibit a strong relatively accurate contact signal, which may

prove more useful than the residue-specific accuracies indicate,

particularly for the purposes of guiding a search through the

protein conformation space. An evaluation of SVMcon and

ProC_S3 on DNCON_TEST using the neighborhood criteria

found that ProC_S3 and DNCON perform comparably and

both outperform SVMcon (data not shown).

3.2 Value of boosting and ensembles

To determine the value of the boosted ensembles and the con-

sensus approach, we studied the performance of the predictions

for various configurations of ensembles and across rounds of

boosting. Figure 1 characterizes the affect of boosting on the

accuracy of the top L and L/5 long-range predictions (see

Supplementary Fig. S6 for effect on medium-range predictions).

These particular figures are of the ensemble with windows of 13

residues in length and with the reweighted sampling scheme.

They show the benefit of boosting and are typical of the affect

seen in other ensembles.
To determine the effect of the window size on the method’s

performance, we evaluated the performance using ensembles

comprising DNs with only one window size and reweighting

scheme. It is interesting to note that while all of the ensembles

perform roughly the same, there is a marked difference in the

performance of the individual ensembles and the consensus pre-

diction for top L/5 predictions. Accuracies for the individual

ensembles are in the range of 0.24–0.28 for the top L/5 long-

range predictions, whereas the accuracy of their consensus is 0.34

(Supplementary Table S4). Similarly, for the top L/5 medium-

range predictions, the accuracy jumps from the 0.32 to 0.34 range

to 0.38.

4 CONCLUSION

In this work, we have presented DNCON, a new method for

protein residue–residue prediction. The approach is based on

two concepts, boosted ensembles and DNs, which are novel in

Fig. 1. Accuracy of the top L and L/5 long-range contact predictions for

a boosted ensemble (13-win). The graph plots accuracy as a function of

the number of rounds of boosting

Table 7. Performance of DNCON on structurally defined subsets of the

DNCON_TEST dataset

Range Type Acc(L) Acc(L/5) Cov(L) Cov(L/5)

Short � 0.171 0.440 0.714 0.364

� 0.285 0.612 0.748 0.318

�� 0.201 0.512 0.723 0.350

Medium � 0.132 0.257 0.570 0.220

� 0.255 0.448 0.487 0.170

�� 0.222 0.420 0.543 0.203

Long � 0.111 0.156 0.112 0.031

B 0.222 0.322 0.147 0.042

�� 0.234 0.384 0.169 0.053

Table 8. Performance of DNCON for short-, medium- and long-range

contact prediction on the DNCON_TEST dataset when considering

small neighborhoods

Range Acc(L/5) Acc(L/2) Acc(L)

Short (�¼ 1) 0.789 0.657 0.532

Medium (�¼ 1) 0.648 0.552 0.463

Medium (�¼ 2) 0.749 0.678 0.607

Long (�¼ 1) 0.550 0.476 0.415

Long (�¼ 2) 0.638 0.578 0.552
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the context of residue–residue contact prediction. When com-
pared with the current state-of-the-art, DNCON performs favor-
ably, achieving state-of-the-art performance in the critical area of
accuracy on top medium and long range contact predictions.

When allowing for less than residue level precision, the perform-
ance of DNCON is even more impressive. Given the strong con-
tact signal present for short- and medium-range contacts and the

fast flexible architecture of DNs, in the future, we plan on mod-
ifying the DNs such that they can incorporate and propagate
predicted short- to medium-range contacts when making longer

range predictions. We also plan on refining the parameters and
network architecture used to increase performance. The method
is available as a web service at http://iris.rnet.missouri.edu/

dncon/.
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