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ABSTRACT

Motivation: Protein interaction networks provide an important

system-level view of biological processes. One of the fundamental

problems in biological network analysis is the global alignment of a

pair of networks, which puts the proteins of one network into corres-

pondence with the proteins of another network in a manner that con-

serves their interactions while respecting other evidence of their

homology. By providing a mapping between the networks of different

species, alignments can be used to inform hypotheses about the func-

tions of unannotated proteins, the existence of unobserved inter-

actions, the evolutionary divergence between the two species and

the evolution of complexes and pathways.

Results: We introduce GHOST, a global pairwise network aligner that

uses a novel spectral signature to measure topological similarity be-

tween subnetworks. It combines a seed-and-extend global alignment

phase with a local search procedure and exceeds state-of-the-art

performance on several network alignment tasks. We show that the

spectral signature used by GHOST is highly discriminative, whereas

the alignments it produces are also robust to experimental noise.

When compared with other recent approaches, we find that GHOST

is able to recover larger and more biologically significant, shared sub-

networks between species.

Availability: An efficient and parallelized implementation of GHOST,

released under the Apache 2.0 license, is available at http://cbcb.umd

.edu/kingsford_group/ghost

Contact: rob@cs.umd.edu
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1 INTRODUCTION

We present a novel method for the global pairwise alignment of

biological networks. Such alignments are crucial in analyzing the

increasing amount of experimental data being generated by
high-throughput techniques, such as yeast two-hybrid screening

(Fields and Song, 1989), tandem affinity purification mass spec-
trometry (Gavin et al., 2006) and chip-seq (Johnson et al., 2007)

that reveal biological interactions within the cell.
A solution to the global network alignment problem is an

injective mapping f from the nodes of one network
G ¼ ðVG,EGÞ into another network H ¼ ðVH,EHÞ such that

the structure of G is well preserved. This global mapping
allows us to measure the similarity between proteins in G and

those in H in terms of shared interaction patterns. By exposing

large subnetworks with shared interactions patterns across

species, a network alignment allows us to transfer protein func-

tion annotations from one organism to another using more in-

formation than can be captured by sequence alone. For example,

it has been shown that, across species, the protein with the most

similar sequence does not always play the same functional role

(Sharan et al., 2005), and that topological information can be

used to disambiguate sequence-similar proteins and determine

functional orthology (Bandyopadhyay et al., 2006). Additionally,

by looking at the magnitude of structure conserved between G

and H, we can measure the similarity between these networks

and infer phylogenetic relationships between the corresponding

species (Kuchaiev and Przulj, 2011). We can also hypothesize the

existence of unobserved interactions (missing edges), remove

noise from error-prone high-throughput experiments and track

the evolution of pathways.
Our approach to the global network alignment problem uses a

novel measure of topological node similarity that is based on

multiscale spectral signatures. These signatures are composed

from the spectra of the normalized Laplacian for subgraphs of

varying sizes centered around a node. We combine this highly

specific yet robust node signature with a seed-and-extend align-

ment strategy that explicitly enforces the proximity of aligned

neighborhoods. The initial alignment is improved by means of

a local search procedure. We implement these ideas in our

network alignment software, GHOST, which exceeds state-of-

the-art accuracy under several different metrics of alignment

quality.
There has been significant interest in the network alignment

problem, and previous work can naturally be divided into three

main categories: approaches to local network alignment,

approaches to network querying and approaches to global net-

work alignment. Because we are introducing a system for global

network alignment, we restrict our discussion to the relevant

work in this area.

Singh et al. (2008) introduced IsoRank, which uses a recur-

sively defined measure of topological similarity between nodes in

different networks. They proposed an eigenvector-based formu-

lation to discover a high-scoring matching. Liao et al. (2009)

developed IsoRankN, which extends IsoRank with a new algo-

rithm for multiple network alignment based on spectral cluster-

ing. Chindelevitch et al. (2010) use a local search heuristic, which

they call PISWAP, to iteratively improve an initial alignment

that is based solely on sequence data. The Graemlin aligner

was originally developed by Flannick et al. (2006) to discover

evolutionarily conserved modules across multiple biological net-

works. Later, it was extended (Flannick et al., 2009) to perform

global multiple network alignment. However, this approach*To whom correspondence should be addressed.
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relies on a variety of additional information about the networks
being aligned, including phylogenetic information. Further,
sample alignments are required for the parameter learning

phase of Graemlin2.
Recently, multiple attempts have been made to tackle the bio-

logical network alignment problem using graph matching. Klau

(2009) introduced a non-linear integer program to maximize a
structural matching score between two given networks and then
showed how the problem can be linearized, yielding an integer
linear program, and finally suggested a Lagrangian relaxation

approach to the integer linear program. Later, El-Kebir et al.
(2011) extended this approach and improved the upper and
lower bounds of the relaxation, implementing their approach

in the Natalie 2.0 software package. The HopeMap approach
of Tian and Samatova (2009) used an algorithm that iteratively
merges conserved connected components. Zaslavskiy et al. (2009)

explore the use of a number of graph-matching methods, par-
ticularly the PATH and graduated assignment methods, which
attempt to find a permutation matrix between vertices of the

networks being aligned that maximizes a score that is a combin-
ation of the structural similarity and conserved interactions of
the matched vertices. This optimization is NP hard, and they

must rely on a relaxation to discover an approximate solution.
Many similar graph-matching approaches have been applied to
shape matching in computer graphics and computer vision

(Duchenne et al., 2011; Torresani et al., 2008; Noma and
Cesar, 2010). All of these matching-based approaches require a
large number of constraints to be placed on the set of potential

alignments, usually in the form of homology information be-
tween the proteins of the networks being aligned, to run in a
reasonable amount of time. These constraints vastly reduce the

search space and help bring these computationally burdensome
methods into the realm of tractability. However, the hard con-
straints introduced by the homology information can have a

negative effect on the ability of these methods to discover truly
novel functional homologs between highly divergent species. In a
way, these methods focus more on discovering conserved pat-

terns of interactions between proteins that are already posited to
be homologous, rather than on performing a truly de novo and
unconstrained alignment of biological networks that is merely

guided by homology information. GHOST takes a hybrid
approach, where the initial alignment can be constrained by
some aspect of the scoring function, but the local search proced-

ure allows exploration into regions of the alignment space that
do not adhere to the original constraints.
The GRAAL family of programs, like IsoRank, performs un-

constrained and global pairwise alignments of biological net-
works. Kuchaiev et al. (2010) originally introduced GRAAL,
which measures the topological similarity of nodes in different

networks based on the distance between their graphlet degree
signatures and aligns the networks using a seed-and-extend strat-
egy. Milenkoviç et al. (2010) then introduced H-GRAAL, which

relies on the same graphlet degree signatures used by GRAAL
but performs the alignment of the networks by solving the linear
assignment problem via the Hungarian algorithm (Kuhn, 1955).

Finally, Kuchaiev and Przulj (2011) introduced MI-GRAAL,
which combines these two alignment strategies. It relies on a
seed-and-extend alignment procedure but uses the Hungarian

algorithm only to compute the assignment between local

neighborhoods of the two graphs that maximizes the sum of

their linear scoring function. MI-GRAAL also incorporates a

number of other topological metrics, in addition to the graphlet
degree signatures, to help quantify the topological similarity be-

tween nodes.

Our network aligner, GHOST, combines a novel spectral sig-

nature to measure topological similarity with a seed-and-extend

alignment procedure, and an iterative local search step. In

Sections 3.1 and 3.2, we show that GHOST performs much

better than current aligners at the network self-alignment task.

In Section 3.3, we compare an ensemble of alignments produced

by different aligners, as we vary their parameter settings to trade

off between the topological and biological quality of the align-

ments they produce. GHOST consistently outperforms the other

aligners in these tests and is able to produce alignments higher

overall quality. This improved quality will be useful for more
accurate comparative systems biology.

2 METHODS

2.1 Measuring alignment quality

It is challenging to state the global network alignment problem formally

and precisely because a ‘good’ alignment balances two, often disparate,

goals. A high-quality global alignment between two biological networks

should reveal shared topological structure between the networks being

aligned while also respecting the strong evidence for homology revealed

via sequence analysis.

Neither of these goals, however, should act as hard constraints when

aligning two networks, and a high-quality global network alignment

should strive to satisfy both the topological and sequence requirements.

This naturally leads to two distinct measures for the quality of network

alignments; one quantifies topological quality, the degree of shared struc-

ture revealed between the two networks, and the other quantifies biolo-

gical quality, how well the alignment respects the biological and

functional similarities of the proteins.

2.2 Topological quality

A topological quality metric should measure the degree to which the

structure of G is preserved, under f (the computed injective mapping

from VG to VH), when mapped into H. For example, we expect that

an alignment of high topological quality will map interacting proteins in

G to interacting proteins in H. The most common measure of topological

quality is edge correctness (EC), which measures the percentage of edges

from G that are aligned to edges in H. Let G[V] be the induced subgraph

of G on the vertex set V, fðVÞ ¼ fðvÞjv 2 V
� �

, fðEÞ ¼ ðfðuÞ, fðvÞÞj
�

ðu, vÞ 2 Eg and fðGÞ ¼ ðfðVGÞ, fðEGÞÞ. Then, the EC is defined as

ECðG,H, fÞ ¼
fðEGÞ \ EH

�� ��
jEGj

: ð1Þ

Despite its prevalence, EC fails to differentiate alignments that one

might intuitively consider to be of different topological quality (see

Fig. 1) because it accounts only for the number of edges from G that

are mapped into H and incorporates no notion of the similarity between

G and the induced subgraph of f(G).

We introduce a new measure of topological quality, the induced con-

served structure (ICS) score, that uses a more discriminative notion of

conserved structure than EC. We define the ICS score between G and H

induced by the alignment f as

ICSðG,H, fÞ ¼
fðEGÞ \ EH

�� ��
jEH ½fðVGÞ�

j
: ð2Þ
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Notice that, for the example given in Figure 1, although the edge EC

score of both the green and red mappings is 1, the ICS successfully

distinguishes the two cases. In particular, the ICS of the green mapping

remains 1, whereas the ICS of the red mapping becomes 0.4, agreeing

with the intuition that the green mapping conserves more structure than

does the red mapping. Also, the ICS score is 1 if and only if G is iso-

morphic to H[f(VG)]. Thus, alignments that map subgraphs of G into

denser subgraphs ofH, where there are potentially many more mappings,

will be punished under the ICS score while they will not be punished

under the standard EC score. Optimizing EC and ICS directly is, in

general, NP hard. This can be shown by reduction from CLIQUE, as

when G is a clique, both EC and ICS are 1 if and only if H contains a

clique of order jVGj.

2.2.1 Biological Quality Given an alignment, f: G! H, a measure

of biological quality should evaluate the similarity of p and f(p) in terms

of biological function. The most common measure of similarity computes

the enrichment of shared gene ontology (GO) (Ashburner et al., 2000)

annotations between the mapped proteins. The greater the enrichment,

the higher the biological quality of the alignment. In most previous work

(Kuchaiev and Przulj, 2011; Singh et al., 2008), two GO annotations are

considered the same only if they are identical.

This common metric has two main disadvantages. First, many GO

terms are assigned largely based on sequence homology to proteins

with verified annotations, which strongly biases the results in favor of

alignments that ignore topology completely and align proteins based

solely on sequence similarity. Additionally, measuring the functional en-

richment between proteins by considering only exact overlap between

their associated GO annotations ignores the hierarchical structure of an-

notation similarity encoded in the ontology. Only recently has the litera-

ture on network alignment (El-Kebir et al., 2011) started to use methods

(Jaeger et al., 2010) that use the hierarchical structure of GO. Most pre-

vious work (Kuchaiev et al., 2010; Kuchaiev and Przulj, 2011; Liao et al.,

2009; Singh et al., 2008) considers only the exact overlap metric, and it is

potentially misleading.

Although the issue that annotations often come from sequence remains

a concern, we address the second concern by using an additional metric of

protein function similarity that takes into account the relationships be-

tween annotations encoded by the GO hierarchy. Pesquita et al. (2009)

recently compared a number of methods for computing protein simila-

rities based on GO annotations. They find that one of the best performing

methods computes the similarity of GO terms using the Resnik onto-

logical similarity measure and combines annotation similarities using

the best-match average strategy to obtain a functional similarity measure

on proteins. We adopted an implementation of this measure provided in

the csbl.go R-project package (Ovaska et al., 2008). We denote this

similarity measure by saðp1, p2Þ, where a is an aspect—biological process

(BP), molecular function (MF) and cellular component —of GO. The

similarity measure between networks G andH induced by the alignment f

under the GO aspect a is given by saðG,H, fÞ ¼ 1
jVG j

P
p2VG

saðp, fðpÞÞ.

2.3 Formal problem statement

Formally, we desire an alignment that maximizes a convex combination

of the ICS and biological similarity of the input networks. That is, we

wish to find the alignment

argmax
f2F

�ICSðG,H, fÞ þ ð1� �Þ
X
a2fAg

saðG,H, fÞ,

where F is the set of all complete injective mappings from G to H

and A ¼ fCC,MF,BPg is the set of all GO aspects. We choose the ICS

as opposed to the EC because it more closely matches the intuition for

what constitutes a topologically good alignment. However, as maximizing

the ICS directly is NP hard, and we are often missing reliable GO anno-

tations for various proteins, we have developed the method presented

later in the text that relies on the spectral signatures (see Section 2.3)

and sequence similarity of proteins to determine good seeds for

aligning network regions. The alignment is expanded around these

seeds by approximating the solution to the quadratic assignment

problem (QAP), another NP hard problem. Finally, a local search step

attempts to improve the initial alignment by increasing its topological

quality. Our results suggest that this heuristic produces results of high

quality with regard to the maximizing the objective function described

earlier.

2.4 Spectral signature

One of the primary contributions of our work is the introduction of a

novel topological signature for nodes in a network. We use these signa-

tures to guide our network alignment and to provide a measure of the

similarity, or topological context, of nodes within their respective

networks. Useful topological signatures should be precise, robust to

topological variation and fast to compute. Spectral graph theory pro-

vides tools that allow us to develop a signature having all of these

properties.

There is a well-studied and strong relationship between the structure of

a graph and the spectrum of its adjacency matrix and other related matri-

ces. For example, isomorphic graphs are necessarily cospectral, though

cospectral graphs are not necessarily isomorphic. However, simple com-

parison of spectra provide a powerful isomorphism filter in practice. In

fact, using the eigenvalues and associated eigenvectors of graphs, Babai

et al. (1982) developed an algorithm for graph isomorphism that is poly-

nomial in the algebraic multiplicity of the graph.

The spectra of graphs are also robust to topological variations. Wilson

and Zhu (2008) show that the distance between the spectra of the normal-

ized Laplacian of graphs correlates well, at least for small perturbations,

with the true edit distance between the graphs. Further, such spectra are

efficient to compute. It takes O(n3) time to compute the spectrum for

dense graphs with n vertices. However, for sparse graphs, like the biolo-

gical graphs in which we are interested, faster algorithms exist (Pan and

Chen, 1999). For any subgraph, the computation of the spectrum is an

independent operation and can be parallelized.

Our vertex signature is based on the spectrum of the normalized

Laplacian for subgraphs of various radii centered around a vertex.

Consider a graph G ¼ ðVG,EGÞ and vertex v. We denote by Gk
v , the

induced subgraph on all nodes whose unweighted shortest path length

from v is �k. We denote by Wk
v , the adjacency matrix of Gk

v . In all

experiments performed in this article, we use the unweighted adjacency

matrix, though using a weighted adjacency matrix is also possible.

Finally, let the matrix Dk
v be given by

Fig. 1. The mapping from G to H given by the solid green arrows can be

considered a better alignment than that given by the dashed red arrows,

despite the fact that they both have the same EC
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Dk
v ½i, j� ¼

PjVG j

‘¼1

Wk
v ½i, ‘� if i ¼ j

0 otherwise:

8<: ð3Þ

Then, the normalized Laplacian of Gk
v is Lkv ¼ ðD

k
v Þ

1
2ðI�Wk

v ÞðD
k
v Þ

1
2,

where I is the appropriately sized identity matrix. The eigendecomposi-

tion of this normalized Laplacian yields LkvV ¼ �V, where the sizes of V

and � are the same as that of Lkv , but � is a diagonal matrix. We denote

spectrum of Lkv by �(Lkv ), which is simply the entries along the main

diagonal of �.

Many properties of �(Lkv ) make it an enticing candidate for a

vertex signature. As the Lkv is a positive, symmetric, semi-definite

matrix with real entries, �(Lkv ) consists entirely of non-negative real

numbers. Further, the entries of �(Lkv ) are bounded below by 0 and

above by 2. Finally, many topological properties of a graph, such as

the number of spanning trees, the Cheeger constant, the distribution of

path lengths (Chung, 1997) and the frequency of motifs (Preciado and

Jadbabaie, 2010) are known to be related to the spectrum of its Laplacian.

However, for different vertices, the size of their k-hop neighborhoods

will vary, and thus the length of their spectra will be different, and so the

spectra cannot be directly compared. To overcome this difficulty, we

consider the densities of the spectra rather than the spectra themselves.

The spectral density simply measures how eigenvalues are distributed

over their potential range ([0, 2] in the case of the normalized

Laplacian). The intuition behind comparing the spectral densities is

that these distributions retain much (but not all) of the information con-

tained in the spectra themselves. Thus, we compare spectral density func-

tions as a proxy for comparing the spectra themselves. This yields a

commensurate signature that is independent of the order of the graph,

but is nonetheless effective in measuring the structural similarity of

graphs (Banerjee, 2012). For each Gk
v , which we will use this spectral

density, denoted by Skv , as a signature.

To compare the topological context of vertices at different scales, we

simply consider the induced subgraphs for a range of different radii cen-

tered about v (i.e. G1
v ,G

2
v , :::,G

k
v ). This leads, in turn, to a set of different

spectra and, subsequently, different signatures. However, as the radii

have the same meaning across different vertices and graphs (it is just

the diameter of the neighborhood), the corresponding signatures can be

compared directly and independently of the signatures at other radii. This

leads to a simple scheme for comparing the topological contexts of two

vertices at multiple scales using our signature. Given two graphs,

G¼ (VG,EG) and H¼ (VH,EH), with u 2 VG and v 2 VH, and a sequence

of radii R ¼ ½1, 2, :::, k� (for all experiments performed in this article, we

set k¼ 4), we compute the distance between the signatures of u and v for

this sequence of radii as

DtopoðS
R
u ,S

R
v Þ ¼

X
r2R

dðSru,S
r
vÞ, ð4Þ

where dð�, �Þ can be any desired distance between the two signatures. We

use d ¼ dstruct, the structural distance as defined by Banerjee (2012). The

structural distance is a symmetric information theoretic distance defined

on the smoothed spectral densities of two graphs. Specifically, the

structural distance between signatures, Siu and Siv, for a particular i, is

given by:

dstructðS
i
u,S

i
vÞ ¼ JSðN ð0, �2Þ ? Siu,Nð0, �

2Þ ? SivÞ, ð5Þ

where Nð0, �2Þ is the normal distribution with mean 0 and standard de-

viation � [we used a value of � ¼ 0:01 as suggested in (Banerjee, 2012)],

? is the convolution operator and JS is the Jensen–Shannon divergence.

In the case that the maximum radius of the subgraph centered around a

node u is some k05k, then we define Sru ¼ S
k0

u ,8k
05r5k.

In a manner similar to IsoRank (Singh et al., 2008), we can incorpor-

ate sequence information into our distance measure between two

proteins u and v by using a simple combination of the topological

distance—DtopoðS
R
u ,S

R
v Þ as defined in Equation (4)—and a sequence dis-

tance, Dseqðu, vÞ, such as the symmetrized BLAST E-value. The total

distance measure is a linear combination of the topological and sequence

distance, parameterized by some weight � and is given by

D�ðu, vÞ ¼ �DtopoðS
R
u ,S

R
v Þ þ ð1:0� �ÞDseqðu, vÞ: ð6Þ

If no user-suggested � is provided, GHOST automatically computes � by

scaling the sequence and topological distances so that the jVth
G j smallest

sequence and topological distances match.

2.5 Alignment procedure

GHOST aligns networks using a two-phase approach. Much like the

strategy used in the sequence alignment tool BLAST (Altschul et al.,

1990), GHOST’s initial phase uses a seed-and-extend strategy that

seeds regions of an alignment with high scoring pairs of nodes from the

different networks and then extends the alignments around the neighbor-

hoods of these two nodes. The neighborhoods are matched by computing

an approximate solution to the QAP. This procedure executes in rounds

until all nodes from the smaller of the two networks have been aligned

with some node from the larger network. GHOST’s second phase uses a

local search strategy to explore regions of the solution space around the

initial alignment for a potentially better solution.

The algorithm is given formally in Algorithms 1 and 2. First, an align-

ment is seeded with a high-scoring match M̂0 ¼ ðM̂0
G, M̂

0
HÞ. This is a pair

of vertices between which the specified D� [equation (6)] is minimal.

Then, we consider all pairwise matches between the 1-hop neighborhoods

of these two vertices, M ¼ ði, jÞji 2 N ðdM0
GÞÞ, j 2 N ð

dM0
HÞÞ

h i
, and form a

quadratic assignment matrix Q given by:

Q½a, b� ¼
1�D�ðM½a�½0�,M½a�½1�Þ if a ¼ b
CðM½a�,M½b�Þ otherwise:

�

M[a] is the ath pair in M and M[a][0] refers to the member of the

pair residing in graph G and M[a][1] to the member residing in graph

H. CðM½a�,M½b�Þ ¼ exp
� dða, b, 0Þ�dða, b, 1Þj j
dða, b, 0Þþdða, b, 1Þ

� �
measures the pairwise consist-

ency between potential matches M[a] and M[b], where dða, b, 0Þ ¼

DtopoðM½a�½0�,M½b�½0�Þ and dða; b; 1Þ ¼ DtopoðM½a�½1�,M½b�½1�Þ. We ap-

proximate the solution to the QAP by finding the leading eigenvector

of Q and binarizing this vector to select matches that adhere to the

matching constraints [further details on this QAP approximation algo-

rithm can be found in Leordeanu and Hebert (2005)]. The solution to the

QAP assigns each protein from the smaller of the two neighborhoods to

exactly one protein in the larger neighborhood. This mapping is used to

align the currently unmapped proteins in these neighborhoods, and the

matches are inserted into a priority queue as potential seeds by which to

further extend the alignment between these local neighborhoods.

However, we only accept mappings that align proteins with a sequence

distance less than a certain (user defined) value �. This is because a

seed-and-extend approach is implicitly biased in favor of extending topo-

logical alignments, and may otherwise match proteins with very little

evidence of sequence homology, simply because they reside in the neigh-

borhoods of already aligned proteins. Biologically, it is more plausible

that a pair of proteins with very low sequence similarity happens to be

adjacent to a pair of currently aligned proteins by chance, or as the result

of spurious edges in the measured networks, than it is that they are truly

functional homologs.

We continue extending the alignment in this manner, covering larger

topological neighborhoods of the original seed nodes, until no further

extension of the alignment between the current neighborhoods is possible.

Then, the next seed pair, M̂1, is chosen from among the unaligned nodes,

and the same procedure is applied to extend the alignment around this
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seed. This process continues until all nodes from VG (assumed, w.l.o.g., to

be smaller than VH) have been aligned.

Once we have computed an initial alignment using the seed-and-extend

procedure, we attempt to improve this alignment using a local search. The

moves of the local search procedure are similar to those used by PISWAP

(Chindelevitch et al., 2010), but the evaluation strategy and application of

rules is different. Given an alignment, f, we seek f0 similar to f that is

superior. Consider a pair of aligned proteins, u 2 G and fðuÞ ¼ w 2 H,

and a third vertex v 6¼ w 2 H. It is possible that we may improve the

quality of our alignment by realigning u so that f0ðuÞ ¼ v if the topological

and or biological quality is improved by performing this realignment.

When realigning u, there are two cases to consider. Either v is unaligned,

in which case we assign f0ðuÞ ¼ v, or v s aligned by f, in which

case aligning u to v requires realigning u0 ¼ f�1ðvÞ. In this case, we con-

sider swapping the aligned protein pairs so that f0ðuÞ ¼ v and f0ðu0Þ ¼ w.

In either case, we will call this realignment a move from (u, w), denoted by

m ¼ ðu,wÞ ! ðu, vÞ. Each move can be given a score, SðmÞ ¼ ðsm0 , s
m
1 , s

m
2 Þ

where

sm0 ¼ ECðG,H, f0Þ � ECðG,H, fÞ

sm1 ¼ Dseqðu,wÞ �Dseqðu, vÞ

sm2 ¼
Dseqðu

0, vÞ �Dseqðu
0,wÞ if f�1ðvÞ ¼ u0

0 if v =2 imðfÞ:

(
For each mapping, (u, w), in the current alignment, the local search pro-

cedure scores the potential moves from (u, w), and performs the highest

scoring feasible move. The scores are ordered first by sm0 , then sm1 and

finally sm2 . Any remaining ties are broken arbitrarily. We call a move

feasible if sm0 4 0, sm1 � 0 and either sm2 � 0 or we have decided to allow

a non-Pareto-optimal move from (u, w). The purpose of allowing a

non-Pareto-optimal move from (u, v) is that it may allow us to escape

a local minimum of the alignment space.

There are three parameters that characterize the space of alignments

explored by GHOST. First, � determines the relative weight of the se-

quence and topological distances when performing the seed-and-extend

procedure [Equation (6)]. Second, � acts as a hard constraint on sequence

similarity of aligned pairs: no pair, (u, v) of proteins will be aligned if

Dseqðu, vÞ4�. This ensures that, when extending the alignments between

local neighborhoods, no pair of proteins with sequences too divergent is

aligned simply because the alignment can be extended by aligning them.

During the local search procedure, we allow some number of excep-

tions to the hard constraint given by �. We define a parameter b 2 R that

is a budget to be used for accepting non-Pareto-optimal moves during the

local search phase of GHOST. The higher this budget, the more likely

GHOST will be to accept local moves that increase the topological qual-

ity of the alignment at the expense of realigning a pair of proteins with

lower sequence similarity than the original pair. We distribute this budget

across local search iterations so that we initially allow many such moves,

but allow far fewer in later iterations. In particular, during iteration i, we

have a budget of bi ¼ b expð�iÞ
Z

, where Z ¼
PL
i¼1

expð�iÞ is a partition func-

tion that normalizes the per-iteration weights. Within iteration i, we con-

sider each mapped pair of the current alignment in turn and draw a

number p � U½0, 1�. If p � bi, then we will allow a non-Pareto-optimal

move when realigning this mapped pair; otherwise, such moves will not

be considered. The practical effect of choosing a larger b is to reduce the

importance of sequence similarity in the alignment.

2.6 Network data

We performed an alignment of the high-confidence protein interaction

networks of Campylobacter jejuni and Escherichia coli. Both of these

bacterial species are well-studied model organisms. To draw the most

appropriate comparisons to MI-GRAAL, we use the same versions of

the interaction networks that were used by Kuchaiev and Przulj (2011).

Thus, we used E. coli network composed of interactions from the data of

Peregrı́n-Alvarez et al. (2009), consisting of 1941 proteins among which

there are 3989 interactions. We consider the C. jejuni network that con-

sists of the high-confidence interaction from the data of Parrish et al.

(2007), containing 2988 interactions among 1111 proteins.

We also explored the ability of GHOST to align the protein interaction

networks of distant eukaryotes by performing an alignment of the protein

interaction networks of Arabidopsis thaliana and Drosophila melanoga-

ster. We obtained the interactions for these networks from the HitPredict

website (Patil et al., 2011). HitPredict places interaction data for each

species into three categories: high-confidence small-scale interactions,

high-confidence high-throughput interactions (HCHT) and low-

confidence high-throughput interactions. The high-confidence small-scale

interactions are identified directly in small-scale experiments considering

5interactions each. The HCHT interactions are those interactions identi-

fied in high-throughput experiments with a likelihood ratio41, or pre-

dicted from protein complex data. The low-confidence high-throughput

interactions are those having a likelihood ratio51. In our experiments,

we considered only the high-confidence interactions—the union of those

interactions in the high-confidence small-scale interactions and HCHT

sets. This resulted in a network for A. thaliana having 2082 proteins and

4145 interactions. The D. melanogaster network consisted of 7615 inter-

actions among 3792 different proteins.

2.7 Comparison with other aligners

To investigate the quality of the solutions produced by the different

aligners we consider, we explore how they trade off between topological

and biological quality at different points in their parameter spaces. The

alignments are compared using the novel measures of the topological and

biological quality introduced in Section 2.1. To calculate GO similarities,

we rely on the set of GO annotations for each protein retrieved from the
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European Bioinformatics Institute website in June 2011, and the GO

retrieved on November 10, 2011. When producing alignments using

MI-GRAAL, we included graphlet degree signatures, clustering coeffi-

cients and sequence similarity scores—the topological features that

Kuchaiev and Przulj (2011) found to lead to the highest scoring and

most stable alignments. MI-GRAAL determines the value of �—the par-

ameter that trades off between functional and sequence similarity—in-

ternally, and so no � value was provided. For IsoRank and Natalie 2.0,

we varied � between 0 and 1 in increments of 0.1. The rest of Natalie 2.0’s

parameters were left at their default values. For GHOST, � was deter-

mined automatically using the procedure specified in Section 2.3, 10 iter-

ations of the local improvement procedure were performed, � was set to

10 and the budget, b, for non-Pareto-optimal moves was varied over

f0g [ f2ig7i¼�2.

3 RESULTS

We evaluated the performance of GHOST in several different

scenarios and compared against IsoRank, GRAAL,

MI-GRAAL, H-GRAAL and Natalie 2.0. First, we perform

two tests that have been used in the past to assess topological

alignment quality. These tests, self-alignment and self-alignment

with noise, are instructive because the correct node mapping is

known when aligning a network to itself. This allows us to meas-

ure accuracy in a way that is not possible when comparing net-

works from different species. The results of these experiments

provide important evidence about the robustness and specificity

of different topological signatures and the ability of different

global alignment approaches to align two networks based

solely on topological information. In Sections 3.1 and 3.2, we

are interested primarily in the utility of the local topological sig-

natures and the basic alignment procedures. Thus, we do not

perform the local search phase of GHOST described earlier.

Further, because we cannot use biological sequence information

to constrain the space of alignments, we do not consider the

performance of the graph matching approach (i.e. Natalie 2.0)

on this task.

Subsequently, we consider the alignment between

high-confidence protein–protein interaction networks of a pair

of bacteria and a pair of eukaryotes. Here, we use the new met-

rics described in Section 2.1 to measure the topological and bio-

logical quality of our alignments. Considering unconstrained

alignments using graph-matching approaches either exhausted

the memory of our machines (El-Kebir et al., 2011) or failed to

finish aligning the networks within 16 h (Zaslavskiy et al., 2009).

Thus, when comparing against graph-matching approaches, we

use Natalie 2.0 (El-Kebir et al., 2011) to produce a constrained

alignment.

3.1 Self-alignment

For networks with many similar sub-regions, even a self-

alignment in the absence of noise can be difficult. To demon-

strate this difficulty, we consider a self-alignment of the largest

connected component of a high-confidence network of the bac-

terium Mesorhizobium loti. This network was obtained from the

interactions reported in the study by Shimoda et al. (2008) and

consists of 3006 interactions among 1655 proteins. The align-

ment produced by GHOST is an automorphism of the graph,

with an EC of 100% and a node correctness (the fraction of

nodes that were aligned with themselves) of 79%. The alignment

produced by IsoRank had an EC of 76% and a node correctness

of 53%, whereas the alignment produced byMI-GRAAL had an

EC of 38% and node correctness of only 0.3%. Because

MI-GRAAL is probabilistic in nature, we performed this align-

ment multiple times, using a wide variety and combination of the

topological features suggested in Kuchaiev and Przulj (2011), to

ensure that this failure of self-alignment was not coincidental.

None of these subsequent MI-GRAAL alignments differed in

topological quality—either node or EC—by more than a fraction

of a percent. IsoRank produced an alignment of significantly

higher topological quality than the one discovered by

MI-GRAAL; this is different from what we see in the rest of

the tests described later in the text.
Despite the fact that its node correctness is only 79%,

GHOST’s alignment is structurally perfect. Without more infor-

mation beyond what is provided by the network itself, one

cannot hope to obtain a better alignment than the one produced

by GHOST.

3.2 Self-alignment under noise

We also re-performed the experiment originally carried out by

Milenkoviç et al. (2010), where progressively noisier variants of

the Saccharomyces cerevisiae interaction network are aligned to

the high-confidence network of Collins et al. (2007). The higher

noise networks are created by starting with the highest confi-

dence network, and then adding interactions (constrained to

the original, high-confidence protein set) in decreasing order of

experimental confidence. As this is again a self-alignment, and

sequence information would allow the almost perfect identifica-

tion of the correspondences between nodes, we consider a purely

topological alignment (i.e. � ¼ 1:0 and � ¼ 1). We explore how

the fraction of correctly aligned nodes changes as larger quanti-

ties of noisy interactions are added to the high-confidence net-

work (Fig. 2).
In the case with the fewest noisy interactions, most of the

programs achieve similar performance. However, as the

number of noisy interactions increases, GHOST outperforms

all of the other approaches by an increasing margin. By the

time 20% of the noisy interactions have been included in the

network, the node correctness of GHOST is more than twice

that of the next-best-performing aligner, and the EC is430%

higher. There also seems to be a substantial gap between

IsoRank and the rest of the alignment procedures in terms of

both the node and EC. This is indicative of a trend we observe

when aligning real biological networks as well (see later in the

text), where the topological quality of the alignments produced by

IsoRank, even with a large weight being placed on the topological

score, seems to fall behind those produced by the other aligners.

The performance of GHOST in this set of experiments sug-

gests that the spectral signature is robust to the presence of noise

in the network, significantly more so than the graphlet degree

signatures used in the GRAAL aligners. These results agree with

existing evidence, such as that presented by Wilson and Zhu

(2008), that the spectral distance between graphs is robust to

small topological changes. Both this robustness and the specifi-

city of the spectra seem to carry over to our topological
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signatures and do not appear to be negatively affected by the use

of spectral densities to deal with graphs of different order.

3.3 Alignments between different species

The same general performance trend holds under the C. jejuni/E.

coli and A. thaliana/D. melanogaster alignments we considered,

as well as under both the BP and MF aspects of the GO (see

Fig. 3)—owing to sparseness of annotation, the cellular compo-

nent aspect was not included in this analysis. GHOST produces

alignments with very high biological and topological qualities,

and seems capable of trading off between these two goals more

effectively than the other aligners. When placing the most weight

on the biological quality of the alignment (i.e. b¼ 0 for GHOST

and � ¼ 0 for Natalie 2.0), GHOST and Natalie 2.0 produce

alignments with substantially higher biological quality than the

other aligners. However, GHOST’s alignments exhibit a much

higher ICS score than Natalie 2.0’s. As we vary the correspond-

ing parameters and place more weight on topology, GHOST

produces alignments with topological quality very close to

those obtained by MI-GRAAL, but with significantly higher

biological quality. In general, at a similar biological quality

under both GO aspects, GHOST is capable of producing align-

ments with much greater topological quality other aligners.
For IsoRank, the precise value of � seems to matter very little.

It produced alignments of reasonable biological quality but very

low topological quality. In fact, the highest ICS score achieved

by IsoRank was � 0:1, when aligning C. jejuni and E. coli.

MI-GRAAL performed very differently from IsoRank, produ-

cing alignments of excellent topological quality but generally

poor biological quality. Specifically, for both pairs of organisms,

the alignments produced byMI-GRAAL exhibited 3–4 times less

semantic similarity than those produced by Natalie 2.0 and

GHOST.

The alignments obtained by Natalie 2.0 dominate those of

IsoRank in terms of topological and biological quality for a

large range of �. At an approximately equal biological similarity,

Natalie 2.0 is capable of obtaining solutions with ICS scores

between 50% and 120% higher. When aligning the A. thaliana

and D. melanogaster networks, Natalie 2.0 can produce align-

ments with topological quality 120% greater than that of

IsoRank that simultaneously exhibit � 10% greater biological

similarity under the GO BP aspect and � 20% greater biological

similarity under the GO MF aspect. However, at the same bio-

logical quality, GHOST dominates Natalie 2.0, with topological

quality improvements ranging from a few percentage to a factor

of �2.

3.4 Case study: Functional orthology prediction

To assess the fine-scale biological relevance of the alignments

produced by GHOST, we have aligned the networks of the

well-annotated eukaryotes D. melanogaster and Caenorhabditis

elegans. From this alignment, we verify a few known functional

orthologs and posit a few more. To consider protein b 2 H and

protein a 2 G as putative functional orthologs, we require that a

is aligned to b under f, and that the BLAST e-value between a

and b is low. Finally, we consider only those pairs of aligned

proteins where b is not in the unique best BLAST hit of a, mean-

ing that this alignment would not necessarily have been deter-

mined by sequence alone. Further, the examples we consider

later in the text to be known functional orthologs, both share

some common biological function in their respective organisms

and are verified as isologs in the IsoBase (Park et al., 2011)

functional orthology database.

3.4.1 Known functional orthologs GHOST aligned the nuclear
hormone receptor family member nhr-67, a product of gene

nhr-67 in C. elegans to the tailless hormone receptor protein, a

product of gene tll in D. melanogaster. GO annotations with

experimental evidence codes implicate nhr-67 in cell migration,

gonad morphogenesis, regulation of growth rate, hermaphrodite

genitalia development and transcriptional regulation of an

RNA polymerase II promoter (GO:0016477, GO:0035262,

GO:0040010, GO:0040035 and GO:0045944). Meanwhile, the

tailless hormone receptor protein is also implicated in transcrip-

tional regulation of an RNA polymerase II promoter

(GO:0045944) as well as terminal region determination

(GO:0007275), gastrulation (GO:0007369), the torso signaling

pathway (GO:0008293), cell fate commitment (GO:0054165),

regulation of the cell cycle (GO:0051726) and neuroblast division

(GO:0055057).

GHOST also mapped the high mobility group protein DSP1, a

product of gene Dsp1 from D. melanogaster to the high mobility

group protein 1.2, a product of gene hmg-1.2 from C. elegans.

Fig. 2. Performance of various aligners on a noisy yeast PPI under the

node (top) and edge (bottom) correctness metrics. Note: In the 15% noise

case, the performance numbers of MI-GRAAL are not given because it

failed to run to completion
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These proteins both play a role in the development and morpho-

genesis of their respective species. For example, experimentally

determined GO annotations implicate Dsp1 in segment specifi-

cation, developmental process and leg disc development (GO:

0007379, GO:0032502 and GO:0035218) in D. melanogaster,

whereas hmg-1.2 is implicated in epithelium morphogenesis,

larval development, gonad development, embryo development,

body morphogenesis and regulation of growth rate (GO:

0002009, GO:0002119, GO:0009792, GO:0010171 and

GO:0040010) in C. elegans.
We also verified the alignment of Guanine nucleotide-binding

protein G(i) subunit alpha 65A, a product of gene G-ialpha65A

in D. melanogaster with the Guanine nucleotide-binding protein

alpha-16 subunit protein, a product of gene gpa-16 in C. elegans.

Both of these proteins are experimentally determined to function

in protein binding (GO:0005515). More interestingly, however,

G-ialpha65A has been experimentally implicated in asymmetric

cell division, cell differentiation, asymmetric neuroblast division

and the establishment of spindle orientation (GO:0008356,

GO:0030154, GO:0055059 and GO:0055059), whereas gpa-16

has been directly experimentally implicated in embryotic axis spe-

cification (GO:0000578), embryo development (GO:0009792)

and the establishment of mitotic spindle orientation (GO:

0000132). Again, we reiterate that none of these functional

ortholog examples uncovered by GHOST represent unique

best BLAST-hits of the protein to which they are mapped, and

thus they would likely not be uncovered by examining the se-

quences alone.

3.4.2 Putative novel functional orthologs In addition to the
recapitulation of known functional orthologs, we explore three

new pairs of potential functional orthologs. Again, we look for

proteins that are mapped to each other under the alignment,

where the protein from one network is not the unique best

BLAST hit to the mapped protein, suggesting that interaction

evidence led to their alignment. Unlike the confirmed functional

Fig. 3. Under both BP and MF GO aspects and both alignments, we observe a consistent trend in the quality of the solutions produced by the different

aligners. IsoRank produces alignments of reasonable biological, but poor topological quality, whereas MI-GRAAL exhibits the opposite behavior (i.e.

high topological, but poor biological quality). Natalie 2.0 and GHOST consistently produce alignments with competitive trade offs between the

competing goals of topological and biological quality, though GHOST’s alignments exhibit consistently higher topological quality
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orthologs earlier in the text, we do not require both the mapped

proteins we consider here to be confirmed proteins with experi-

mentally validated function. Rather, the potential functional

orthology of these pairs warrants further study.

GHOST mapped the Dredd protein of D. melanogaster to the

csp-1 protein of C. elegans. Although not top-ranked sequence

matches, these proteins share sequence similarities, and both

belong to the peptidase C14A homology family. The csp-1 pro-

tein has no experimentally assigned GO terms, though proteoly-

sis (GO:0006580), apoptotic process (GO:0006915), cysteine-type

endopeptidase activity (GO:0004197) and cysteine-type peptidase

activity (GO:0008234) have been inferred from computational

annotation. Dredd, on the other hand, has a host of experi-

mentally determined GO terms, including apoptotic process

(GO:0006915) and cysteine-type endopeptidase activity (GO:

0004197). These facts both provide evidence that the electronic-

ally inferred GO terms of csp-1 may be correct, and also suggest

that csp-1 may be implicated in some of the other BP performed

with Dredd.
Another intriguing alignment pair produced by GHOST is

that of CG9238 in D. melanogaster to H18N23.2 in C. elegans.

In fact, although the latter of these proteins is merely ‘predicted’,

they both share the same recommended protein name—Protein

phosphatase 1 regulatory subunit 3. The D. melanogaster protein

is annotated with GO terms for carbohydrate metabolic process

(GO:0005975), glycogen metabolic process (GO:0005977) and

behavioral response to ethanol (GO:0048149), whereas the

C. elegans protein is currently without any GO annotations.

The GHOST alignment acts as further evidence for the existence

and function of the C. elegans protein H18N23.2.
Finally, our alignment mapped the UGP protein from D. mel-

anogaster to the K08E3.5 protein from C. elegans. In this case,

each of these proteins was labeled as the corresponding element

(K00963) of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al., 2004) module for nucleotide sugar

biosynthesis in eukaryotes. Although theD. melanogaster protein

has no experimentally assigned GO terms, it has electronically

inferred annotations for metabolic process (GO:0008152) and

nucleotidyltransferase activity (GO:0016779). In addition to

sharing these electronically inferred annotations, the C. elegans

protein has experimentally assigned annotations linking it to

embryo development ending in birth or egg hatching

(GO:0009792), growth (GO:0040007) and positive regulation of

growth rate (GO:0040010). Their similar sequence, interaction

patterns, inferred annotations and placement in the nucleotide

sugar biosynthesis KEGG module suggest that these proteins

may act as functional orthologs in their respective organisms.
Although these novel putative functional orthologs warrant

further study and experimental support, an exploration of the

available evidence suggests that GHOST is positing reasonable

and meaningful biological hypotheses by aligning these pairs of

proteins. Further, we also demonstrated how GHOST was able

to recapitulate previously suggested functional orthologs whose

relationships are supported by a substantial amount of evidence.

In all of these cases, the alignment of these proteins is not owing

to their sequence similarity alone, suggesting that network align-

ment, in general, and GHOST, in particular, is a useful tool for

functional orthology detection.

3.5 Runtime

A tight upper bound on the asymptotic computational complex-

ity of the alignment algorithm used by GHOST remains an open

problem. The difficulty of the analysis is primarily owing to the

algorithm’s fundamental dependence on the structure of the

input networks and the density of aligned neighborhoods.

However, solving the spectral relaxation of the QAP is the step

of GHOST with the largest potential asymptotic complexity.

This step has worst-case running time OððdGdHÞ
2
Þ where dG

and dH are the largest degrees in G and H, respectively. This

complexity results from the need to find the dominant eigenvec-

tor of the largest quadratic assignment matrix, which is quadratic

in the size of the matrix (Kuczynski and Wozniakowski, 1992).

Despite the potential worst-case complexity, we find that

GHOST is fast in practice. First, we note that the computation

of the spectral signatures is independent of the alignment being

performed. Thus, the signatures need only be extracted once and

can be reused for all alignments involving that organism. This

also allows for a quicker exploration of the parameter space be-

cause alignments can be performed under different parameter

settings without recomputing the spectral signatures. Extracting

the spectral signatures took 0.5minutes for E. coli, 14minutes for

C. jejuni, 1minute for S. cerevisiae, 1minute for A. thaliana and

218minutes for D. melanogaster.
The time to perform the actual alignments, given the spectral

signatures, ranged between 1 and 6minutes depending on the

networks being compared. All timings were measured using 20

threads on a Java Virtual Machine instance given 16GB of

heap space. The testing machine had 8 Opteron 8356 processors

and 256GB of memory.

4 DISCUSSION

We have introduced GHOST, a novel framework for the global

alignment of biological networks. At the heart of GHOST is a

new spectral, multiscale node signature that we combine with a

seed-and-extend approach and a local search procedure to per-

form global network alignment. The spectral signature is highly

discriminative and robust to small topological variations. We

verify this robustness in Section 3.2 showing that GHOST out-

strips the competition in aligning the S. cerevisiae protein inter-

action network to noisier variants of itself. In these experiments,

as well as the self-alignment of the M. loti network, the accuracy

of GHOST is significantly higher than that of either IsoRank or

MI-GRAAL. These experiments are of particular interest, as the

ground truth is known and the ability of different aligners to

uncover shared topological structure can be accurately measured.

We find that the alignments produced by GHOST consistently

dominate those produced by the other aligners. When producing

an alignment of approximately the same biological quality,

GHOST yields alignments with substantially higher topological

quality than either IsoRank or Natalie 2.0. Furthermore, at a

similar level of topological quality, GHOST produces alignments

that have far more biological relevance than those produced by

MI-GRAAL. Finally, GHOST consistently produces alignments

that exhibit a more competitive trade off between topological

and biological quality than the other aligners we considered

(see Fig. 3).
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